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ABSTRACT. We consider the free nilpotent Lie algebra L with 2 generators, of
step 4, and the corresponding connected simply connected Lie group G, with
the aim to study the left-invariant sub-Riemannian structure on G defined by
the generators of L as an orthonormal frame.

We compute two vector field models of L by polynomial vector fields in RS,
and find an infinitesimal symmetry of the sub-Riemannian structure. Further,
we compute explicitly the product rule in G and the right-invariant frame on G.
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Introduction

In this work we start to study a variational problem that can be
stated equivalently in the following three ways.
(1) Geometric statement. Consider two points ag, a; € R? connected
by a smooth curve 9 C R?. Fix arbitrary data S € R, ¢ = (cg, ¢y) € R?,
M = (Myy, Myy, M,,,) € R3. The problem is to connect the points ay,
a; by the shortest smooth curve v C R? such that the domain D C R?
bounded by v U 7y satisfy the following properties:
(1) area(D) =S,
(2) center of mass(D) = c,
(3) second order moments(D) = M.

(2) Algebraic statement. Let L be the free nilpotent Lie algebra with
two generators X, Xo of step 4:

(1) L =span(Xy,...,Xs),

(2) [X1,Xso] = X3,

(3) [X1, X3] = Xy, [Xo, X3] = X5,

(4) [X1, Xa] = X, [X1, Xs5] = [Xo, Xu] = X7, [Xo, X5] = Xs.
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Let G be the connected simply connected Lie group with the Lie
algebra L, we consider X, ..., Xg as a frame of left-invariant vector
fields on G. Consider the left-invariant sub-Riemannian structure (G, A, g)
defined by X7, X5 as an orthonormal frame:

Ay = span(X1(q), X2(q)), 9(Xi, Xj) = 6ij.

The problem is to find sub-Riemannian length minimizers that connect
two given points qg,q1 € G:

q(t) € G, q(0) = qo, q(t1) = q1,
q(t) € Aq(t)7

ty
l=/ v 9(q, ¢) dt — min.
0

(3) Optimal control statement. Consider the following vector fields
Xl, X2 on Rgi

X - 9 wy 8 aftai & wma3 & a3 0
! 8561 2 3:1:3 2 8I5 4 8.I7 6 3938,

o — 3, Lo 0 affa3 & 2t 9 2219 0O
2 6332 2 6333 2 8.1‘4 6 6336 4 6I7.

Given arbitrary points qg, q; € R8, it is required to find solutions of the
optimal control problem

(1) G =uX1(q) + u2X2(q), q € R, (u1,us) € R?,
(2) q(O) = qo, Q(tl) =dq1,

1 M
(3) J:§/O (u? + u2) dt — min .

The problem stated will be called the nilpotent sub-Riemannian
problem with the growth vector (2,3,5,8), or just the (2,3, 5, 8)-problem.
There are several important motivations for the study of this problem:

« this problem is a nilpotent approximation of a general sub-Riemanni-
an problem with the growth vector (2,3,5,8) [1-5];

o this problem is a natural continuation of the important sub-Riemanni-
an (SR) problems: the nilpotent SR problem on the Heisenberg group
(aka Dido’s problem, growth vector (2,3)) [6,7], and the nilpotent
SR problem on the Cartan group (aka generalized Dido’s problem,
growth vector (2,3,5)) [8-11];
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« this problem is included into a natural infinite chain of rank 2 SR
problems with the free nilpotent Lie algebras of step r, r € N, and
more generally into a natural 2-dimensional lattice of rank d SR
problems with the free nilpotent Lie algebras of step r, (d,r) € N?;

o this problem is the simplest possible SR problem on a step 4 Carnot
group, and it is the first SR problem with growth vector of length 4
that should be studied.

To the best of our knowledge, this is the first study of the (2,3,5,8)-
problem (although, it was mentioned in [12] as a SR problem with smooth
abnormal minimizers).

The structure of this work is as follows.

In Sec. 1 we construct two models (“asymmetric” and “symmetric”)
of the free nilpotent Lie algebra with 2 generators of step 4 by polynomial
vector fields in R®. For these models, we use respectively an algorithm
due to Grayson and Grossman [13] and an original approach. In the
symmetric model, a one-parameter group of symmetries leaving the initial
point fixed is found.

In Sec. 2 we describe explicitly the product rule in the Lie group
G = RS, construct a right-invariant frame on G corresponding naturally
to the left-invariant frame given by X7, X5 and their iterated Lie brackets,
compute the corresponding left-invariant and right-invariant Hamiltonians
that are linear on fibers of T*G.

In Conclusion we suggest possible questions for further study.

Results of Sec. 1 of this paper appeared previously in preprint [14].
Since both results and techniques of the preprint are necessary for under-
standing and verification of results of Sec. 2, these materials are published
completely in this work.

1. Realisation by polynomial vector fields in R®

In this section we construct two models of the free nilpotent Lie
algebra L(1)—(4) by polynomial vector fields in RS.

1.1. Free nilpotent Lie algebras

Let L4 be the real free Lie algebra with d generators [15]; L4 is
the Lie algebra of commutators of d variables. We have £, = 652, L],
where Lft is the space of commutator polynomials of degree ¢. Then
) = L4/ @2, 41 LY is the free nilpotent Lie algebra with d generators
of step r.
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Denote l4(i) := dim L5, l(([) = dim E{(;) = >7_,la(i). The classical
expression of l4() is ila(i) = d' — 3, 1<j<; Jlad).
In this work we are interested in free nilpotent Lie algebras with 2

generators. Dimensions of such Lie algebras for small step are given in
Table 1.

TABLE 1. Dimensions of free nilpotent Lie algebras Léi)

i |1]2]3]4] 5[ 6] 7] 8] 9] 10
LG |21 23] 6] 91830 56| 99
9 [2 3|5 8]14]23]41]71]127] 226

1.2. Carnot algebras and groups

A Lie algebra L is called a Carnot algebra if it admits a decomposition
L = ®]_,L; as a vector space, such that [L;, L;] C L;;;, Ly =0 for s > r,
Ly =[Ly, L.

A free nilpotent Lie algebra Eg) is a Carnot algebra with the homo-
geneous components L; = L.

A Carnot group G is a connected, simply connected Lie group whose
Lie algebra L is a Carnot algebra. If L is realized as the Lie algebra of
left-invariant vector fields on G, then the degree 1 component L; can be
thought of as a completely nonholonomic (bracket-generating) distribution
on G. If moreover L; is endowed with a left-invariant inner product g, then
(G, L1, g) becomes a nilpotent left-invariant sub-Riemannian manifold [5].
Such sub-Riemannian structures are nilpotent approximations of generic
sub-Riemannian structures [1-4].

The sequence of numbers

(dim Ly,dim Ly + dim Lo, ... ,dim L; + --- + dim L,, = dim L)

is called the growth vector of the distribution L; [7].
For free nilpotent Lie algebras, the growth vector is maximal compared
with all Carnot algebras with the bidimension (dim L;, dim L).

1.3. Lie algebra with the growth vector (2,3,5,8)
The Carnot algebra with the growth vector (2, 3, 5, 8)
£é4) = span(Xl, . ,XS)
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is determined by the following multiplication table:

(4)  [X1, Xo] = X,

(5) [X1, X3) = Xy, [X2, X3] = X5,

(6) (X1, X4] = Xg, [X1,X5]=[Xo, Xy] = X7, [Xo,X5]=Xg,

with all the rest brackets equal to zero. This multiplication table is

\X:?/Z \
X\ /“\

FIGURE 1. Lie algebra with the growth vector (2, 3,5, 8)

1.4. Hall basis

Free nilpotent Lie algebras have a convenient basis introduced by
M. Hall [16]. We describe it using the exposition of [13].

The Hall basis of the free Lie algebra L4 with d generators X, ...,
X is the subset Hall C £; that has a decomposition into homogeneous
components Hall = U2, Hall; defined as follows.

Each element H;, 7 = 1,2,..., of the Hall basis is a monomial in
the generators X; and is defined recursively as follows. The generators
satisfy the inclusion X; € Hall;, ¢ =1,...,d, and we denote H; = X, ¢t =
1,...,d. If we have defined basis elements Hy,...,Hy, , € p ! ; Hall;,
they are simply ordered so that £ < F if £ € Hall,, F € Halll, k< l:
Hy < Hy <--- < Hpy,_,. Also if E € Hall,, F' € Hall; and p = s + 1,
then [E, F] € Hall,, if:

(1) E>F, and
(2) if E =[G, K], then K € Hall, and ¢t > g.

By this definition, one easily computes recursively the first components

Hall; of the Hall basis for d = 2:
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Ha111 :{H17H2}’ H1 :Xl, HQZXQ,

Ha112 = {Hg}, H3 = [XQ,Xl],

Hally = {Hy4, Hs}, Hy=[[X2,X1],X1], Hs = [[X2, X1], X2],
Hally = {Hg, Hy, Hs},

Hg = [[[ X2, X1], Xu], Xu],  Hr = [[X2, X1], Xu], Xa],

Hg = [[[Xo2, X1], X5], X5].

Consequently, Egl) = span{Hy,...,Hg}. In the sequel we use a

more convenient basis of £g4) = span{ X1, ..., Xg} with the multiplication
table (4)—(6).

1.5. Asymmetric vector field model for /ng)

Here we recall an algorithm for construction of a vector field model for
the Lie algebra Cér) due to Grayson and Grossman [13]. For a given r > 1,
the algorithm evaluates two polynomial vector fields Hy, Hy € Vec(RY),

N = dim ,Cg), which generate the Lie algebra L‘gr).

Consider the Hall basis elements span{Hi,...,Hy} = E(QT). Each
element H; € Hall; is a Lie bracket of length j:

Hi = [ .. [[Hg,ij},ij_l],...,Hkl], k‘j = 1, kn+1 S kn for 1 S n S _] —1.

This defines a partial ordering of the basis elements. We say that H;
is a direct descendant of Hy and of each Hy, and write ¢ > 2, ¢ > K,
l=1,...,].
Define monomials P» j, in z1, ..., 2y inductively by
Pg,k = -y ngi/(degj P27i + 1),

whenever Hj, = [H;, Hj] is a basis Hall element, and where deg; P is the
highest power of x; which divides P.
The following theorem gives the properties of the generators.
THEOREM 1 (Th. 3.1 [13]). Let r > 1 and let N = dim £3”. Then

the vector fields Hy = i, Hy = i + ZPQ li have the following
83:1 81‘2 i ’ 833‘1'

properties:
(1) they are homogeneous of weight one with respect to the grading

RY = Hall; @ - - - & Hall,;
(2) Lie(Hy, Hy) = £,
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The algorithm described before Theorem 1 produces the following
vector field basis of £g4):

0
H = —
! 81‘1’
9 o a2 9 0 3 0 x3xy O x122 0
Ho = — — o 7 __ it SR 1 = 2 Y
2 51'2 o 81‘3 2 (91114 {E1{E28$5 * 6 ax(; 2 8907 2 81‘87
0 0 z? 0 0 x2 0
H: = —_ 1z — 2 7
3 6%3 +I1 83:4 +x281’5 2 8176 x1x281’7 2 81‘87
0 1o}
H = —— __
4 0xy e O0xg t o Ox7’
0 0 1o}
Hs = — v
5 81’5+x167+1‘28$87
0 0 0
He — - _ v - _ v
o dxe’ Oz’ g’
with the multiplication table
(7) [Ha, Hi] = Hj,
(8) [Hs, Hi] = Ha, [Hs, H2] = Hs,
9) [Hy, H\) = Hg, [Hy, Hy) = Hy, [Hs, Hy] = Hg.

1.6. Symmetric vector field model of £

The vector field model of the Lie algebra £§4) via the fields Hy, ..., Hg
obtained in the previous subsection is asymmetric in the sense that there
is no visible symmetry between the vector fields H; and Hy. Moreover,
no continuous symmetries of the sub-Riemannian structure generated by
the orthonormal frame {Hy, Hs} are visible, although the Lie brackets
(7)—(9) suggest that this sub-Riemannian structure should be preserved
by a one-parameter group of rotations in the plane span{H;, Hs}.

One can find a symmetric vector field model of Egl) free of such
shortages as in the following statement.

THEOREM 2. (1) The vector fields

G0 x,_ 0 w0 _aiis o maio af o
1_8$1 2 6],‘3 2 8.735 4 8.737 6 8$8’
(1) X27i r 0 x%—l—x%i 3 0 2219 O

a 6302 + 2 81‘3 2 81‘4 F@x(; 4 8$7,
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2 2
m)Xfﬁg+1ﬁﬁ-%%+%§;mlﬁ%+%£;
(13) X4=6ix4+xlaixﬁ+xgai7,

(14) Xs_aistrxlaix?angaaxs,
(15) XG—ai%7
(16) Xr= 5
(17) XSZ%

satisfy the multiplication table (4)—(6). Thus the fields X1,...,Xs €
Vec(R®) model the Lie algebra £(24).
(2) The vector field
(18)
0 0 0 0
Xo =20 — @1 4 a5 — P
0 “axl xl(’?xg +x58$4 Maxg, + 0xg +Q8w7 Oxg’
(19)
4 2,.2
_ x| afad
P= 24 + 3 + a7,
(20)
3 3
_ .’Ell'Q ZL’lxg _
Q= 13 15 2z6 + 23,
(21)
2,.2 4
_ TTy Ty
=g mgy
satisfies the following relations:
(22) [Xo,Xi] = Xo, [Xo, Xo] = = X1, [Xo, X3] =0,
(23) [Xo, X4] = X5, [Xo, X5] = =Xy,
(24) [Xo, Xe] = 2X7, [Xo, X7] = X5 — X, [Xo, Xg] = —2X7.

Thus the field Xq is an infinitesimal symmetry of the sub-Riemannian
structure generated by the orthonormal frame {X1, Xo}.
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PRrROOF. In fact, both statements of the proposition are verified by
direct computation, but we prefer to describe a method of construction of
the vector fields X, ..., Xg, and Xj.

(1) In the previous work [8] we constructed a similar symmetric vector

field model for the Lie algebra 523), which has growth vector (2, 3, 5):

(25) £8) = span{Xy,..., X5} C Vec(R?),
2 2

(26) XIZ%_%%_&Z@%7
2 2

(27) XQZ(%QJF%;;S Il—;xzaiu

(28) Xg:%*“%”?%v

(29) X4:a%4,

(30) X5:a%5,

with the Lie brackets (4), (5). Now we aim to “continue” these relation-

ships to vector fields X7, ..., Xg € Vec(R®) that span the Lie algebra £é4).
So we seek for vector fields of the form

_ 9 =z 0 mi
(31) H= Oxy 2 Oxg * Z% ox;’
L0 om0 sl 9 0
(32) X278$2+ 26.1‘3 2 63:4 ZaQ@xi
8 8
X
(33) 3= Fun H 50T +x2 Z 7
(34) X—iJrZS:aia
4 81‘4 =6 48.731"
0 o, 0
(35) X5 5754‘2 59z,
.0
_ j_ Y _
(36) Xjfzalaxj, j=6,7,8,


http://psta.psiras.ru/read/psta2015_2_45-61.pdf#englishcontents

54 Jean-Paul Gauthier, Yuri Sachkov

such that span{X;,..., Xg} = Egl).
Compute the required Lie brackets:

o B ) daS  0a8\ 0
[Xl,XQ]*aixB+ 8 +x 2a +<65518:102>8336
9
0

L (942 _0a\ 0 (0a3 0ai
8l‘1 8.1‘2 81‘7 a-Tl 8$2

9 9a§ & dai 0 0Da§ D

(X1, X5] = 921 T 92y D6 s Oxr T on dxs’
. 8
(X2, X5] = 335 gi?; aiﬁ * gZi 8?:7 " ggz 0?68
6 7 8
(X1, Xa] = gii 5?;6 gii 837 g?ﬂ? ais
(X1, X5] = 2; ({Zﬁ + S;; 327 + 231 ais
e X = G G s
oy 0 00 o 0

61‘2 81‘6 633‘2 8337 8$2 8338

The vector fields X7,..., Xg should be independent, thus the de-
terminant constructed of these vectors as columns should satisfy the
inequality

ag % ag
D =det(Xq,...,Xg) = |al a af| #0.
ag a7 ag
We will choose a{ such that D = 1. It follows from the multiplication
table for X1,..., Xg that

d%a§ d*af d*af
dz?  dridze  dz?
d? alg d%al d2a2§

as

dz?  dridre  da? |
]8 d2a§ 2 28

dr?  dridzs  dad
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In order to get D = 1, define the entries of this matrix in the following
2

x x
symmetric way: a$ = ?1, al = x179, a§ = ?2 Then we obtain from
0a§  0al x?
the multiplication table for Xi,..., Xs that —2 — —% = ag =1
. 8x1 8$2 2
dal  9al 7 da§  dal 8 x3
—= — — = a4 = T1Xy, — — — = a; = —. We solve these
81'1 8.%2 3 12 31'1 8£€2 3 2
. . . . 6 6 ‘T% 7 1211‘%
equations in the following symmetric way: a3 =0, ag = B U=
2 3
xix x
al = 14 27 a$ = -2 a8 = 0. Then we substitute these coefficients

o (31), (32) and check item (1) of this theorem by direct computation.
Now we prove item (2). We proceed exactly as for item (1): we start
from an infinitesimal symmetry [8]

0 0 0
(37) Xo =Xy~ +x 57—
0y

R5
oo Ty s € Vec(R?)

.T4a s
of the sub-Riemannian structure on R® determined by the orthonormal
frame (26), (27) and “continue” symmetry (37) to the sub-Riemannian
structure on R® determined by the orthonormal frame (10), (11).

So we seek for a vector field X € Vec(R®) of the form (18) for the
functions P,Q, R € C*°(R®) to be determined so that the multiplication
table (22)—(24) hold.

The first two equalities in (22) yield X; P = —%, XoP = x12“’2
3
Furthen X3P [X17X2]P X1X2P X2X1P X1 .%'11'2 4‘)(2ﬁ =

T1X9. Slmllarly it follows that X4P = T2, X5P =T, Xﬁp = O, X7P = 1,
XsP = 0. Since XgP = XgP = 0, then P = P(x1,x9,%3, %4, 5, 7).
Moreover, since X7P = 1, then P = z7+a(x1, 22, 3, x4, x5). The equality
X5P = z1 implies that 8‘9—;5 =0, i.e, a = a(x1,x2,x3,24). Similarly,
since X4P = x9, then a = a(x1,x2,23). It follows from the equality

da
X3P = z129 that Fon = ZT1Zg, i.e., a = x1x9x3 + b(x1,22). Moreover,

Zs3
2 2
the equality XoP = 1172 implies that T —xr1T3 — {,13141'27 ie.,, b=
2.2 2 23
— 212223 — 2 4 ¢(z1). Finally, the equality X, P = —?1 implies that
d 3 2 4 2.2
) I S W Rt I i R NS equality (19) follows.

dzy 6 2 Y 24 4
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Similarly we get equalities (20), (21).
Then multiplication table (22)—(24) for the vector field (18)—(21) is
verified by a direct computation. O

2. Carnot group

In this section we study the Carnot group G with the Lie algebra
L=r.

2.1. Product rule in G

In this subsection we compute the product rule in the connected
simply connected Lie group G with the Lie algebra L = £§4) on which
the vector fields X7, ..., X3 given by (10)—(17) are left-invariant.

Our algorithm for computation of the product rule in a Lie group
G with a known left-invariant frame X1, ..., X, € Vec(G) follows from
the next argument. Let g1,go € G, and let gy = eln%n o ... 0 eX1(Id),
t1,...,t, € R, where we denote by e!X : G — G the flow of the vector
field X. Then g - go = g1 - el o...0el1X1(Id) = elnXn o... 0 el1X1(gy)
by left-invariance of X;. So an algorithm for computation of g; - g2 is the
following:

(1) Compute e'Xi(g), t;€R, g€ G.

(2) Compute et»Xno...0etr¥1(g), t; €R, g€ G.

(3) Solve the equation e!»*n o...0e"1X1(Id) = gy for ty,...,t, € R (we
assume that this is possible in a unique way).

(4) Compute g - go = e!»Xn o ... 0el1X1(gy).

By this algorithm, we compute the product z = = - y in the coordinates
on G (notice that as a manifold G = R®), as follows:

x=(21,...,28), y= (Y1,---,Ys), z:(z1,...,zg)€G:R8,

21 =21+ Y1, 22=2T2+Y2,
1
z3 =x3+ys+ §(x1y2 — Ta¥1),
1
Zg = X4+ ys + 5(331(331 +y1) + z2(x2 + y2) + T1Y3),
1
Z5 =I5 + Y5 — iyl(zl(fcl +y1) + z2(z2 + Y2)) + T2ys3,

x
26 = Tg + Yo + 1—;(256@2 + 3T1Yy1y2 — 2y§ + 6x1y3 + 1294),
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1
27 =27 +yr + ﬂ(?)x?yz(?xz +y2) — x2(32y7 + 6yTys + 4(y3 — 6y*))

+ z1(—623y1 + 4y} + 6y1y5 + 24w2ys + 24y5)),

x
28 = 28 +Ys + ;(*Qﬁyl + 2y3 — 3way1ye + 622y3 + 12y5).

2.2. Right-invariant frame on G

Computation of the right-invariant frame on G corresponding to a
left-invariant frame can be done via the following simple lemma. Denote
the inversion on a Lie group G asi : G — G,i(g) =g~ "

LEMMA 1. Let X1, X2, X3 € Vec(G) and Y7,Y2, Y5 € Vec(G) be
respectively left-invariant and right-invariant vector fields on a Lie group
G such that Y;(Id) = —X,(Id), j =1,2,3. Then

(38) X, =Y, i=123,
(39) [Xl,Xg] = X3 = [5/1,}/2] = Yg.

PrROOF. Equality (38) follows by the left-invariance and right-inva-
riance of the fields X; and Y; respectively. Equality (39) follows since
the diffeomorphism i : G — G preserves Lie bracket of vector fields (see
e.g. [17]). O

Thus if X5,...,X,, € VecG is a left-invariant frame on a Lie group
G, then Y7,...,Y, € VecG, Y; =i, X}, is the right-invariant frame such
that Y;(Id) = —X;(Id), j = 1,...,n, and the same product rules as for
X1, o0, Xae

Immediate computation using the product rule in G given in Sub-
sec. 2.1 gives the following right-invariant frame on the Lie group G = R® :

0 r9 O r122 + 223 O 3 0

M= s T 20m 2 bm 20w
3 —6xy O 223 + 3z1235 + 1225 0
6 Jdxg 12 D7’
Yfoifﬂifﬁa r1To — 223 O
0 xo 2 0x3 2 0xy 2 0xs

3229 + 223 — 1224 O a3 +6x5 0
* 12 drg 6  duag

Y, = 9 i=3,....8

61'1'7
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2.3. Left-invariant and right-invariant Hamiltonians on 7*G

Using the expressions for the left-invariant and right-invariant frames
given in Subsec. 1.6 and Subsec. 2.2, we define the corresponding left-
invariant and right-invariant Hamiltonians, linear on fibers in T*G:

hi(A) = (A X5), gi(A) = (\Y3), AeT*G, i=1,...,8.

In the canonical coordinates (x1,...,x8,%1,...,%s) on T*G [17] we
have the following;:

a:% + x%zp xlxg
— 5 —
2 4

—i—:z: 3 x?
el L2y, + 1¢6+ ! 2¢77

3
Za
7 — *¢87

hi =11 — %W,

m=¢yﬁgw

hs = Y3 4+ 194 + 2295 + ?17/)6 + z1T2%7 + ?21;[}8,

ha = Y4 + 2196 + 2297,
hs = V5 + 197 + 2298,
hi:¢i7 i:677787

and
T xr1x9 + 2T z?
g1 = = — by — T+ s
5 — 6z 223 + 3z122 + 122
(40) + =2 5 Lipe — =2 12 24,
T1To — 27
922—7#2—*1/)3—* 4+%¢5
3229 + 23 — 1214 z$ + 65
41 —
(41) D ¥e 5 s,
(42) gl:_wla 123,,8
Conclusion

We see the following interesting questions for the (2,3,5,8)-problem:

(1) study optimality of abnormal geodesics;

(2) describe all cases where the normal Hamiltonian vector field H is
Liouville intergable, integrate and study the corresponding normal
geodesics;

(3) describe precisely the chaotic dynamics of the normal Hamiltonian
vector field H suggested by numerical simulations.
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We plan to address these questions in forthcoming works.
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VOK 517.977

2K.-I1. Torwe, FO. JI. Caukos. O ceobodnoti epynne KapHo ¢ sexkmopom pocma

(2,3,5,8).

AnHoTAalusA. PaccmarpuBaercst cBoOOaHAsI HUJIbIOTeHTHas ajrebpa Jlu L ¢ aBymst
reHepaTOpaMu, CTyIeH! 4, U COOTBETCTBYIOIIAsl CBsA3HAs ONHOCBsI3Has rpymnna Jln G,
C LIeJIBIO MCCIIeOBAHUs JI€BOMHBAPUAHTHON CyOpUMaHOBON CTPYyKTYpbl Ha G, 3aJaHHON
remepaTropaMu ajareopsr Jlu.

BbIumc/iens! aBe Mogesu anre6pst JIun L ¢ MOMOIIbIO BEKTOPHBIX mostel B RE, u naii-
OeHbl HHPUHUTE3UMAIbHblE CUMMETPHUH CyOGpPUMaHOBO CTPYyKTYPbI. ZIBHO BBIMHCJIEHBL
3aKoH yMHOXKeHMs B rpynne Jlu G u npasounsBapuanTHblil penep nHa G. (Anaa.)

Karouesvie crosa u ppasdv: Cybpumarosa reometpus, rpynnel Kapho.
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