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Simulation of the effect of short optical pulses on
graphene

Abstract. The interaction of high-frequency pulsed electric fields with graphene
is currently the subject of intense research. The paper presents the results of
testing a software system for modeling such processes using the example of
ultrashort laser pulses of the optical range with different polarizations. The
authors develop the system on a base of a new theoretical approach based on the
quantum kinetic equation. The approach contains a computational model for a
new system of ordinary differential equations with non-linearly dependent on time
and problem parameters coefficients.

The need to analyze the behavior of solutions of this system of equations in
the field of changing several parameters leads to the polynomial computational
complexity. The lack of knowledge of the nature of the parametric dependence of
solutions requires several iterations of the choice of covering grids. The paper
describes the adaptation of this modeling system for use in massively parallel
computing systems.
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Introduction

Currently, the features of optical radiation interaction with new
two-dimensional or pseudo-two-dimensional materials realized in the form
of monoatomic or monomolecular layers on substrates or in the free state
are intensively studied. Graphene is one of these perspective materials [1].
Due to the extremely high mobility of charge carriers [2,3] and unusual
optoelectric properties, [4–6] it can be used in the development of new
ultra-fast optoelectronic devices [7–9]. Particularly interesting are its
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nonlinear properties in the infrared region of the spectrum and optical
range, leading to the generation of high-frequency harmonics [10–13].
This direction requires complex experimental technologies and using of
unique equipment. Theoretical models of these processes are essential both
for understanding their physical nature and for assessing the achievable
parameters and characteristics.

Even with the simplicity and transparency of the physical principles of
the model, the procedure for predicting the observed values on its basis can
be a computationally complex resource-intensive task. The present work
considers a test problem, which is devoted to demonstrating the capabilities
of the developed software system for simulating the behavior of charge
carriers in graphene in the presence of external electric fields of various
nature using a new kinetic quantum field approach [14]. The universality of
this approach makes it possible to consider electric fields with an arbitrary
dependence on time, including a variable direction of action. The only
limiting condition is the requirement of spatial homogeneity of the field.
We test the system on the problem with realistic parameters under the
conditions of experiments presented in the works [15,16].

1. Physical model

The basic kinetic equation(KE) which describing electron-hole excita-
tions in electric field for D = 2 + 1 graphene model is [14]:

ḟ(p1, p2, t) =
1

2
λ (p1, p2, t)

t
t0

dt′λ(p1, p2, t
′) [1− 2f(p1, p2, t

′)] cos θ(t, t′),

(1)

where

θ(t, t′) =
2

~

t
t′

dt′′ε(p1, p2, t
′′),(2)

and parameter

λ (p1, p2, t) =
ev2F [E1P2 − E2P1]

ε2(p1, p2, t)
(3)

determined through the components of a two-dimensional (k = 1, 2)
quasimomentum Pk = pk − (e/c)Ak(t) and quasiparticles energy

ε(~p, t) = vF
√
P 2 = vF


(P1)2 + (P2)2,(4)



Simulation of the effect of short optical pulses on graphene 49

taking into account the specifics of the dispersion law in the neighbourhood
of Dirac points. In these definitions: ~—reduced Planck constant, e—
elementary charge, c—velocity of light, vF—Fermi velocity, pk—components
of a quasi-particle momentum in the absence of an electric field, Ek—
strength and Ak—vector potential of electric field.

For a numerical study of the behavior of KE (1) solutions, it is
convenient to convert it into the form of a system of three ordinary
differential equation [17]

ḟ =
1

2
λu, u̇ = λ (1− 2f)− 2ε

~
v, v̇ =

2ε

~
u,(5)

with appropriate initial conditions f(t0) = u(t0) = v(t0) = 0 for a physical
system, which occupies a vacuum state before the field switched on.
The primary object to describe the characteristics of the system is the
distribution function f(p1, p2, t). Functions u(p1, p2, t) and v(p1, p2, t) are
auxiliary and represent the features of the evolution of polarization effects
and energy of the system.

To describe the electric field of short optical pulses, we define it in the
form:

E1(t) = E0 cos(ωt) exp(−t2/2τ2)(6)
E2(t) = E0 cos(ωt+ φ) exp(−t2/2τ2).

Here ω - cyclic radiation frequency. The characteristic of the pulse duration
τ can be determined through an auxiliary parameter σ (usually interpreted
as the number of fundamental frequency waves per pulse) using relation
τ = σ/ω. The phase shift φ between the components of the field vector
determines its polarization. In the case φ = 0 polarization is linear,
φ = 0.5π corresponds to circular polarization.

We have selected the parameter values in accord with the experimental
conditions [16]: ω = 2π · 5.0×1014 Hz, that corresponds to the wavelength
λ = 600 nm (optical range). The amplitude of electric field is E0 =
2.528×104 V/m. The selected field amplitude value corresponds to focusing
into a spot with a diameter of 1.5 µm at a pulse power of 50 µW. We do
not fix the φ parameter. Changing it, we can simulate the process of
changing the polarization of a laser pulse.

2. Software implementation

Implementation of the simulation process should provide complete
information about the distribution function of the carriers at the time of
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the termination of the electric field. Strictly, it is f(p1, p2, t → ∞), and the
integration must be performed for −∞ ≤ t ≤ ∞. But, since the field (6) is
very quickly suppressed by the exponent exp(−t2/2τ2), real time interval
tin < t < tout for describing distribution function evolution through the
system (5) is finite and amounts to several τ . Its specific value is chosen
based on the numerical experiments from the condition of integration
results stability.

Since in real experiments the integral characteristics of the distribution
function are measured, it is necessary to obtain sufficiently detailed
information about f(p1, p2 : t = tout) = fout(p1, p2) to adequately reproduce
the values of these characteristics in the subsequent stages of modeling the
system behavior. In general, a priori we know nothing about its behavior in
the momentum space. According to the conditions of the problem, only the
first Brillouin zone is considered. But whether fout(p1, p2) is localized in a
relatively small area of this zone, distributed over several compact areas, or
relatively uniformly covers the entire zone can be found only by the results
of numerical experiments. It follows that the mandatory step of solving the
problem will be the determination of range arguments values p1 and p2.
Next problem is a sampling step selection. If fout(p1, p2) turns out to
be smooth, we can use sparse grid. With the complex behavior of the
distribution function, grid with a vast number of points may be required.
These problems will be demonstrated by specific examples below.

An important simplifying circumstance in this case is the refusal to
take into account the dissipative processes and the reverse influence of the
generated quasiparticles on the active field. It allows us to solve a system
of equations (5) for each point of the momentum space independently and
work with the grid points in parallel. In software, this is implemented using
MPI procedures. MPI was selected because it is necessary to have the
opportunity to simulate on massive parallel systems without limit of scaling
level.

We solve the system of ODE using the GSL library [18]. The choice
of GSL is determined by the presence of different levels objects for the
organization of procedure for solving the Cauchy problem of the ODE
system and the support of various methods for the numerical solution of
such problem. There are implementations of several modifications of the
explicit and three modifications of the implicit Runge–Kutta methods,
special features are provided for the solution of stiff systems. Effectiveness
of different methods was studied in detail [19].
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3. Results of numerical simulation

Figure 1 shows the steps of determining the shape of the residual
distribution function formed as a result of the action of a field pulse (6).
Frequency and amplitude were defined in Section 1. For two additional
parameters, values are selected: φ = 0 and σ = 4. As noted above, the
choice of φ = 0 specifies the common-mode behavior x and y components of
field (6). In this case, their sum is linearly polarized with the polarization
plane on the diagonal x = y. The choice of σ = 4 minimizes the field
duration and the time required to the simulation.

Figure 1a presents a quick overview of the Brillouin zone. It was
building by 169 points (grid 13×13), and it gives only an approximate
idea of the solution localization area. Figure 1b was building taking into
account the obtained information about the region of the distribution
function localization in the momentum space. The computation were
carried out in 484 points (grid 22×22). The account the refinement of the
localization area has improved the resolution in the momentum space by 5
times. The figure gives a rough representation of the distribution form and
does not guarantee the correct reproduction of integral characteristics. On
the next iteration, the grid step reduces in 5 times by every axes. The
result presents on Figure 1c. In this case equations system (5) solves for
10404 various samples of parameters (grid 102×102), that provides high
potential for parallel. Resulting data allow us to be sure both in the
smoothness of the studied solution and in the exact reproduction of its
integral parameters. Also, they demonstrate the reflection of the spatial
symmetry of the acting electric field in the momentum space.

Choosing a more realistic value for the parameter σ = 16 significantly
complicates the task. First of all, the duration of field action increases
proportionally. But other factors affect the computational complexity of
the problem. Figure 2a presents the results of computation on a grid
similar to that used for the bottom panel Figure 1.

We see the distribution function changes. Its maximum value increases
approximately by an one order of magnitude, but the "thickness" of the
localization area decreases significantly. As the result, a grid 102×102 does
not provide exact reproducing its form. We have to increase the number of
grid points on each axis of the momentum space. Figure 2b shows a result
for area 0.0 ≤ p1 ≤ 0.5,−0.5 ≤ p2 ≤ 0.0 with grid step reduced in 4 times.
So if you do not take additional simplifying actions, the complexity of the
task is approximately proportional to the cube of parameter σ. This should
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(a) an overview of the entire Brillouin zone
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(b) localization area with increased resolution

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

p1

-1
-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

p2

0
5x10-11
1x10-10

1.5x10-10
2x10-10

2.5x10-10
3x10-10

3.5x10-10
4x10-10

4.5x10-10
5x10-10

(c) high resolution distribution function

Figure 1. Three stages define the shape of distribution function
for residual carriers
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(a) −1.0 ≤ p1 ≤ 1.0,−1.0 ≤ p2 ≤ 1.0
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(b) 0.0 ≤ p1 ≤ 0.5,−0.5 ≤ p2 ≤ 0.0

Figure 2. Building of the distribution function for the field
momentum with the parameter value σ = 16, grid 102×102 and
different areas

be taken into account, since in realistic situations this parameter has rather
large values.

In the model under consideration, there is another free parameter φ,
the manipulations of which allow varying the polarization of the incident
radiation. Model behavior when changing the degree of polarization
demonstrates Figure 3. Both figures use the same set of parameters as
the first series of figures (Figure 1) and a grid 102×102. In conjuction
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(a) φ = 0.3π
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(b) φ = 0.5π

Figure 3. The effect of the phase shift φ on the shape of the
distribution function

Figure 1c, Figure 3a and Figure 3b reflects the phase shifts φ = 0, φ = 0.3π
and φ = 0.5π respectively. This series of figures shows the change in the
symmetry of the solution. In the case of circular polarization φ = 0.5π the
residual distribution function acquires rotational symmetry with respect to
the point p1 = p2 = 0. This potentially opens the possibility to reduce the
dimension of the problem from 2D to 1D with a corresponding decrease in
its computational complexity. But in general case of the φ values there is
only a reflective symmetry with respect to the line p1 = p2. The values of
φ has no noticeable effect on the computation time.
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Table 1. Computation time to solve the task for a single point

Integration method (in designations of GSL) Time (ms)

Explicit embedded Runge–Kutta–Fehlberg (4, 5) 304.7
Explicit embedded Runge–Kutta Cash–Karp (4, 5) 194.0
Explicit embedded Runge–Kutta Prince–Dormand (8, 9) 64,3
A variable-coefficient linear multistep Adams method in
Nordsieck form 144.5

All the above results are obtained using an explicit method in the
solution of the equations system (5), referred to in the GSL documentation
as “embedded Runge–Kutta Prince–Dormand (8, 9)”. Its excellence has
been demonstrated earlier [19] for another field model. Since the field model
under consideration (6) has significant differences, a control comparison of
the solution time was computed per grid point for several methods that
showed the best results in [19]. Tests were performed for the value σ = 256

in the area maximum values of the distribution function and in the area of
background values on nodes with processors Intel R© Xeon R© E5405 with
clock frequency 2.0 GHz. The computation times for points in the area of
maximum values are given. Outside this area, the computation times do
not exceed these values. From the given data it follows that “embedded
Runge–Kutta Prince–Dormand (8, 9)” the method still copes with the task
more than twice as fast as the nearest competitor.

Conclusion

The article presents the results of testing the system for modeling the
interaction of graphene with external electric fields on the example of a
realistic physical problem. The result of the action on a graphene of a short
optical pulse is considered. The possibility of reproducing in detail the
result of such interaction in the presence of sufficient computing resources
is demonstrated. A feature of the developed system is a new physical
model based on the quantum kinetic equation [14]. This allows modeling
without restrictions on the nature of the dependence of the active field on
time, its frequency, amplitude, and direction.

The authors thank S.A. Levenec, S.A.Smolyansky and S.O.Pirogov for
useful discussion of the work.
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