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Turnpike Solutions in the Problem of Excitation
Transfer Along a Spin Chain

Abstract. It is considered the problem of excitation transfer along a spin

chain related to the applied problem of quantum computations. The model
of a quantum system of interacting spins based on the Shrödinger equation
with unbounded linear control is transformed to an equivalent derived system

(known from the degenerate problems theory), and then approximately to derived
systems of higher stages with reducing order. Their investigation performed
analytically or via simple computations leads at least to approximate solutions

and lower estimates of the transfer time, which can be used in subsequent
improving procedures.
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1. Introduction

An important class of quantum system control problems is based on
the Shrödinger equation related to the systems of interacting spins when
its Hamiltonian depends linearly on one of controls:

�̇� = −𝑖𝐻(𝑢, 𝑣)𝑧, 𝐻 = 𝐻0 + diag{ℎ𝑗(𝑡, 𝑣)}𝑢,(1)

where 𝑧(𝑡) is a complex valued piece-wise smooth 𝑁 -dimensional vector
function, 𝑢(𝑡), 𝑣(𝑡) are piece-wise continuous real functions, 𝑢 ∈ R,
𝑣 ∈ V ⊂ R𝑝, ℎ𝑗(𝑣) are real continuous functions, 𝐻0 is a constant spin
interaction matrix, V is a compact set. System (1) has a dynamic invariant

𝑆 =
𝑛∑︀

𝑗=1

|𝑧𝑗(𝑡𝐼)|2 =
𝑛∑︀

𝑗=1

|𝑧𝑗(𝑡)|2 (take 𝑆 = 1 for definiteness).

Quantum systems of such type are associated with investigations in
quantum computations ([1–4]). They were investigated numerically in
a series of applied works using the Krotov nonlocal iterative method [5]
(see, for example [3]).
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The following optimal control problem is considered. It is given the

first spin norm (amplitude) equal to the chain invariant 1 (this implies

that initial norms of all the rest spins are equal to zero: 𝑧𝑗(𝑡𝐼) = 0, 𝑗 ̸= 1).

It is required to transfer the system during the given time to some final

state with the least deviation the norm of 𝑁 -th spin from given value 1:

|𝑧1(𝑡𝐼)| = |𝑧1𝐼 | = 1, 𝐽 = 𝐹 (𝑧(𝑡𝐹 )) = 1− |𝑧𝑁 (𝑡𝐼)| → inf .(2)

In other words it is required to maximize |𝑧𝑁 (𝑡𝐹 )|, the norm of the final

spin at the final time.

Evidently, this finite control problem statement covers the problem

of minimal final time 𝑡𝐹 to reach the state 𝑧* (when this functional takes

a value of zero), which is important to estimate the quantum speed limit

(QSL) for the given quantum system. In general, the minimal time problem

can be solved correctly as a limit for a sequence of the problems under

consideration for different 𝑡𝐹𝑠 < 𝑡𝐹 min when 𝐹 (𝑧(𝑡𝐹𝑠)) → 0. However,

in some rather simple cases such as Landau-Zener problem and two-spin

chain [6,7], it can be solved directly. The following investigations for the

approximate solutions and estimates are also carried out in the terms of

minimal time transfer.

In [6] it was shown that such problems are degenerate, and it is

effective to apply known in the degenerate problems theory basic trans-

formation of the original system to a regular derived system which is

especially effective when linear control is unbounded. In [8] this approach

was applied to particular cases of the excitation transfer problem [3] for

(3 – 5)-spin chains.

This paper is a continuation of [6]. A convenient form of the spin

chain as a system of interacted linear oscillators in “polar coordinates” is

proposed which is transformed sequentially to derived systems of reducing

order up to the first one. Their investigation can be performed analytically

or via simple computations, and leads at least to approximate solutions

and lower estimates of the transfer time, which can be used in subsequent

improving procedures.
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2. Presentation of Original System in Polar Coordinates and
Transformations to Derived Systems

We shall consider the following spin-interaction matrix [3]

𝐻0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0

1 −2 1 . . . 0 0

0 1 −2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −2 1

0 0 0 . . . 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then (1) is rewritten as follows

�̇�𝑗 = −𝑖
(︀
(ℎ0𝑗 + ℎ𝑗𝑢) 𝑧

𝑗 + ℎ1𝑗𝑧
𝑗−1 + ℎ2𝑗𝑧

𝑗+1
)︀
, 𝑗 = 1, . . . , 𝑁,(3)

ℎ01 = ℎ0𝑁 = −1, ℎ11 = ℎ2𝑁 = 0, ℎ1𝑁 = ℎ21 = 1,

ℎ0𝑗 = −2, ℎ1𝑗 = ℎ2𝑗 = 1, 𝑗 = 2, . . . , 𝑁 − 1.

Express every spin as a linear oscillator in “polar coordinates” 𝑧𝑗 =
𝑦𝑗𝑒𝑖𝜃, 𝑦𝑗 = |𝑧𝑗 |:

�̇�𝑗 = ℎ1𝑗𝑦
𝑗−1 sin (𝜃𝑗−1 − 𝜃𝑗) + ℎ2𝑗𝑦

𝑗+1 sin (𝜃𝑗+1 − 𝜃𝑗), 𝑦𝑗 ≥ 0,

𝜃𝑗 = −(ℎ0𝑗 + ℎ𝑗𝑢)− ℎ1𝑗
𝑦𝑗−1

𝑦𝑗
cos (𝜃𝑗−1 − 𝜃𝑗)− ℎ2𝑗

𝑦𝑗+1

𝑦𝑗
cos (𝜃𝑗+1 − 𝜃𝑗).

(4)

Assume that control variable 𝑢 is unbounded and coefficients ℎ𝑗 are
constant, and transform (4) to an equivalent derived system [9,10] with
the use of integrals (𝑦𝑗 , 𝜂𝑗) of the limit system:

𝑑𝑦𝑗/𝑑𝜏 = 0, 𝑑𝜃𝑗/𝑑𝜏 = −ℎ𝑗 , 𝜂𝑗 = 𝜃𝑗 + ℎ𝑗𝜏, (𝜏 = 𝑢), 𝜃𝑗 = 𝜂𝑗 − ℎ𝑗𝜏,

�̇�𝑗 = ℎ1𝑗𝑦
𝑗−1 sin ((𝜂𝑗−1 − 𝜂𝑗)− (ℎ𝑗−1 − ℎ𝑗)𝜏)+

+ℎ2𝑗𝑦
𝑗+1 sin ((𝜂𝑗+1 − 𝜂𝑗)− (ℎ𝑗+1 − ℎ𝑗)𝜏),

�̇�𝑗 = −ℎ0𝑗 − ℎ1𝑗
𝑦𝑗−1

𝑦𝑗
cos ((𝜂𝑗−1 − 𝜂𝑗)− (ℎ𝑗−1 − ℎ𝑗)𝜏)−

−ℎ2𝑗
𝑦𝑗+1

𝑦𝑗
cos ((𝜂𝑗+1 − 𝜂𝑗)− (ℎ𝑗+1 − ℎ𝑗)𝜏).

Note, that the equations for 𝜂𝑗 are singular with unbounded �̇�𝑗 when
𝑦𝑗 → 0. For the given matrix 𝐻0:

�̇�1 = 𝑦2 sin ((𝜂2 − 𝜂1)− (ℎ2 − ℎ1)𝜏),
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�̇�1 = 1− 𝑦2

𝑦1
cos ((𝜂2 − 𝜂1)− (ℎ2 − ℎ1)𝜏),

..............................................................

�̇�𝑗 = 𝑦𝑗−1 sin ((𝜂𝑗−1 − 𝜂𝑗)− (ℎ𝑗−1 − ℎ𝑗)𝜏)+(5)

+𝑦𝑗+1 sin ((𝜂𝑗+1 − 𝜂𝑗)− (ℎ𝑗+1 − ℎ𝑗)𝜏),

�̇�𝑗 = 2− 𝑦𝑗−1

𝑦𝑗
cos ((𝜂𝑗−1 − 𝜂𝑗)− (ℎ𝑗−1 − ℎ𝑗)𝜏)−

−𝑦𝑗+1

𝑦𝑗
cos (𝜂𝑗+1 − 𝜂𝑗)− (ℎ𝑗+1 − ℎ𝑗)𝜏)), 𝑗 = 2, . . . , 𝑁 − 1,

..............................................................

�̇�𝑁 = 𝑦𝑁−1 sin ((𝜂𝑁−1 − 𝜂𝑁 )− (ℎ𝑁−1 − ℎ𝑁 )𝜏),

�̇�𝑁 = 1− 𝑦𝑁−1

𝑦𝑁
cos ((𝜂𝑁−1 − 𝜂𝑁 )− (ℎ𝑁−1 − ℎ𝑁 )𝜏).

Following [6] exclude the equations w.r.t. 𝜂𝑗 , and consider these
variables as the control ones. Consider corresponding problem as the first
stage derived problem. This is some artificial extension of the admissible
set for the problem under consideration which leads at least to lower
bound for the minimized functional, and to the exact solution if ignored
constraints are satisfied.

�̇�1 = 𝑦2𝑠1, 𝑠1 = sin ((𝜂2 − 𝜂1)− (ℎ2 − ℎ1)𝜏),(6)

..............................................................

�̇�𝑗 = 𝑦𝑗−1(−𝑠𝑗−1) + 𝑦𝑗+1𝑠𝑗 , 𝑠𝑗 = sin ((𝜂𝑗+1 − 𝜂𝑗)− (ℎ𝑗+1 − ℎ𝑗)𝜏),(7)

..............................................................

�̇�𝑁 = 𝑦𝑁−1(−𝑠𝑁−1).

Apply the “turnpike” approach with the procedure proposed in [11].
Consider aggregates 𝑠𝑗 as linear controls and transform the remaining
system into derived systems of different stages taking into account the
equality

𝑁∑︁
𝑗=1

(𝑦𝑗)2 = 1 (𝑦1 = 1−
𝑁∑︁
𝑗=2

(𝑦𝑗)2)

(the invariant of (1) and this system) and replace (6) with this equality.
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Let us begin with the equations w.r.t. 𝑦𝑁 , 𝑦𝑁−1 and the control
variable 𝑠𝑁−1 taking into account that 𝑦𝑁 should be maximized with the
value 1. Corresponding limit system and its integral are:

𝑑𝑦𝑁−1

𝑑𝜁
= 𝑦𝑁𝑠𝑁−1,

𝑑𝑦𝑁

𝑑𝜁
= 𝑦𝑁−1(−𝑠𝑁−1), 𝜈𝑁−1 = (𝑦𝑁−1)2 + (𝑦𝑁 )2.

Denote 𝜈𝑁 = (𝑦𝑁 )2. Thus the second stage derived system will consist of
equations w.r.t. 𝑦𝑗 , 𝑗 = 2, . . . , 𝑁 − 2 and

�̇�𝑁−1 = 2𝑦𝑁−1𝑦𝑁−2(−𝑠𝑁−2), 𝑦𝑁−1 =
√︀

𝜈𝑁−1 − 𝜈𝑁 .

Repeat such transformation for the equation w.r.t. 𝑦𝑁−2, 𝑦𝑁−2, and
control variable 𝑠𝑁−2. The limit system and its integral will be

𝑑𝑦𝑁−2

𝑑𝜁
= 𝑦𝑁−1(−𝑠𝑁−2),

𝑑𝜈𝑁−1

𝑑𝜁
= 𝑦𝑁−1𝑦𝑁−2(−𝑠𝑁−2),

𝜈𝑁−2 = 𝜈𝑁−1 + (𝑦𝑁−2)2.

Then the third stage derived system will consist of equations w.r.t. 𝑦𝑗 , 𝑗 =
2, . . . , 𝑁 − 3 and

�̇�𝑁−2 = 2𝑦𝑁−2𝑦𝑁−3(−𝑠𝑁−2), 𝑦𝑁−2 =
√︀
𝜈𝑁−2 − 𝜈𝑁−1.

And so on: 𝜈𝑁−𝑗 = 𝜈𝑁−𝑗+1 + (𝑦𝑁−𝑗)2.

3. Investigation of derived systems

In the whole the system under consideration is expressed in new
variables 𝜈2, . . . , 𝜈𝑁−1, 𝜈𝑁 as a chain of controllable equations. The upper
stage derived system will be

�̇�2 = −2𝑦2𝑦1(𝑠1), 𝑦2 =
√︀
𝜈2 − 𝜈3, 𝑦1 =

√︀
1− 𝜈2,

and the control problem is expressed as follows:

𝜈𝑗(0) = 0, 𝑗 = 2, . . . , 𝑁 − 1, 𝜈2(𝑡𝐹 ) → sup .

According the turnpike methodology [11] it is solved via investigating
the derived problems successively from the upper stage to the zero stage
(original) and approximating the upper stage solutions with the admissible
lower stage solutions. At every stage it is found an initial approximation
which can be improved further in some iterative procedure.

�̇�2 = 2
√︀
(𝜈2 − 𝜈3)(1− 𝜈2)(−𝑠1), 𝑠1 = −1

..............................................................
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�̇�𝑗 = 2
√︀
(𝜈𝑗−1 − 𝜈𝑗)(𝜈𝑗 − 𝜈𝑗+1)(−𝑠𝑗−1), 𝜈𝑗+1 = 0, 𝑗 = 3, . . . , 𝑁 − 1,

(8)

..............................................................

�̇�𝑁 = 2
√︁
(𝜈𝑁−1 − 𝜈𝑁 )𝜈𝑁 (−𝑠𝑁−1), 𝜈𝑁 = (𝑦𝑁 )2.

It is seen that for each stage 𝑗 the ideal control profile is of the same
type:

𝑠𝑗−1 = −1, 𝜈𝑗+1(𝑡) = 0 (𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ), 𝜈𝑗+1(𝑡𝐹 ) = 1).

And this can be approximated by the admissible solutions of this stage
taking 𝜈𝑗+1(𝑡) = 𝜈𝑗𝑙 (𝑡) in (8), where 𝜈𝑗+1

𝑙 (𝑡) is some lower estimate for
𝜈𝑗+1(𝑡). Such estimates can be obtained as combinations of “natural”
bounds 0; 1 for 𝜈𝑗 and solutions to the following modification of system
(8) (fig. 1):

�̇�𝑗 =→ max
𝜈𝑗−1,𝜈𝑗+1

= 2

√︁
(𝜈𝑗−1 − 𝜈𝑗𝑢)(𝜈𝑗 − 𝜈𝑗+1),(9)

𝑗 = 2, . . . , 𝑁 . Upper bounds 𝜈𝑗𝑢 over [0, 𝑡𝑗 ] and lower bounds 𝜈𝑗𝑙 over

Figure 1. Upper (𝑢) and lower (𝑙) bounds of 𝜈𝑗 (example
for 𝑁 = 3)

[𝑡′𝑗 , 𝑡𝐹 ] are obtained when integrating (9) forward from the point {𝜈𝑗} =

{0} up to 𝜈𝑗𝑢(𝑡𝑗) = 1, then continuing with 𝜈𝑗𝑢(𝑡) = 1, and backward
starting from the point {𝜈𝑗} = {1}. (this is illustrated in fig. 1 for the
case N=3). Maximization of right hand sides is performed within these

bounds 𝜈𝑗𝑙 (𝑡), 𝜈𝑗𝑢(𝑡).

The following rather simple procedure is proposed to solve the opti-
mization problem for the system (8):

http://psta.psiras.ru/read/psta2016_1_3-13.pdf#englishindex
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1. Solve Cauchi problem for (8) backward starting from the point
{𝜈𝑗} = {1} taking 𝑠𝑗 = −1 up to 𝜈𝑗(𝑡𝑗) = 0 and recalculate the solution
to the original time and variables 𝑦𝑗 .

2. Solve (9) as was explained above to obtain the lower estimate of
the transfer time 𝑡𝐹 .

For 𝑁 = 2 and 𝑁 = 3 the problem is solved directly and analytically.

𝑁 = 2: 𝑠1 = −1,

�̇�2 = 2
√︀
𝜈2(1− 𝜈2), 𝜈2(0) = 0, 𝜈2 = (sin(𝑡))2.

This coincides with solutions for 𝑁 = 2 in [6] and also for Landau-Zener
problem in [7].

𝑁 = 3 : 𝑠1 = 𝑠2 − 1, 𝜈4 = 0,

�̇�2 = 2
√︀
(𝜈2 − 𝜈3)(1− 𝜈2), �̇�3 = 2

√︀
(𝜈2 − 𝜈3)𝜈3,(10)

𝑑𝜈2

𝑑𝜈3
=

√︀
(1− 𝜈2)√

𝜈3
,

√
𝜈3 +

√︀
(1− 𝜈2) = 𝐶,

𝐶 = 1 for 𝜈3 = 𝜈2 = 1 (and also for 𝜈3 = 𝜈2 = 0). Then
√
𝜈3 =

1 −
√︀

(1− 𝜈2). Substitution this into (10) leads to the single equation
w.r.t. 𝜈2(𝑡)which has the following solution starting from 𝜈2(0) = 0:

𝜈2(𝑡) = 1− (1/4)(1 + cos(
√
2𝑡))2, cos(

√
2𝑡𝐹 )) = −1, 𝑡𝐹 = 𝜋/

√
2.

This is minimal transfer time because the solution coincides with its
lower estimate given by (9). It is greater than that for 𝑁 = 2 which is
𝜋/2. The whole trajectory, recalculated to original variables is shown on
fig. 2.

Figure 2. Exact solution for 𝑁 = 3
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For 𝑁 > 3 there are no analytical solutions. However, it is possible
to reduce and regularize calculation using the symmetry of (8) with
given boundary conditions. Indeed, rewrite this system in new variables:
𝜉𝑘 = 1 − 𝜈𝑗 , 𝑟𝑘 = −𝑠𝑗 , 𝑘 = 𝑁 + 2 − 𝑗, 𝑗 = 2, . . . , 𝑁 when integrating
from right to left:

𝜉𝑘 = 2
√︁
(𝜉𝑘−1 − 𝜉𝑘)(𝜉𝑘 − 𝜉𝑘+1)(−𝑟𝑘−1), 𝜉𝑘 = 0, 𝑘 = 2, . . . , 𝑁 − 1,

(11)

This system is the same as (8) which means that it is sufficient to
calculate (8) only from 𝜈𝑗 = 0 to 𝜈𝑗 = 0.5 and to reconstruct the rest
simply by symmetry. The overall time will be 𝑡(1) = 2𝑡(0.5).

The following natural step in this investigation is to check whether this
solution is realizable in the terms of system (5). The values sin ((𝜂𝑗+1 −
𝜂𝑗)− (ℎ𝑗+1−ℎ𝑗)𝜏) = ±1 imply cos ((𝜂𝑗+1− 𝜂𝑗)− (ℎ𝑗+1−ℎ𝑗)𝜏) = 0, and,
further, from the equations w.r.t. 𝜂: �̇�1 = 1, �̇�𝑗 = 2, 𝑗 = 2, . . . , that is

𝜂1 = 𝜂1𝐼 + 𝑡, 𝜂𝑁 = 𝜂𝑁𝐼 + 𝑡, 𝜂𝑗 = 𝜂𝑗𝐼 + 2𝑡, 𝑗 = 2, . . . , 𝑁 − 1.

Then

sin ((𝜂2𝐼−𝜂1𝐼 )+𝑡−(ℎ2−ℎ1)𝜏) = −1, sin ((𝜂𝑗+1
𝐼 −𝜂𝑗𝐼)−(ℎ𝑗+1−ℎ𝑗)𝜏)) = −1.

It is possible to choose 𝜂𝑗+1
𝐼 − 𝜂𝑗𝐼 = −𝜋/2, 𝑗 = 2, . . . , 𝑁 − 1. Indeed,

for example, taking 𝜏𝐼 = 0 implies 𝜂1𝐼 = 0(given 𝜃𝐼 = 0); all the others

𝜂𝑗𝐼 , 𝑗 ̸= 1 can be chosen arbitrarily due to singularity of the corresponding

�̇�𝑗 at 𝑦𝑗𝐼 = 0 (another question is how to implement this theoretical
property). When defining ℎ2 − ℎ1 = 1, ℎ𝑁 − ℎ𝑁−1 = 1, 𝜏 = 𝑡, 𝑡 >
0, (ℎ𝑗+1 = ℎ𝑗), 𝑗 = 2, . . . , 𝑁 − 1, the equations w.r.t. 𝜂𝑗 are satisfied.
Thus, all conditions of the first stage derived systems are satisfied. This
means that the solution obtained is exact generalized one to the original
system (3) and at least approximate one to the original problems on
the minimum of the functional 1 − 𝑦(𝑡𝐹 ) or minimum of trasfer time
𝑡𝐹 . The corresponding original control profile consists of two impulses
at the endpoints (defined by 𝜏(0) and 𝜏(𝑡𝐹 ), and 𝑢(𝑡) = 0 between the
endpoints.

4. Conclusions

Application the special methods of degenerate problems theory allowed
to obtain exact analytic solutions of the minimum time excitation transfer
for the 2 − 3-spin chain model alternatively to laborious approximate
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computations with direct application of iterative methods to original
problem.

For 𝑁 -spin chains, 𝑁 > 3, this results in rather simply computable
solutions, which can be used as effective initial approximations in subse-
quent iterative improvement procedures. The ongoing research is oriented
to construct such iterative procedures for sufficiently great amount of
spins 𝑁 with the use of various computational experiments and to clarifi-
cation of the original real problem statement (real restrictions, control
implementation, etc.) together with theoretical and practical physicists.
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УДК 517.977

В. И. Гурман, И. В. Расина. Магистральные решения в задаче передачи
возбуждения в спиновой цепочке.

Аннотация. Рассматривается задача передачи возбуждения в спиновой цепочке,
связанная с актуальной проблемой квантовых вычислений. Модель управляемой
квантовой системы взаимодействующих спинов на основе уравнения Шредингера,
содержащего линейное неограниченное управление, преобразуется по известной из
теории вырожденных задач схеме к эквивалентной производной системе и затем
приближенно к производным системам высших ступеней понижающегося порядка
вплоть до первого. Их исследование позволяет получить аналитически, либо
посредством достаточно простых вычислений, по крайней мере, приближенные
решения и нижние оценки времени передачи для последующего использования в
процедурах улучшения.

Ключевые слова и фразы: квантовая система, спиновая цепочка, уравнение Шредингера,
вырожденная задача, производная система, импульсное управление, магистральное решение.
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