
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 9, No 4(39), pp. 53–68

UDC 004.75

I. A. Chernov, N. N. Nikitina

Effective scanning of parameter space in a Desktop Grid
for identification of a hydride decomposition model

Abstract. We consider parameter identification of a hydride decomposition
model by scanning the parameter space in parallel. Such problem is resource
demanding, but suits best for Desktop Grid computing. Considering task retrieval
as a game, we show that the search process can be improved to produce solutions
faster in comparison with random search, with no or minor additional cost.

Key words and phrases: Desktop Grid, task scheduling, BOINC, Enterprise Desktop Grid,
high-throughput computing, distributed computing, modeling of hydride decomposition.

2010 Mathematics Subject Classification: 68W10; 68W15,91A80

1. Introduction

Inverse problems of parameter identification using experimental
data are important in material science and physical chemistry. The
model’s ability to reproduce observations is the main criteria of its
quality. A model usually contains multiple parameters which have physical
sense. Nonlinear interaction of different processes makes independent
determination of parameters by superposition techniques hard or even
impossible. The common approach of choosing a single limiting reaction
can only be used when this reaction is significantly slower than all others,
which is seldom the case of close-to-equilibrium processes. A good model
should fit not only a single experimental curve, but a series of them, even
better if parameter sets are similar. Constructed on basic principles (e.g.,
conservation laws) and descriptions of elementary reactions, a model
usually contains more than one parameter.

Financially supported by Russian Foundation for Basic Research 18-07-00628-A,
16-07-00622-A.
c⃝ I. A. Chernov, N. N. Nikitina, 2018
c⃝ Institute of Applied Mathematical Research KarRC of RAS, 2018
c⃝ Program Systems: Theory and Applications (design), 2018

DOI: 10.25209/2079-3316-2018-9-4-53-68 CC-BY-4.0

http://psta.psiras.ru/index_en.htm
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2018-9-4-53-68&domain=pdf
http://mathem.krc.karelia.ru/?plang=e
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2018-9-4-53-68
https://creativecommons.org/licenses/by/4.0/


54 Ilya Chernov, Natalia Nikitina

A model is a function M that maps a set of parameters (domain D
from finite-dimensional space Rk) into a curve (a continuous function
or, in case of numerical model, an array). In material science, physical
phenomena are described by ordinary or partial differential equations.
Some function of the phase variables is the measured quantity as a function
of time.

Evaluation of this function M in a given point of the domain D is the
direct problem. The inverse problem, also called parameter identification,
is the search for points from D that approximate given experimental curves.
If the curves are compared in the L2 space, this is the least squares method,
though other appropriate metric spaces can be used. A set of parameters
s ∈ Rk that provides approximation of the given curve f(t) with the chosen
precision ϵ, i.e.,

F (s) = ∥M(s)− f∥ ≤ ϵ,(1)

is called a solution to the inverse problem. Precision ϵ is also called the
threshold.

There are no general methods for inverse problems. They are usually
non-linear even if the direct problem is linear. The reason is at least
non-linearity of solution to even linear differential equations. Also, such
problems are usually ill-posed [1,2]. Existing methods provide, at best,
local convergence; therefore, existence of alternative solutions remains an
open question. Various attempts to provide uniqueness of the solution
demand, in practice, knowledge of the solution.

The quality of the solution is measured by its ability to fit a series
of curves with reasonable precision. Also, the solution should be physically
sound, i.e., to accord general physical common sense and the basic
properties. Obvious inequalities are set for probabilities or fractions of some
quantity. Sometimes physical estimations are not strict; for example, it is
known that some speed is much lower than the sound speed but no more
precise estimations are available. Such mild estimations make it necessary
to check potential solutions that are a priori unlikely to occur.

The domain D of admissible values of parameters can contain much
more than a single solution to the inverse problem. If the dimensionality
k of the space of parameters is not too high, blind search (also called
scanning) on a mesh inside D can be fruitful. Nodes with best solutions
can serve as initial approximations for algorithms of the decent type or
similar ones.

This problem suits well to distributed computing systems [3, 4],
including Desktop Grids, due to the following properties.



Effective scanning of parameter space in a Desktop Grid 55

(1) Separate tasks (single solutions of the direct problem, i.e., eval-
uation of M in a mesh node, and comparison of two curves) are
completely independent, can be done in parallel, and do not need any
synchronization.

(2) The tasks require moderate amounts of processing power, RAM and
disc space.

(3) The volume of data necessary for solving a task is low: a k-dimensional
array of values and experimental curves (sent once).

(4) A result is a single real number (the fitting quality), so network
connection does not need to be fast.

The parameter identification is generally a highly scalable problem.
The size and dimensionality of the parameters domain D can be large,
and variation of either precision or the grid size can make the search
process even more time- and resource-demanding. At the same time,
interim results obtained at the early stages of the search can significantly
contribute to the process due to new knowledge about the parameters
domain or justification of the model itself. This motivates one to employ
sophisticated search algorithms rather than the blind search.

In [5] we described the solution of parameter identification of an
aluminum hydride decomposition model by scanning the parameter space.
We found much more solutions than was expected, present in all parts
of the domain. However, the search process itself can be optimized.

The rest of this paper is organized as follows. First we describe the
model and the inverse problem to be solved. Then we discuss BOINC-based
Desktop Grids as a tool for solution and show that the policy of task request
can be subject to optimization. We compare three scheduling strategies
intended to produce good results faster. On of them is a game between
the computing nodes so that they choose subsets of D. Improvement is
achieved without centralized control which is good for a client-server
architecture because no additional load on the server is necessary.

2. Metal hydrides decomposition

Hydrides of metals are considered as a possible solution of hydrogen
accumulation and transport problem, in particular on board of hydrogen
vehicles. Light metals with high weight percent of hydrogen in hydrides, like
aluminum or magnesium, are of the most interest. Beside the desired large
amount, the quick evolution of fuel is necessary for vehicle applications
as well. This demands detailed understanding of hydrogen release from



56 Ilya Chernov, Natalia Nikitina

Figure 1. Skin formation and shrinking core scenario; light
gray is for the hydride phase.

hydrides of metals and evaluation of kinetic parameters of different carrying
materials.

We do not discuss modelling of decomposition of metal hydrides here:
see [6,7]. Note only, that high rates of decomposition and high amounts
of accumulated hydrogen make simple approaches, like Avrami-Erofeev
method, consideration of parts of kinetic curves (e.g., the almost linear
part), selecting a single limiting process, quite questionable. Complexity
of the model must be comparable to information provided by information
data. Besides, a model must, at least, be conservative and describe
concurrency between hydride decomposition and hydrogen desorption.

The model used for this work is described in [8], see also references
therein. We model a single spherical particle of hydride powder, with unit
radius. The chosen shrinking core scenario means that the new metal phase
first forms a skin on the surface of the particle and then propagates toward
centre. The thickness of this skin is h = 1− ρ(t) where ρ is the size of the
old phase core, Figure 2. The formed skin consists of symmetric nuclei
completely described by their total area with respect to total area of the
particle S and thickness h.

Physical assumptions are as follows:
• diffusion of hydrogen dissolved in metal is quick in small powder

particles, so gradients of concentration are negligible;
• there is no re-adsorption of hydrogen, i.e., it desorbs to vacuum;
• desorption from the metal phase is through pores and cracks;
• hydrogen concentration in metal is low compared to unit concentration

in hydride; however, desorption flux is not zero;
• particle size does not change during reaction;
• fraction ν of hydrogen flux from the metal phase is due to shrinking

core (the rest is due to skin expansion).



Effective scanning of parameter space in a Desktop Grid 57

Denoting hydrogen flux densities for two phases by J ′ (for hydride)
and J (for metal), let us write down the total hydrogen flux:

J ′(1− S(t)) · 4π + JS(t)4πρ2.

Local conservation gives the equation for the core size:

dρ

dt
= −ν(S)J, ρ > 0.(2)

Here ν(S) = ν if S < 1, i.e., if the skin can expand. If it is already ready,
ν(1) = 1.

Global conservation law gives the second equation:

dS

dt

1− ρ3

3
= J ′(1− S(t)) + (1− ν)JS(t)ρ2.(3)

The measured quantity was the volume of the reacted fraction, i.e., the
volume of the new phase relative to the volume of the particle:

f(t) =

1− ρ3(t)


S(t).

The model (2)–(3) contains five parameters:
(1) hydrogen flux densities for the hydride and the metal phase J ′ and J ;
(2) initial values of phase variables S0 and ρ0;
(3) the shrinking core rate ν.
All parameters are non-negative; also, S0 ≤ 1, ρ0 ≤ 1, ν ≤ 1. Flux densities
can not be too high and therefore are softly estimated.

Therefore we have a 5-dimensional box to look for the parameters. The
L2 norm of the difference between curves was expressed in terms of L2

norm of the data and so was dimensionless. We omit some technical details
not necessary here.

Although the equations are simple and can be integrated analytically,
numerical solution is more efficient, much more flexible and allows easy
modification of the code if the model demands to be changed.

The numerical predictor-corrector method (Heun’s method) imple-
mented in standard Fortran-90 can be used on most platforms.

3. Computing environment and numerical experiments

Initially, the threshold for selecting good results (1) was set to a
reasonable value 6%. We manually found a set of parameters that provided
good fitting (6%) as a reference solution: J̄ = J̄

′
= 10, ρ̄0 = 88, S̄0 = 2,



58 Ilya Chernov, Natalia Nikitina

and ν̄ = 50 (flux values are in convenient abstract units, other parameters
are in %). The grid was uniform along each axis with 5 nodes for S0 (0–4)
and 10 nodes for each of other parameters: 2–20 for flux densities, 80–98
for R0, and 0–90 for ν. So, the grid consisted of 50 thousand points which
produced 250 thousand tasks for five experimental curves.

For a while, we consider different curves as separate experiments and
do not prefer parameter sets that are similar for different curves; first we
want to see if there are many solutions to choose from.

Numerical scanning of the parameter domain was performed on
a BOINC-based [10] local Desktop Grid of Karelian Research Center1. Our
aim was not only to find kinetic parameters for decomposition of the
hydride of aluminum, but also to study the opportunities of employing
Desktop Grids to solve this kind of problems and to find ways of improving
the search process, so that high-dimensional problems would be solved
quicker and at lower costs.

BOINC is one of the most popular open source middleware for Desktop
Grid systems, either for volunteer computing or Enterprise Desktop Grid
[11]. Such system exploit idle power of desktop computers and other
non-dedicated computing resources (like servers and even mobile devices
[12]).

Despite relatively low average performance of each computing node,
Desktop Grids are able to collect much power per unit cost due to em-
ploying many computers at no or low additional expenses. An obvious
drawback is a relatively slow communication, so that data exchange, task
dependencies and synchronization spoil performance drastically. However,
sets of independent tasks (bags of tasks), as in our case, suit Enterprise
Desktop Grids perfectly. The BOINC platform allows to solve bags of tasks
in heterogeneous environments. Applications do not need to be specially
developed for the platform, nor to be open source.

BOINC has the two-level client-server architecture: the server creates
the tasks; client nodes that have idle resources ask for tasks and receive
them. After solving a task, a node returns the answer to the server.

During the experiments described in [5], we used one desktop computer,
two servers, the control node and three computing nodes of the cluster
of Karelian Research Centre (each node of the cluster has two 4-core
CPUs).

1http://cluster.krc.karelia.ru/



Effective scanning of parameter space in a Desktop Grid 59

Table 1. Distribution of the solutions over the parameter grid;
(a): good (%), (b): best (%).

J (a) (b) J ′ (a) (b) ρ0 (a) (b) ν (a) (b) S0 (a) (b)

2 17.5 92.6 2 7.4 7.49 80 9.4 14.0 10 13.8 29.4 0 19.6 22.8
4 13.7 7.25 4 3.8 2.64 82 9.6 13.6 20 13.5 26.0 1 19.8 25.0
6 11.0 0.08 6 3.5 2.72 84 9.9 12.7 30 13.2 21.0 2 20.1 21.0
8 9.2 0.04 8 8.9 4.02 86 10.2 11.8 40 12.4 14.2 3 20.2 19.0

10 8.4 0 10 11.7 7.81 88 10.5 10.9 50 10.6 6.76 4 20.3 12.2
12 8.3 0 12 12.9 11.4 90 10.7 9.66 60 8.0 1.02
14 8.2 0 14 13.4 14.9 92 10.8 8.52 70 6.1 0.51
16 8.1 0 16 13.2 16.2 94 10.6 7.69 80 6.7 0.39
18 8.0 0 18 12.9 16.9 96 9.9 6.46 90 7.8 0.44
20 7.6 0 20 12.3 15.9 98 8.4 4.73 100 7.9 0.47

The total time of scanning was about one hour, which was more than
23 times faster compared to one personal computer. The scanning found
much more solutions than was expected. 85 988 results were better than
the pre-defined threshold 6%. Therefore we reduced the threshold to 1.6%
to get more than 2 537 solutions.

Note that further reduction of the quality threshold is impossible
on the given dataset because some experimental curves lack solutions,
though other have many. For example, reduction of the threshold to 1%
gives 220 solutions, all for the same experimental curve. This critical
value is unknown beforehand, so post-processing of the results is very
important, and it may be necessary to repeat the scanning. Also note that
locally converging methods can fail to find better solution at all, producing
a locally minimal 6% solution.

In the following part of the paper, let us call the results selected by the
6% threshold the good ones, and the results selected by the 1.6% the best
ones. We will use these two notions to evaluate and discuss task scheduling
policies.

Table 1 illustrates the distribution of physically distinguishable solutions
over the parameter grid.

4. Search methods

Optimization criteria of scanning the parameter domain can be different.
We used a fixed grid and needed to check every point; scanning all domain
(or even a set of all possible values of parameters) seems more informative,



60 Ilya Chernov, Natalia Nikitina

but hard to implement. However, a grid of variable step can be considered.
The ideas presented in this paper can be used for these purposes also, but
let us focus on the fixed-grid search first. Each method must check each
grid point by the end of the computation. As only the order of checked
points (tasks) can be chosen, optimization does not change the computation
makespan; therefore we can consider only the linear order of the points,
assuming one time unit necessary for one task.

To compare different ordering policies, we estimate the time needed
to produce all good (or best) results or some fixed part of them.

Native scheduling. We used a simple residual coding of the parameter
set grid to generate tasks. Each set (and therefore each task) was associated
with a natural number n ≤ 250 000 which produced the number of the
experimental curve and one-dimensional indices of individual grids of each
parameter as residues (plus 1) of division on the number of curves (5) and
the sizes of individual grids (10 four times and then 5). This approach
changes J faster than other parameters, and Table 1 shows that much work
was wasteful because all high-quality best solutions belong to the domain
of low values of J .

The similar situation is with ν, but luckily this parameter is changed
more slowly than the others (except S0). On the other hand, good
parameters are distributed rather homogeneously (Table 1), so the search
order is not significant. The largest sequential numbers of the good and the
best solutions were, respectively, 249 970 and 242 535 out of 250 000. So,
almost all grid points needed to be checked prior to collecting all good and
best results. 90% of good and best results were obtained after computing
task 246 531 and 96 534 respectively, which is 98% and 46%: luckily, many
of the best results belong to the J = 2 grid section.

Random search. Another possibility is the random search with some
probability distribution on domain D. The choice of this distribution is an
interesting question. The simplest choice is the uniform distribution. Some
a priori assumptions can be used to adjust it: for example, one would
guess that boundary values are less likely to provide good fitting (this
turned out to be false). Another guess, also false, was that good solutions
are unlikely for low ν and zero S0. The third guess was that probability is
higher in the middle on the domain D (in the neighbour of the reference
solution): this also turned out to be false. Thus, relying on a priori guesses
is risky from the point of view of performance: in case of a wrong guess
random search can be even slower than fixed-order search. Let us estimate
the average time needed to collect all good results.



Effective scanning of parameter space in a Desktop Grid 61

To obtain R% of good results we need to check, in average, R% of all
tasks.

Heuristic scheduling. The third way to improve search performance is
using heuristic algorithms of task distribution using accumulated information.
The problem is the lack of such heuristics and their vulnerability to changes
in the model and in the experimental data. Our wrong guesses were based
on experience of numerical solving of many similar inverse problems, but in
the considered case they did not work fine. Another drawback of such
centralized approach is the necessity to control the process by the server
which can be overloaded even without this additional work.

Game-theoretical scheduling. Further in this paper we study the
possibility to apply game-theoretic optimization of the search. Nodes do
not just request tasks but also inform the server about distribution of their
preferences on D aiming to make their profit as high as possible. Decisions
made by the nodes mutually influence each other, so that the utility
functions depend on all the nodes. If the utility functions (in other words,
the rules of the game) are chosen well, an equilibrium will be optimal or, at
least, better than other search policies.

5. Game-theoretical model

Let us consider a computing system with m computational nodes or
players C1, . . . , Cm and a set of computational tasks B. Each node Cn is
characterized by its computational performance en, which is an average
number of operations performed in a time unit.

The task set B is divided into n non-overlapping blocks B = B1∪. . .∪Bn

of initial sizes N1, . . . , Nn.
To define the priority of a block, we need to estimate the quality

of solutions that can be expected to be found there. A threshold ϵ is
chosen to select good solutions which are those with F (s) ≤ ϵ, where
s ∈ D is a grid point.

For each block Bi, we denote the block quality pi as

pi =

s∈Bi

s is computed


1− F (s)/ϵ

+
, (x)+ = max(x, 0), 0 ≤ i ≤ n(4)

If no points from Bi have been calculated yet, pi = 0 by its definition.
We define the priority of the block Bi as

σi =
1
n + pi

1 + p1 + . . .+ pn
, 0 < σi ≤ 1.



62 Ilya Chernov, Natalia Nikitina

Assume that all tasks in a fixed block Bi have the average computational
complexity θi, i.e., a number of operations to process one task.

The nodes make their decisions at time steps 0, τ, 2τ, . . .. At each step
of the game, each computing node selects exactly one task block. After
a node has processed its portion of tasks, it sends the results to the server
and is ready for the next portion. Let the utility of node Ci at time step
τ express the amount of useful work performed during this step. This
amount depends on the number of finished tasks from the chosen block, its
computational complexity, priority, and the number of other nodes who
have also chosen this block.

The fewer nodes explore block Bi simultaneously, the more valuable
their work is. Let ni be the number of the players who have chosen block
Bi at the considered step, and δ(ni) be the congestion coefficient for the
block:

δ(ni) =
m+ 1− ni

m
Nav

i ,

where Nav
i is the number of available (unfinished) tasks in the block.

Then the utility of node Ck that chooses block Bi is defined as

Uki = σiδ(ki)
ek
θi
.

Note that

Ukr =
ek
ei
Uir ∀r, 1 ≤ r ≤ n(5)

Therefore, at each considered time step, we have a singleton congestion
game G = (C,B,U), where C is the set of players (computational nodes),
B is the set of data blocks of which each node selects exactly one, and U is
the set of utility functions. A strategy profile is a schedule s = (s1, . . . , sm),
where the component si = j equals to the block Bj chosen by player Ci.

Such games have been thoroughly studied in literature. The existence
of at least one Nash equilibrium in pure strategies has been proven for
the case of identical players [13] and identical task blocks [14]. The
equilibrium situation means that no node can increase amount of its useful
work by unilaterally deviating from the schedule. Moreover, better- and
best-response dynamics are guaranteed to converge to equilibrium in
polynomial time [14,15].

Heterogeneity complicates the model: the utility of each player depends
both on its own performance and on task complexity in the chosen block.
But due to the form of utility functions, as (5) holds, the game G has at
least one Nash equilibrium in pure strategies [16].



Effective scanning of parameter space in a Desktop Grid 63

Table 2. True fractions of the good and the best results in the
blocks. H and L stand for “high” and “low”, respectively.

HH · · HL · · LH · · LL · ·
· ·HH 0.047, 0.000 0.025, 0.000 0.070, 0.008 0.038, 0.003
· ·HL 0.083, 0.000 0.045, 0.000 0.125, 0.269 0.067, 0.090
· ·LH 0.047, 0.000 0.025, 0.000 0.070, 0.014 0.038, 0.005
· ·LL 0.083, 0.000 0.045, 0.000 0.125, 0.458 0.067, 0.153

6. Application to the inverse problem

Let us divide each parameter span, except S0, into two equal parts:
of low and of high values. So, for example, the values J < 11 are considered
low while J > 11 are high. The span of S0 is not divided. Then we have 16
blocks B1, . . . , B16 corresponding to all possible combinations of low and
high values for the four parameters.

For the sake of simplicity, let us assume that all nodes have equal unit
computational performance ei = 1 and that all tasks are equally complex
with θi = 1. So, the utility functions Uki = Ui depend on block only.

There are two algorithms that can be used to find the equilibrium
solution or, at least, a schedule that provides better results compared
to random search.

The first one is the better- or best-response dynamics algorithm. Such
algorithm can be used by the decision-making module of the client software
which communicates with the server to request a task from the desired
block.

The other approach is to use the fact that utilities of nodes in each
block must be equal at an equilibrium (otherwise some nodes would prefer
blocks with higher utility). Let us consider this approach in detail.

The players’ utilities Ui are all equal to the same constant C/m; then

ni = m+ 1− C

σiNav
i

.

The sum of all ni is m, so

C =
(m+ 1)n−m

n
j=1

1
σiNav

i

.

Unfortunately, some of ni can possibly be negative. This means that some



64 Ilya Chernov, Natalia Nikitina

Table 3. Average block qualities p̄i.

HH · · HL · · LH · · LL · ·
· ·HH 0.85 0.65 0.66 0.68
· ·HL 0.77 0.54 0.78 0.61
· ·LH 0.74 0.84 0.93 0.85
· ·LL 0.85 0.77 0.92 0.70

blocks are too bad, so that high enough utility is impossible there even if
ni = 0. Then ni = 0 in these blocks, effective n is reduced during the step,
and ni for other blocks are evaluated again. This algorithm produces
a non-negative schedule with, possibly, fractional ni. They can be used by
the server for scheduling purposes. Another possibility is to take rounded
values as an approximation to the exact solution. We tested an algorithm
for the approximate solution; setting negative ni to zero, we normalize
positive ni by multiplying on

m
i, ni>0

ni
.

7. Simulation results

We perform simulations basing on the traces of the search performed
in [5].

In Table 3 we provide pi evaluated after processing all grid nodes and
normalized by block sizes, further denoted p̄i. It is clear that some blocks
are better than the others; also note that there are blocks which are good
in general, but have relatively low amount of best results (LHLH). This is
an additional challenge for the algorithm, because good block will attract
attention, though in the end, it will not give many best results.

We estimate the algorithm efficiency in average, i.e., under the
assumption that pi obtained using the completed tasks follow the statistical
average: pi = p̄iN

done
i , where Ndone is the number of computed tasks

in block i.
Using the proposed scheduling algorithm, 90% of best results are

collected by the Desktop Grid after 85% of steps are done; 75% need 63%;
50% take less than 42%; finally, 25% are found after 21%. The flow of the
best results is shown in Figure 2. In the figure, the proposed algorithm is
compared with two other scheduling policies: the random search based on
the quality distribution and the “best block first”.



Effective scanning of parameter space in a Desktop Grid 65

1 – game-theoretical approach;
2 – the number of computing nodes for a block

is proportional to the block priority;
3 – all computing nodes choose the block with

the highest priority.

Figure 2. Amount of good results produced by three scheduling algorithms

Table 4. Stable schedules. Block numbers are left to right, top
to bottom along Table 2.

Block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2nd step 5.0 0.0 0.0 0.0 2.6 0.0 2.9 0.0 1.6 4.7 6.9 5.0 5.0 2.6 6.7 0.2
Stable 1 4.3 0.0 0.0 0.0 4.3 0.0 4.3 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 0.0
Stable 2 0.0 7.8 7.8 7.8 0.0 7.7 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2

The quality measure of the depicted curves is their relative proximity
to the upper left corner of the chart. The results illustrate that starting
from the very early steps, the game-theoretical algorithm performs better
than the one based solely on block priorities. The third considered
algorithm depends on available information about true fractions of good
results in the blocks. The presented results indicate that it becomes
a serious drawback at the early steps of computations, when there is not
enough gathered information.

Simulations showed that the initial uniform distribution of computing
nodes over task blocks quickly converges to a stable configuration. Some
blocks are left uninvestigated while more promising ones are not empty. The
best blocks are studied more, so that soon the schedule becomes uniform
on better nodes and zero on worse ones. When mostly studied blocks have
no more tasks left, the schedule changes and converges to another one,
investigating less promising blocks. The gradient jump in Figure 2 marks
this point: after it, the intensity of good results production decreases.

Both stable schedules are shown in Table 4. The table cells contain
fractional numbers of the computing nodes that choose the corresponding
block.

The proposed scheduling algorithm is flexible: it is able to adjust itself
“on the fly” as long as new information arrives, computing nodes leave or
join the Desktop Grid, or the blocks configuration changes.



66 Ilya Chernov, Natalia Nikitina

There are a few possibilities to further improve the described approach
to scan the parameter space. First, we plan to increase the number
of distinguishable blocks. Then the high quality of one block will make its
neighbour blocks more attractive. Also, configuration of the blocks can be
variable; promising blocks can be further divided into smaller ones, and the
worst blocks can be grouped.

The choice of the utility function is an important question. In the
studied example, worse blocks were hardly studied at all up until better
blocks would be finished. It seems safer to force at least a few nodes
to study bad blocks in order to accumulate and update statistics. However,
a few steps can be done under the uniform schedule to gather information
about block quality.

Finally, we plan to test the algorithm for more complex search
problems: denser grids, continuous blocks, problems with more parameters,
heterogeneous Desktop Grids of larger scale. If computations require weeks
or even months, the fast production of good results becomes extremely
important.

Conclusion

We consider a parameter identification problem and solve it by scanning
over the parameter space in parallel. To study methods of effective search,
we focus on a simple, yet useful, example: a relatively small grid in the
parameter space was scanned by a small-size Enterprise Desktop Grid.

We propose a game-theoretic algorithm of task scheduling over subsets
of the parameter space called blocks and study its performance by comparing
with two heuristics. Simulations show that the algorithm allows to gain
performance increase in terms of the good results discovery rate.

References
[1] R. C. Aster, B. Borchers, C. H. Thurber. Parameter estimation and inverse

problems, Elsevier, 2005, 301 p. ↑54

[2] A. N. Tikhonov, V. Y. Arsenin. Solutions of ill-posed problems, Wiley-Intersci.
Publs., New York, 1977. ↑54

[3] I. Foster, C. Kesselman. The grid: Blueprint for a new computing
infrastructure, Morgan Kaufmann Inc., San Francisco, CA, USA, 1999. ↑54

[4] I. Foster, C. Kesselman, S. Tuecke. “The anatomy of the grid: Enabling
scalable virtual organizations”, International J. Supercomputer Applications,
15:3 (2001), pp. 200–222. [DOI]↑54

[5] I. A. Chernov, E. E. Ivashko, N. N. Nikitina, I. E. Gabis. “Numerical
identification of the dehydriding model in a BOINC-based grid system”,
Computer Research and Modeling, 5:1 (2013), pp. 37–45 (in Russian). [URL]

↑55,58,64

https://doi.org/10.1177/109434200101500302
http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/04_Chernov.pdf


Effective scanning of parameter space in a Desktop Grid 67

[6] I. A. Chernov, I. E. Gabis. “Mathematical modelling of hydride formation”,
Mathematical Modeling, Clustering Algorithms and Applications, Mathematics
Research Developments, ed. C. L. Wilson, Nova Science Publishers, 2011,
pp. 203–246. ↑56

[7] I. E. Gabis, I. A. Chernov, Kinetics of decomposition of binary metal
hydrides, Chemistry Research and Applications, Nova Science Publishers,
2017, 137 p. ↑56

[8] I. E. Gabis, A. P. Voyt, I. A. Chernov, V. G. Kuznetsov, A. P. Baraban,
D. I. Elets, M. A. Dobrotvorsky. “Ultraviolet activation of thermal
decomposition of α-alane”, International Journal of Hydrogen Energy, 37:19
(2012), pp. 14405–14412. [DOI]↑56

[9] S. V. Manicheva, I. A. Chernov. “Mathematical model of hydride phase
change in a symmetrical powder particle”, Computer Research and Modeling,
4:3 (2012), pp. 569–584 (in Russian). [URL]↑

[10] D. P. Anderson. “BOINC: A system for public-resource computing and
storage”, GRID ’04 Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, IEEE Computer Society, 2004, pp. 4–10. [DOI]

↑58

[11] E. Ivashko. “Enterprise desktop grids”, CEUR Workshop Proceedings,
vol. 1502, Proceedings of the Second International Conference BOINC-based
High Performance Computing: Fundamental Research and Development
(BOINC:FAST 2015), 2015, pp. 16–21. [URL]↑58

[12] M. A. Khan. “A survey of computation offloading strategies for performance
improvement of applications running on mobile devices”, Journal of Network
and Computer Applications, 56 (2015), pp. 28–40. [DOI]↑58

[13] R. W. Rosenthal. “A class of games possessing pure-strategy Nash equilibria”,
International Journal of Game Theory, 2:1 (1973), pp. 65–67. [DOI]↑62

[14] I. Milchtaich. “Congestion games with player-specific payoff functions”,
Games and Economic Behavior, 13:1 (1996), pp. 111–124. [DOI]↑62

[15] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, Q. Sun. “Fast and compact:
A simple class of congestion games”, AAAI’05 Proceedings of the 20th
national conference on Artificial intelligence. V. 2, 2005, pp. 489–494. [URL]↑62

[16] M. Gairing, M. Klimm. “Congestion games with player-specific costs
revisited”, Algorithmic Game Theory, SAGT 2013, Lecture Notes in
Computer Science, vol. 8146, ed. B. Vöcking, Springer, Berlin–Heidelberg,
2013, pp. 98–109. [DOI]↑62

Received 29.12.2017
Revised 23.10.2018
Published 01.11.2018

Recommended by Programm Committee of the
National Supercomputing Forum NSCF-2017

https://doi.org/10.1016/j.ijhydene.2012.07.042
http://crm.ics.org.ru/uploads/crmissues/crm_2012_3/569-584.pdf
https://doi.org/10.1109/GRID.2004.14
http://ceur-ws.org/Vol-1502/paper2.pdf
https://doi.org/10.1016/j.jnca.2015.05.018
https://doi.org/10.1007/BF01737559
https://doi.org/10.1006/game.1996.0027
http://robotics.stanford.edu/~shoham/www%20papers/AAAI05IeongEtAl.pdf
https://doi.org/10.1007/978-3-642-41392-6_9


68 Ilya Chernov, Natalia Nikitina

Sample citation of this publication:
Ilya Chernov, Natalia Nikitina. “Effective scanning of parameter space in

a Desktop Grid for identification of a hydride decomposition model”. Program
Systems: Theory and Applications, 2018, 9:4(39), pp. 53–68.
DOI: 10.25209/2079-3316-2018-9-4-53-68
URL: http://psta.psiras.ru/read/psta2018_4_53-68.pdf
The same article in Russian: DOI: 10.25209/2079-3316-2018-9-4-35-52

About the authors:

Ilya Aleksandrovich Chernov
PhD in Physics and Mathematics, senior research fellow
of IAMR KarRC RAS. Associate professor of the Chair
of Mathematical Analysis PetrSU. Expert in the field of mathe-
matical modeling of physical processes and boundary problems
of mathematical physics. Area of scientific interests: numerical
analysis, modeling the metals hydrides decay, numerical
modeling of high-scale sea dynamics.

iD: 0000-0001-7479-9079
e-mail: chernov@krc.karelia.ru

Natalia Nikolaevna Nikitina
PhD in Technics, junior research fellow of IAMR KarRC RAS.
Area of scientific interests: high-performance and distributed
computing, task scheduling, Desktop Grid, applications
of mathematical game theory.

iD: 0000-0002-0538-2939
e-mail: nikitina@krc.karelia.ru

Эта же статья по-русски: DOI: 10.25209/2079-3316-2018-9-4-35-52

http://psta.psiras.ru/index_en.htm
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2018-9-4-53-68
http://psta.psiras.ru/read/psta2018_4_53-68.pdf
http://psta.psiras.ru/read/psta2018_4_35-52.pdf
http://doi.org/10.25209/2079-3316-2018-9-4-35-52
https://orcid.org/0000-0001-7479-9079
mailto:chernov@krc.karelia.ru
https://orcid.org/0000-0002-0538-2939
mailto:nikitina@krc.karelia.ru
http://psta.psiras.ru/read/psta2018_4_35-52.pdf
http://doi.org/10.25209/2079-3316-2018-9-4-35-52

	1. Introduction
	2. Metal hydrides decomposition
	3. Computing environment and numerical experiments
	4. Search methods
	5. Game-theoretical model
	6. Application to the inverse problem
	7. Simulation results
	Conclusion
	References

