
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 9, No 4(39), pp. 239–252

UDC 004.627

Y. V. Shevchuk

Vbinary: variable length integer coding revisited

Abstract. The article introduces Vbinary, a parametrized variable-length prefix
integer coding. The coding is considered by means of examples in comparison
with existing codings, including Golomb/Rice and Elias codings. A naming
schema is proposed that allows to specify the coding parameters concisely.

Vbinary coding utilizes unusual n-ary extension technique which makes the
coding versatile, usable for both bit-based and byte-based data streams. By
varying parameters, Vbinary coding can be made efficient for small numbers or
large numbers, tailored to specific data distribution, tuned for efficient encoding
and decoding. Potential uses for the coding are network protocols, on-disk and
in-memory data representation, and final stages of data compression algorithms.

Key words and phrases: coding of integers, variable length coding, prefix code, parametrized
coding, data compression.

2010 Mathematics Subject Classification: 94A45; 68P30, 94B60

Introduction

In programming practice we routinely define data fields and ponder on
choosing the proper field width. This choice is often tough, especially in
network protocol headers where you would have to upgrade all protocol
speakers if you change your mind afterwards. RAM, disk space and network
bandwidth are not free so the natural urge is to use as narrow field as
possible, but then you start thinking about future extensions and in general
“you shouldn’t have arbitrary limits” [1]. The field width choice can
take unreasonable efforts with unsatisfying result as any fixed length
choice is a compromise. Thus programmers often resort to some kind of
variable-length coding.

The research is a part of the Russian Academy of Sciences research project
AAAA-A17-117040610378-6.
c⃝ Y. V. Shevchuk, 2018
c⃝ Ailamazyan Program Systems Institute of RAS, 2018
c⃝ Program Systems: Theory and Applications (design), 2018

DOI: 10.25209/2079-3316-2018-9-4-239-252 CC-BY-4.0

http://psta.psiras.ru/index_en.htm
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2018-9-4-239-252&domain=pdf
http://www.botik.ru/PSI/
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2018-9-4-239-252
https://creativecommons.org/licenses/by/4.0/


240 Yury Shevchuk

Table 1. Simple Vbinary codings

integer value vbinary2x vbinary2x2 vbinary2x3x

0 00 00 00
1 01 01 01
2 10 10 10
3 1100 1100 11000
4 1101 1101 11001
5 1110 1110 11010
6 111100 1111 11011
7 111101 none 11100
8 111110 none 11101
9 11111100 none 11110

10 ... none 11111000
... ... none ...

A number of variable-length coding schemas exist already: Unary
coding, Golomb coding [2], Elias γ, δ, ω codings [3] are the most popular
examples. In practice however you often find them unsuitable for the task
in hand: bitwise coding not fitting your data structure, codeword length
distribution too far from your data probability distribution, encoding and
decoding cost unacceptable for your application. As a result, the most
popular solution is the variable-byte coding (e.g. [14]) which is suboptimal
in terms of coding efficiency and encoding cost but widely accepted.

Vbinary coding proposed in this paper is an attempt to improve the
situation by providing a parametrized coding which can be tuned to fit
the application needs in all three aspects: coding efficiency (number of
bits necessary to represent a value), codeword length distribution and
encoding/decoding cost.

1. Construction of codes

Let us start with a simple example called vbinary2x (Table 1). As the
name says, this coding has the base length of 2 bits— this is the minimal
space occupied by codewords in this coding. Of the four values provided by
two bits in binary coding, three values are used to represent integers 0..2.
The letter x in the name says the width should be extended when the base
bit group capacity is exhausted, so the fourth value (binary 11) is used for
width extension and says that (at least) two more bits follow. The two
added bits are capable to encode three more integers, and then the next
extension level is added.



Vbinary: variable-length integer coding 241

Figure 1. Levels of vbinary6x(6x,4,8)(8,6x,10)(6x,7)
Note: at most one non-terminal extension per level

The vbinary2x coding is infinite, adding bit pairs as needed to
accomodate more integers (the last extension rule repeats indefinitely).
The vbinary2x2 coding (Table 1) is a finite coding, which is signalled by the
absence of x in the last extension level width present in the name. The
vbinary2x2 coding is only capable of representing 7 integer values. In
finite codings, the last codeword is spent to represent a value rather than
extension: in this example, the last value (6) occupies the code 1111 which
in vbinary2x was used for extension.

Vbinary coding name is basically a sequence of extension rules, although
the rules can be more complex than those already shown. All codings in
Table 1 have only one value reserved for extension at every level. Actually
we can reserve up to 2wi values for extension, where wi is the bit width of
the current level. However, only one of the multiple extensions is permitted
to be further extended (Figure 1) so as to keep the name structure linear.
We will show the arity increase providing for more powerful codings. As we
continue with more complex examples, please refer to the Vbinary name



242 Yury Shevchuk

Table 2. vbinary1x(8,1x) is the same as Golomb(256)

integer value vbinary1x(8,1x) bit count

0 000000000 9
... ... 9
255 011111111 9
256 1000000000 10
... ... 10
511 1011111111 10
512 11000000000 11
... ... 11
767 11011111111 11
... ... ≥12

Figure 2. Levels of vbinary1x(8,1x)

syntax provided in Appendix A.
Consider the vbinary1x(8,1x) coding (Table 2). The second extension

level specification in the form (8,1x) means there are two variants of the
second level and, respectively, two values reserved for extensions at the
base level (Figure 2). As the base level is only one bit wide, there are



Vbinary: variable-length integer coding 243

Table 3. vbinary1x2x(2,1x)(a1,a0) is equivalent to Elias γ

integer value vbinary1x2x(2,1x)(a1,a0) bit count

0 0 1
1 100 3
2 101 3
3 11000 5
4 11001 5
5 11010 5
6 11011 5
7 1110000 7
8 1110001 7
9 1110010 7

10 1110011 7
11 1110100 7
12 1110101 7
13 1110110 7
14 1110111 7
15 111100000 9
... ... ≥9

no codewords assigned to data values at base level, both codewords are
assigned to extensions.

The first extension is a terminal extension capable of representing 28

data values, and the second is a non-terminal extension one bit wide
which behaves exactly as the base level. As the last extension specification
contains x, the coding is infinite, the last extension (8,1x) is applied
repeatedly.

The next example is vbinary1x2x(2,1x)(a1,a0). This infinite coding
has three level specifications—base, 1st, 2nd— and features an additive
repeater element (a1,a0). The repeater element is applied when generating
levels 3rd, 4th, etc., adding 1 and 0 respectively to the last level widths to
generate the new level. That is, the following codings are all exactly the
same:

vbinary1x2x(2,1x)(a1,a0)

vbinary1x2x(2,1x)(3,1x)(a1,a0)

vbinary1x2x(2,1x)(3,1x)(4,1x)(a1,a0)

vbinary1x2x(2,1x)(3,1x)(4,1x)(5,1x)(a1,a0)

. . .

The effect of the additive repeater is doubling the number of values
accomodated by every subsequent level (Table 3): 4, 8, 16, . . .



244 Yury Shevchuk

Table 4. vbinary1x is the same as Unary and as Golomb(1)

integer value vbinary1x bit count

0 0 1
1 10 2
2 110 3
3 1110 4
4 11110 5
5 111110 6

... ... ...

The general repeater syntax (mKaC) allows for growing widths in
a mix of geometric and arithmetic sequences: wi+1 = Kwi + C, where
the factor K and the additive component C can be integers or common
fractions. Decimal fractions are not used as they are inconvenient to handle
on small processors without FPU.

Slow width growth is supported as follows. The calculations are
performed in fixed point arithmetics with a scaling factor1 of 16. The
integer part of the calculation result is used for width, but the whole result
with the fractional part is kept behind the scenes and used as the input for
the next growth step. This way, the repeater (a1/3) will result in width
increase by 1 every three steps, while the repeater (m4/3) will provide
exponential growth at a rate of (4/3)n.

The order of value assignment at a level is as follows:
(1) use all widths defined for the level in the order written. In the width

marked by x, skip the values reserved for extensions.
(2) use the values reserved for extensions while handling the widths of the

next level according to step 1.
That is all to Vbinary name syntax and semantics. The syntax covers

a vast family of codings which we will now consider in comparison with
other variable length integer codings.

2. Relation to other variable length codings

Parametrized codings often have Unary coding as a special case [2,5].
Vbinary is no exception: vbinary1x is the same as Unary coding (Table 4).

We have seen that vbinary1x(8,1x) is identical to Golomb(256) coding.
Generalizing, vbinary1x(n,1x) is identical to Golomb(2n).

1small scaling factor is chosen to keep computations efficient on 8-bit CPUs



Vbinary: variable-length integer coding 245

Table 5. vbinary1x(7,1x)(a7,a0) is close to variable-byte coding

integer value vbinary1x(7,1x)(a7,a0) bit count

0 00000000 8
1 00000001 8

... ... ...
127 01111111 8
128 1000000000000000 8
... ... ...
255 1000000001111111 16
256 1000000010000000 16
... ... ...

16511 1011111111111111 16
16512 110000000000000000000000 24

... ... ...
2113663 110111111111111111111111 24

... ... ...

We have also considered vbinary1x2x(2,1x)(a1,a0) coding (Table 3),
which is equivalent to Elias γ coding [3]. Elias γ differs by inversion of the
unary part and value range shift by 1.

Another relative is the variable-byte coding which does not seem
to have a known author but is widely used in software. The variety
of the coding implemented in Git [14] called varint is equivalent to
vbinary1x(7,1x)(a7,a0) (Table 5), though with different bit order: Vbinary
puts Unary prefix at the beginning of codewords, while varint has the same
unary prefix spread over MSBs of the bytes comprising a codeword.

The start-step-stop coding [4] is a finite parametrized prefix code
organized like Elias γ coding, but with binary part growing not by 1-bit
steps but by steps specified in the parameters. This coding has equivalents
in Vbinary family: for example, the start-step-stop(3,2,9) coding coincides
with vbinary1x(3,1x)(5,1x)(7,9). We cannot a repeater in the definition
because Vbinary repeaters lack stop conditions. vbinary1x(3,1x)(a2,a0) is
close to start-step-stop(3,2,9) but is an infinite coding and so its codewords
are longer by one bit in the number range 168..679.

Start/Stop coding [5] is a finite parametrized prefix code. The coding
is parametrized by a vector of widths of binary fields which provides for
matching the coding to specific data distribution. Variable length prefix
code property is achieved using a spread-out equivalent of unary coding.
Start/Stop coding is not exactly expressable in Vbinary, but is ideologically
closer to Vbinary than other codes considered so far.



246 Yury Shevchuk

All codings we compared so far employ Unary coding to implement the
prefix code property. Unary coding can be expressed in Vbinary, so these
codings mostly have Vbinary equivalents. However, the n-ary extension
technique used in Vbinary can do much more than just implement Unary
coding.

Codings that utilize something different from Unary to implement
variable length prefix, e.g Levenshtein W2′ coding [11], Elias δ and ω
codings [3], or their successors [7] [8], have no equivalents in Vbinary
family. Citing [4], “these encodings have nice asymptotic properties for very
large integers”, but they are not particularly efficient with small integers.

There was a substantial work on variable-length codings for small
integers summarized in [9]. These codes have no Vbinary equivalents.
They demonstrate an improvement over Elias γ coding for certain data
distributions but lack the flexibility achievable in parametrized codings.

Small integer representation is where Vbinary shine, as we will show
in the next section, though large integers can be encoded efficiently in
Vbinary as well.

3. Small numbers example

Suppose we are designing a network protocol and define a header field
that distinguishes between 17 types of records. We would also like to
reserve room for future protocol extensions. The straightforward solution is
to define a field 5 bits wide with fixed-width binary coding. We will be able
to add 15 more records in the future, but not more. A better solution is to
use a variable-length coding: we will get unlimited extensibility and can
also take advantage of non-uniform record frequency distribution, assigning
shortest codewords to the most frequent records. Table 6 summarizes
performance of a number of variable-length codings in this scenario. For
any third-party variable-length coding shown in the table there is a Vbinary
coding that is better by at least one characteristic. Looking at Vbinary
codeword table (Table 7) one can see the codeword length distribution
and choose the coding that fits the record frequency distribution best. If
necessary, more ad-hoc Vbinary codings can be devised and evaluated
using the freely available tool [15].

4. Byte-based examples

There are applications where byte-aligned codings are considered
preferable to bit-aligned for speed reasons [12]. One can construct byte-



Vbinary: variable-length integer coding 247

Table 6. Performance of codings (n ⩽ 16) in Small Numbers Example

Encoding min avg median max limit

binary 5 5 5 5 32
Unary 1 8.5 8 17 unlimited
Elias γ 1 5.94 7 9 unlimited
Elias δ 1 6.53 8 9 unlimited
Elias ω 1 5.76 7 11 unlimited
Golomb(16) 5 5.06 5 6 unlimited
Golomb(8) 4 4.59 5 6 unlimited
Golomb(4) 3 4.65 5 7 unlimited
vbinary4x1x 4 4.1 4 6 unlimited
vbinary4x2x 4 4.24 4 6 unlimited
vbinary3x(3,3x) 3 4.94 6 6 unlimited
vbinary3x(2,2,2) 3 4.41 5 5 17
vbinary2x(3,4x) 2 5.06 5 6 unlimited
vbinary1x2x(2,3x) 1 5.59 6 8 unlimited
vbinary1x2x(2,2,3x)3x 1 5.06 5 6 unlimited

Table 7. Vbinary codings used in Small Numbers Example

integer vbinary vbinary vbinary vbinary vbinary vbinary vbinary
value 4x1x 4x2x 3x(3,3x) 3x(2,2,2) 2x(3,4x) 1x2x(2,3x) 1x2x(2,2,3x)3x

0 0000 0000 000 000 00 0 0
1 0001 0001 001 001 01 100 100
2 0010 0010 010 010 10000 101 10100
3 0011 0011 011 011 10001 11000 10101
4 0100 0100 100 100 10010 11001 10110
5 0101 0101 101 10100 10011 11010 10111
6 0110 0110 110000 10101 10100 11011 11000
7 0111 0111 110001 10110 10101 111000 11001
8 1000 1000 110010 10111 10110 111001 11010
9 1001 1001 110100 11000 10111 111010 11011

10 1010 1010 110101 11001 110000 111011 111000
11 1011 1011 110110 11010 110001 111100 111001
12 1100 1100 110111 11011 110010 111101 111010
13 1101 1101 111000 11100 110011 11111000 111011
14 1110 1110 111001 11101 110100 11111001 111100
15 11110 111100 111010 11110 110101 11111010 111101
16 111110 111101 111011 11111 110110 11111011 111110

17 1111110 111110 111100 none 110111 111111000 111111000
18 11111110 11111100 111101 none 111000 111111001 111111001



248 Yury Shevchuk

Table 8. vbinary1x(7,15) is a finite byte aligned coding

integer value vbinary1x(7,15) bit count

0 00000000 8
... ... ...
127 01111111 8
128 1000000000000000 16
... ... ...

32895 1111111111111111 16

Table 9. vbinary8x(8,16,24,56) is a finite byte aligned coding

integer value vbinary8x(8,16,24,56) bit count

0 00000000 8
1 00000001 8

... ... ...
251 11111011 8
252 1111110000000000 16
... ... ...
507 1111110011111111 16
508 111111010000000000000000 24
... ... ...

508 + 216 − 1 111111011111111111111111 24
508 + 216 11111110000000000000000000000000 32

... ... ...
508 + 216 + 224 − 1 11111110111111111111111111111111 32
508 + 216 + 224 11111111000...(56 zero bits)... 64

... ... ...
508 + 216 + 224 + 256 − 1 11111111111...(56 one bits)... 64

aligned codings in Vbinary family. One example is vbinary1x(7,1x)(a7,a0)
coding considered above (Table 5), but Vbinary allows to construct codings
that accomodate more values in the same number of bytes (Table 8)
or allow faster encoding/decoding by avoiding byte-by-byte processing
(Table 9). More variants can be invented with specific purpose for the
coding in mind.

5. Some properties of the Vbinary coding

5.1. Lexicographic order

Vbinary codeword sequence is lexicografically ordered if and only if all
extensions are made from the last binary group of the level. For example,
both vbinary8x(8,16,24,56x)64 and vbinary8x(8x,16,24,56)112 are finite



Vbinary: variable-length integer coding 249

codings with maximum length of 128 bits. The first is lexicografically ordered
and has maximum value around 264, while the second is not lexicografically
ordered and has maximum value around 2112. So, lexicographic order is
achieved at the cost of coding efficiency. If you trade in lexicographic order
for coding efficiency you will not be able to compare Vbinary-encoded
numbers without decoding them to binary first, which is not a huge loss if
the decoding cost is small.

5.2. Codeword length monotonicity

In all variable-length codings known to the author the codeword length
monotonically increases with the value of encoded integer: L(v(n)) ≤
L(v(n+ 1)) for any n, where L is the bit length function, v(n) is a
variable-length encoding function, n is a non-negative integer. In Vbinary
you have the freedom to define a coding such that L(v(n)) is not monotonic.
For example, vbinary8x(8,16,24,56,2) has four 16-bit codewords assigned to
the higher end of the range, while the maximum codeword length is 64 bits.

6. Conslusion

Vbinary is a highly parametrized variable length integer coding with
prefix property. Vbinary coding uses unusual n-ary extension technique
which makes the coding versatile, usable for both bit-based and byte-based
data streams. By varying parameters, Vbanary coding can be made efficient
for small numbers or large numbers, tailored to specific data distribution,
tuned for efficient encoding and decoding. We compared Vbinary to
other variable length codings and got the impression that Vbinary with
parameters chosen for the specific task will outperform any general-purpose
variable-length coding. No attempt to prove that has been made though.

Potential uses for Vbinary coding are network protocols, on-disk
and in-memory data representation. Probably the coding can be useful
in data compression applications where Golomb/Rice coding or other
variable-length integer codings are used today [13] [10].

We have provided a naming schema which makes it convenient for
programmers to use Vbinary coding instead of inventing ad hoc variable
length codings. A software tool for experimentation with Vbinary coding
parameters is available [15].



250 Yury Shevchuk

References

[1] R.M. Stallman, D. Betz, J. Edwards. BYTE Interview with Richard
Stallman, July, 1986. [URL]↑239

[2] S. W. Golomb. “Run-length encodings”, IEEE Transactions on Information
Theory, 12:3 (1966), pp. 399–401. [URL]↑240,244

[3] P. Elias. “Universal codeword sets and representations of the integers”,
IEEE Transactions on Information Theory, 21:2 (1975), pp. 194–203. [DOI]

↑240,245,246

[4] E. R. Fiala, D. H. Greene. “Data compression with finite windows”, CACM,
32:4 (1989), pp. 490–505. [DOI]↑245,246

[5] S. Pigeon. “Start/stop codes”, Data Compression Conference (Snowbird,
Utah, 2001), 2001, 0511. [DOI] [URL]↑244,245

[6] A. S. Fraenkel, S. T. Klein. “Robust universal complete codes for transmission
and compression”, Discrete Applied Mathematics, 64:1 (1996), pp. 31–55. [DOI]

↑
[7] M. Nangir, H. Behroozi, M. R. Aref. “A new recursive algorithm for universal

coding of integers”, Journal of Information Systems and Telecommunication,
3:1 (9) (2015), pp. 1–6 10.7508/jist.2015.01.001. ↑246

[8] J. Nelson Raja, P. Jaganathan, S. Domnic. “A new variable-length integer
code for integer representation and its application to text compression”,
Indian Journal of Science and Technology, 8:24 (September 2015). [DOI]↑246

[9] P. Fenwick. “A note on variable-length codes with constant Hamming
weights”, Journal of Universal Computer Science, 21:9 (2015), pp. 1136–1142.
[DOI]↑246

[10] P. Fenwick. “Burrows-Wheeler compression with variable length integer
codes”, Software Practice and Experience, 32:13 (2002), pp. 1307–1316. [DOI]

↑249

[11] V. I. Levenshtein. “On the redundancy and delay of decodable coding of
natural numbers”, Probl. Cybern., 20 (1968) (in Russian). ↑246

[12] F. Scholer, H. E. Williams, J. Yiannis, J. Zobel. “Compression of inverted
indexes For fast query evaluation”, SIGIR ’02 Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in
information retrieval (Tampere, Finland, August 11–15, 2002), ACM, 2002,
pp. 222–229. [DOI]↑246

[13] Josh Coalson. FLAC documentation: format overview. [URL]↑249

[14] J. C. Hamano. git/varint.c, 2012. [URL]↑240,245

[15] Yu.V. Shevchuk. vbinary/vbinary-eval.pl, 2018. [URL]↑246,249

[16] D. Crocker, P. Overell, Augmented BNF for Syntax Specifications: ABNF,
RFC 5234, 2008. [URL]↑251

https://www.gnu.org/gnu/byte-interview.en.html
https://web.stanford.edu/class/ee398a/handouts/papers/Golomb%20-%20Run-Length%20Codes%20-%20IT66.pdf
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1145/63334.63341
https://doi.org/10.1109/DCC.2001.10022
https://www.computer.org/csdl/proceedings/dcc/2001/1031/00/10310511.pdf
https://doi.org/10.1016/0166-218X(93)00116-H
https://doi.org/10.17485/ijst/2015/v8i24/80242
https://doi.org/10.3217/jucs-021-09-1136
https://doi.org/10.1002/spe.484
https://doi.org/10.1145/564376.564416
https://xiph.org/flac/documentation_format_overview.html
https://github.com/git/git/blob/7fb6aefd2aaffe66e614f7f7b83e5b7ab16d4806/varint.c
https://github.com/yysizif/vbinary
https://tools.ietf.org/html/rfc5234


Vbinary: variable-length integer coding 251

Appendix A. Vbinary name syntax in Augmented BNF [16]

vbinary-name = "vbinary" basewidth
vbinary-name /= "vbinary" basewidth repeat-rule
vbinary-name /= "vbinary" basewidth "x" [*midlevel lastlevelx]
vbinary-name /= "vbinary" basewidth "x" [*midlevel] lastlevel repeat-rule

midlevel = width "x"
; 1-ary non-terminal extension

midlevel /= "(" 1*(width ",") width "x" ")"
midlevel /= "(" *(width ",") width "x," *(width ",") width ")"

; n-ary non-terminal extensions

lastlevelx = width "x"
; 1-ary non-terminal extension

lastlevel = width
; 1-ary terminal extension

lastlevel /= "(" 1*(width ",") width ")"
; n-ary terminal extension

lastlevel /= "(" 1*(width ",") width "x" ")"
lastlevel /= "(" *(width ",") width "x," *(width ",") width ")"

; n-ary non-terminal extensions

repeat-rule = addmul
; for 1-ary lastlevel

repeat-rule /= "(" 1*(addmul ",") addmul ")"
; for n-ary lastlevel

addmul = add / mul / mul add
add = "a" increment
mul = "m" factor

rational = 1*DIGIT
rational /= 1*DIGIT "/" 1*DIGIT

basewidth = width
width = 1*DIGIT
increment = rational
factor = rational

Received 09.11.2018
Revised 11.11.2018
Published 30.11.2018

Recommended by prof. S.V. Znamenskij



252 Yury Shevchuk

About the author:

Yury Vladimirovich Shevchuk
Head of telecommunication laboratory Multiprocessor Systems
of Ailamazyan Program Systems Institute of Russian Academy
of Sciences. Ph.D. Interest areas: system programming,
digital electronics, computer networks, sensor networks, wide
area monitoring and control, distributed programming

iD: 0000-0002-2327-0869
e-mail: sizif@botik.ru

Sample citation of this publication:
Yury Shevchuk. “Vbinary: variable length integer coding revisited”. Program

Systems: Theory and Applications, 2018, 9:4(39), pp. 239–252.
DOI: 10.25209/2079-3316-2018-9-4-239-252
URL: http://psta.psiras.ru/read/psta2018_4_239-252.pdf
The same article in Russian: DOI: 10.25209/2079-3316-2018-9-4-477-491

Эта же статья по-русски: DOI: 10.25209/2079-3316-2018-9-4-477-491

https://orcid.org/0000-0002-2327-0869
mailto:sizif@botik.ru
http://psta.psiras.ru/index_en.htm
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2018-9-4-239-252
http://psta.psiras.ru/read/psta2018_4_239-252.pdf
http://psta.psiras.ru/read/psta2018_4_477-491.pdf
http://doi.org/10.25209/2079-3316-2018-9-4-477-491
http://psta.psiras.ru/read/psta2018_4_477-491.pdf
http://doi.org/10.25209/2079-3316-2018-9-4-477-491

	Introduction
	1. Construction of codes
	2. Relation to other variable length codings
	3. Small numbers example
	4. Byte-based examples
	5. Some properties of the Vbinary coding
	6. Conslusion
	References
	Appendix A. Vbinary name syntax in Augmented BNF ABNF

