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Numerical evaluation of the interpolation accuracy of
simple elementary functions

Abstract. The paper contains a comparison of the accuracy of the restoration of
elementary functions by the values in the nodes for algorithms of low-degree
piecewise-polynomial interpolation. The test results demonstrate in graphical form
the advantages and disadvantages of the widely used cubic interpolation splines.

The comparison revealed that, contrary to popular belief, the smoothness of
the interpolant is not directly related to the accuracy of the approximation. In
the 20 different examples considered, the piecewise quadratic interpolation is
rarely and only slightly inferior in the form of the used classical cubic splines,
often by orders of magnitude better than many of them.

In several examples, the high interpolation error of simple functions on a
fixed grid appears to be almost independent of the degree of the algorithm and the
smoothness of the interpolant. The piecewise-linear interpolation unexpectedly
appeared the most accurate in one of the examples.

A new problem arises: to find a local interpolation algorithm, accurately
restoring any rational functions of the second order.

Key words and phrases: local interpolation, spline interpolation, convexity preserving, recovery
precision.

2010 Mathematics Subject Classification: 65D07; 41A10, 41A15

Introduction

The problem of recovering a piecewise analytic on the segment [a, b] real
function f(x) by the vector ~y = (y0, . . . , yn) from its n+1 values yi = f(xi)
at the points x0 < · · · < xn, . . . , n of the real line has a multi-millennial
history [1] and various generalizations and applications. In the course of
diverse studies, a great number of convincingly harmonious interpolation
theories (see, for example, [2–6]), oriented on optimal algorithms for
numerous applications, has grown.
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We focus on the interpolation algorithms available with the source
code, capable to recover simple dependencies by a few specified values.
This context naturally arises in the analysis of scarce experimental data.
We beleive that identifying the weak points of algorithms from this point of
view can lead to the formulation of new problems, the solution of which
could improve the quality of interpolation in other applications.

This investigation focuses on two practically significant interpolation
quality criteria:
(1) Locality — dependence of interpolant only on values in the nearest l

nodes on the right and l nodes on the left.
(2) Accuracy of restoring the most simple and common functions.

Locality is important when restoring piecewise-analytic functions of
a single variable or functions with singular points on a grid near the
interpolation segment, since it reliably localizes recovery errors caused by
irregular behavior near singular points. In image processing, only locality
provides clean scaling of pictures in which a high-contrast object is located
against a pale background. When processing images, locality provides
accurate scaling of photos, while streaming the signal, the radius of locality
determines the delay time. When restoring from values on the grid, the
piecewise-analytical functions of one variable or functions with singularities
near the interpolation segment, it prevents the loss of restoration accuracy
outside of singularities neighbourhoods.

The accuracy of the restoration of the most simple functions is an
objective and verifiable quality attribute of interpolation. However, this
attribute conceals a pitfall. Kolmogorov complexity obviously depends on a
programming language, and there is no convincingly unambiguous answer
to the questions, which of functions is more simple and commonly used:

— A polynomial or a linear-fractional function?
— Cosine or density of normal probability distribution?
Overlaying one graph on the other one and selecting the intersection

points of the graphs, we obtain the initial data of the sample interpolation
problem, which has two sharply different perfectly accurate solutions. no
distinct best solution.

We see that, demanding from the interpolating algorithm a qualitative
reconstruction of a simple in the intuitive understanding of the function, it
is necessary to take into account similar ambiguous statements of the
interpolation problem.
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To identify the effect of the interpolant’s smoothness, we consider a
simple local quadratic continuous (not necessarily smooth) interpolating
spline formula and evaluate its interpolation accuracy on the examples of
simple elementary functions, analyzing specific situations arising during
comparison.

1. Formula of piecewise-quadratic interpolation

Formulas of piecewise quadratic interpolation between nodes with
given values differ in the method of obtaining the coefficient for the highest
degree ki in the Newton interpolation formula

Pi(x) = yi + (x− xi)(mi + ki(x− xi+1)),

where mi =
(yi+1−yi)
(xi+1−xi)

is the first divided difference. The coefficient ki is
usually taken to be equal to the second divided difference ∆i =

mi+1−mi

xi+2−xi
,

but more accurately can be found from the calculated interpolant value
ymi = yi + li(mi + kili) in the middle of the segment [xi, xi + 1], where
li =

xi+1−xi

2 is half the length of segment. Using the Lagrange interpolation
formula over the four nearest nodes for getting the value, we obtain very
simple piecewise quadratic interpolation formula:

f(x) = yi + (x− xi) (mi + ki(x− xi+1)) ,(1)

where

ki =


∆0 +

x2 − l0
x3 − x0

(∆1 −∆0), i = 0,

∆i +
li − xi+2

xi+2 − xi−1
(∆i −∆i−1), 0 < i < n− 1,

∆n−2 +
ln−1 − xn−2

xn − xn−3
(∆n−3 −∆n−2) i = n− 1.

Although no exact references could be found, these simple formulas have
undoubtedly already been used in some form over the thousand-year
history of quadratic interpolation.

2. Shape preserving quadratic interpolation

The squareness of the interpolant provides easily verifiable exact
conditions for the shape preservation.
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Remark 1. The method does not always preserve convexity, but
the convexity preservation is easy to ensure by putting ki = 0 for those
0 < i < n− 1, for which ∆i∆i+1 ≥ 0, but computed ki has a sign opposite
to ∆i +∆i+1.

Remark 2. Non-conservation of monotony or sign is revealed by the
exact condition |2A0

i | 6
 mi

xi+1−xi

. The joint preservation of the sign and
monotony can be easily guaranteed by replacing, where this condition is
violated, of the calculated value of A0

i to the value ±mi

2(xi+1)−xi)
taken with

the same sign.

Remark 3. The preservation of the upper and lower bounds inside the
segment of the image [a, b] is controlled by the exact condition

−

√
b− yi +


b− yi+1

xi+1 − xi

2

6 2A0
i 6

√
yi − a+

√
yi+1 − a

xi+1 − xi

2

and is provided by replacing (just for segments where the condition is
violated) of the calculated value of A0

i by the value of the nearest constraint.

Although these simple form preservation restrictions are accurate, and
their corresponding code additions are simple, they are not included in the
tests of this paper. In the considered statement of the problem, they rarely
seem to change something, also the changes usually reduces the accuracy of
the recovery.

3. Numerical evaluation of the interpolation quality

Numerical comparison of the results of the elementary functions inter-
polation was carried out on the maximum, average and average-quadratic
error.

The integrals in the standard formulas for the mean and mean square
were calculated using the trapezoid formula with 12 equally-spaced
intermediate nodes on each interpolation segment, and the graphs were
plotted using the same values.

Each drawing consists of two. The graphs of the function and its
interpolants are on the upper half, and the graphs of interpolation errors
on a scale allowing them to be seen and compared are lower.

A program that calculates deviations and draws graphics in LATEX2ε
TikZ/PGF is implemented in Perl and attached to the article.

http://psta.psiras.ru/read/psta2018_4_93-116-data.zip
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For comparison with the described quadratic spline, all the most
accessible implementations of cubic splines were used. The comparison
includes practical algorithms implemented in actively developing libraries:
open GSL (GNU Scientific Library) and multilingual Russian AlgLib, on
which a variety of modern software is based.

Of these, only Steffen spline [9] (S) and non-smooth cubic spline (C),
see, for example, [10] has the same locality radius l = 2 as tested quadratic
Q, and only piecewise linear interpolation L has a smaller radius of locality.

For comparison with the results for non-local natural cubic spline (two
types of boundary values were used for non-periodic interpolation problems
— parabolic P, which exactly restores quadratic polynomials, and natural N,
with zero values of the derivative at the ends).

The implemented in GSL algorithm of H. Akima (A) [8] is also included
in the comparison. Other local splines using data from more than two
adjacent nodes on each side, such as [7,11–13], are not considered, since
according to the results of testing in [14], the weakening of locality to l = 3
predictably allows for higher precision of interpolation of analytic functions.

3.1. Experiments on a uniform grid

The purpose of experiments on a uniform grid of interpolation nodes
was to compare the behavior of different splines of the locality radius l = 2
on functions of different behavior, from simple, without local extremes and
kinks, and ending with more complex, alternating descending-increasing
sections, and then alternating directions of convexity.

3.1.1. Functions without inflection points

The interpolation errors of the exponent are visible on Figure 1, of
the logarithm on Figure 2, of the simplest rational function y = 1


x on

Figure 3. The three examples shows that in the absence of local extremum
points and inflection points, the errors of A and Q almost coincide and is
more than three times lower than that of the other splines.

Exactly the same situation is repeated with a function that has a
semi-circle plot on Figure 4, except for the boundary sections where all
interpolation formulas work roughly due to infinite derivatives at the
extreme nodes.

It is important to note here that a natural cubic spline probably could
demonstrate better results with a good choice of boundary conditions. It is
not known, it is possible to do this without knowing the function itself. In

https://www.gnu.org/software/gsl/doc/html/index.html
http://alglib.sources.ru/
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Figure 1. Interpolation of ex on [−3, 3]

Figure 2. Interpolation of ln(x− 0.1) on [1, 6]
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Figure 3. Interpolation of 1/x on [1, 6]

Figure 4. Interpolation of
√
25− x2 on [−5, 5]
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Figure 5. Interpolation of e−0.1(x+0.5)2 on [−8, 7]

the current version of GSL, the second derivative at the ends is set to
zero (N), but a much better result is obtained with the parabolic task
f ′′(x0) = ∆0 and f ′′(xn) = ∆n−2 at the three extreme points. Note that
Q at the edges is determined by four points and has a visible advantage.

3.1.2. Interpolation of density of normal distribution

The classic test case for interpolation algorithms is the probability
density function of the normal distribution. The overall picture is
represented by the graphs on Figure 5–9 and significantly depends on the
grid of interpolation nodes.

When the maximum point does not fall into the interpolation node (S
on Figure 5), the methods aimed at preserving monotony sharply lose their
accuracy, giving an increased error not only not in the extreme interval,
but also at least in the neighboring with it (S on Figure 9). A number of
them (for example, S to Figure 6) try to round the graph near the sharp
maximum at the node (S to Figure 5).

Even when a maximum is exactly in a knot, the complex dependence
of the comparison result on the pitch (Figure 6 versus Figure 7) is striking.
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Figure 6. Interpolation of e−0.1x2

on [−8, 7]

Figure 7. Interpolation of e−0.05x2

on [−15.5]
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Figure 8. Interpolation of e−0.01(x−0.5)2 on [−8.3]

Figure 9. Interpolation of e−0.01x2

on [−8, 3]
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Figure 10. Interpolation of


0.02 + (x− 0.05)2 on [−4, 5]

When decreasing the step, the interpolation segments become more similar,
Figure 9.

In the considered examples, P, Q are also clearly in the lead among
local ones, and the natural cubic spline on Figure 5, 6, 8 and 9 also
corrupted by zero boundary conditions.

3.1.3. Other functions with inflection points

In many of the examples considered, the natural cubic spline with the
correct choice of boundary conditions turns out to be much more accurate
than local ones. However, accuracy may be lost with sharp bends. In the
example Figure 10 the local P, Q are noticeably more accurate.

Unfortunately, this interpolation gain of the locality radius l = 2
is unstable to the grid. Significant differences in the ratio of errors for
different configurations of nodes are clearly visible on Figure 11.

If the singular points are not close to the nodes, then the positive effect
of non-smooth joining in the nodes is compensated by the impossibility of
representing non-smoothness outside the nodes and the advantage of
non-smooth spline over the natural one is lost on Figure 11.

However, the advantage of non-smooth splines over smooth local ones
remains clear. It is also saved for sine, see Figure 12.
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Figure 11. Interpolation of | cos(0.4x)| on [−15.30]

Figure 12. Interpolation of sin(x/2) on [−4, 4]
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Figure 13. Interpolation of arctg(x+ 0.7) on [−4, 4]

3.1.4. Other functions with inflection points

In many of the examples considered, the natural cubic spline with the
correct choice of boundary conditions turns out to be much more accurate
than local ones. However, accuracy may be lost with sharp bends. In the
example Figure 10 the local P, Qare noticeably more accurate.

3.2. Interpolation on non-equispaced mesh

The question naturally arose about the specificity of the grid with
uniform readings and a different selection of test functions. A search of the
previously used set of tests for the accuracy of interpolation of elementary
functions in published articles revealed only a test in [11] “Control Data
7600”, including an uneven grid with nodes -2.95, -2.6, -2.1, -1.8, -1.4, - 1.0,
-0.75, -0.3, -0.05, 0.2, 0.55, 0.9, 1.25, 1.6, 1.7, 2.1, 2.4, 3.0 and 5 tested
functions.

The results of this test, presented in Figure 16–20, clearly confirmed
the leadership of P, Q among the splines of the locality radius l < 3. On
this set of examples, they successfully compete even with natural splines,
repeatedly confidently surpassing them exactly.
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Figure 14. Interpolation of tan(x/6.5) on [−10, 10]

Figure 15. Interpolation of 3
√
x on [−4, 4]
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Figure 16. Interpolation of x2 on CD 7600 mesh

Figure 17. Interpolation of x4 on the CD 7600 grid
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Figure 18. Interpolation of exp(x2/2) on the grid CD 7600

Figure 19. Interpolation of tanh(x) on the CD 7600 grid
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Figure 20. Interpolation of sin(x) on the CD 7600 grid

3.3. Test Summary

Numerical evaluations of the approximation accuracy achieved in
the considered examples are presented in three tables. The maximum
percentage errors are given in Table 1, the average percentage errors
in Table 2, and the root mean square percentage errors are in Table 3. The
color highlights the values more than twice superior to the best of the
(other) splines of the locality in question: less than twice; worse by 2–5
times; worse by 5–10 times; worse 10 or more times.

3.3.1. Preliminary results

The tables, especially the last one, show that in any tested situation
(grid of nodes, function) the quadratic spline errors have not exceed the
doubling of any of the other local splines errors with an accuracy superiority
over all including the non-local natural spline in more than 20% of cases.
In most tests at least a twofold superiority is shown of P and Q over the
other splines of the locality radius l < 3.
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Table 1. Maximum percentage errors of interpolation

mesh formula P N A S L C Q

-3..3 ex 2.38 4.87 2.41 6.37 8.56 1.41 1.58

1..6 ln(x− 0.1) 1.38 2.41 1.42 3.03 3.92 1.01 1.09

1..6 1/x 3.91 5.79 3.95 7.03 8.57 3.09 3.26

-5..5
√
16− x2 12.14 14.04 12.38 15.36 16.12 11.28 11.53

-8..7 e−0.1(x+0.5)2 0.20 0.20 2.13 4.88 4.88 0.96 0.96

-8..7 e−0.1x2
0.15 0.15 0.66 0.83 4.19 0.74 0.80

-8..5 e−0.05x2
0.07 0.22 0.25 0.33 1.20 0.07 0.07

-8..3 e−0.01(x−0.5)2 0.03 0.13 0.05 0.50 0.50 0.02 0.02

-8..3 e−0.01x2
0.04 0.11 0.06 0.17 0.49 0.01 0.02

-4..5


0.02 + (x− 0.05)2 2.17 2.17 1.85 1.92 2.18 1.57 1.60

2..28 | cos(0.4x)| 7.97 7.96 6.37 10.23 12.41 9.07 9.22

-4..4 sin(x/2) 0.07 1.15 0.79 2.08 3.06 0.25 0.23

-5..5 tan(x/3.3) 10.78 13.89 10.77 15.24 17.96 9.30 9.62

-5..5 arctan(x+ 0.7) 1.42 1.42 2.06 2.27 5.13 2.21 2.18

-4..4 3
√
x 21.91 21.90 24.24 23.27 24.24 22.75 22.38

CD x2 0 0.37 0.21 0.61 1.03 0 0

CD x4 0.59 2.26 1.45 3.38 5.21 0.08 0.20

CD exp(x2/2) 0.23 0.11 0.33 0.32 1.58 0.08 0.13

CD tanh(x) 0.07 0.07 0.23 0.18 1.84 0.17 0.18

CD sin(x) 0.62 0.26 0.55 1.70 2.21 0.17 0.27

-5..5 x
1+5x2 47.85 47.85 59.03 50.71 59.03 52.31 51.83

-15..15 3
√
cosx 75.06 71.73 75.91 70.88 63.22 75.72 76.07
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Table 2. Mean percentage errors of interpolation

mesh formula P N A S L C Q

-3..3 ex 1.96 3.95 1.66 4.35 8.53 1.46 1.46

1..6 ln(x− 0.1) 0.37 0.67 0.31 0.70 1.36 0.29 0.29

1..6 1/x 1.71 2.63 1.28 2.73 4.04 1.41 1.41

-5..5
√
16− x2 2.00 2.51 1.67 2.54 3.23 1.79 1.79

-8..7 e−0.1(x+0.5)2 0.10 0.10 1.54 1.78 3.23 0.61 0.64

-8..7 e−0.1x2
0.11 0.11 0.56 0.61 3.03 0.63 0.65

-8..5 e−0.05x2
0.01 0.04 0.12 0.09 0.66 0.04 0.05

-8..3 e−0.01(x−0.5)2 0.00 0.02 0.02 0.11 0.25 0.01 0.01

-8..3 e−0.01x2
0.01 0.02 0.03 0.03 0.25 0.01 0.01

-4..5


0.02 + (x− 0.05)2 0.72 0.71 0.35 0.36 0.46 0.39 0.42

2..28 | cos(0.4x)| 1.23 1.22 0.71 1.31 1.66 1.09 1.10

-4..4 sin(x/2) 0.03 0.34 0.34 0.61 2.07 0.12 0.13

-5..5 tan(x/3.3) 8.27 11.03 6.02 9.25 13.52 7.05 7.05

-5..5 arctan(x+ 0.7) 0.32 0.31 0.41 0.48 1.42 0.48 0.49

-4..4 3
√
x 4.90 4.83 6.25 4.51 5.34 4.89 4.89

CD x2 0 0.10 0.15 0.14 0.88 0 0

CD x4 0.24 0.97 0.81 1.26 3.77 0.06 0.11

CD exp(x2/2) 0.05 0.03 0.25 0.15 1.07 0.05 0.07

CD tanh(x) 0.01 0.01 0.08 0.04 0.49 0.04 0.04

CD sin(x) 0.08 0.04 0.23 0.31 1.27 0.04 0.05

-5..5 x
1+5x2 15.15 15.05 18.95 13.39 15.92 15.15 15.15

-15..15 3
√
cosx 15.41 15.03 14.27 12.13 16.62 15.50 15.70
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Table 3. Root mean square percentage of interpolation errors

mesh formula P N A S L C Q

-3..3 ex 0.23 0.48 0.21 0.60 0.91 0.15 0.16

1..6 ln(x− 0.1) 0.06 0.11 0.06 0.14 0.20 0.05 0.05

1..6 1/x 0.29 0.44 0.27 0.52 0.68 0.24 0.24

-5..5
√
16− x2 0.43 0.52 0.42 0.57 0.65 0.40 0.40

-8..7 e−0.1(x+0.5)2 0.01 0.01 0.16 0.25 0.31 0.06 0.06

-8..7 e−0.1x2
0.01 0.01 0.06 0.07 0.31 0.06 0.06

-8..5 e−0.05x2
0.00 0.01 0.01 0.01 0.07 0.00 0.00

-8..3 e−0.01(x−0.5)2 0.00 0.00 0.00 0.02 0.03 0.00 0.00

-8..3 e−0.01x2
0.00 0.00 0.00 0.01 0.03 0.00 0.00

-4..5


0.02 + (x− 0.05)2 0.11 0.11 0.08 0.08 0.10 0.08 0.08

2..28 | cos(0.4x)| 0.22 0.22 0.17 0.27 0.31 0.23 0.23

-4..4 sin(x/2) 0.00 0.05 0.04 0.10 0.23 0.01 0.01

-5..5 tan(x/3.3) 1.17 1.54 1.08 1.58 2.07 1.01 1.03

-5..5 arctan(x+ 0.7) 0.05 0.05 0.08 0.09 0.21 0.08 0.09

-4..4 3
√
x 0.93 0.93 1.13 0.97 1.10 0.99 0.98

CD x2 0 0.02 0.02 0.03 0.08 0 0

CD x4 0.04 0.15 0.10 0.22 0.42 0.01 0.01

CD exp(x2/2) 0.01 0.01 0.02 0.02 0.11 0.01 0.01

CD tanh(x) 0.00 0.00 0.01 0.01 0.07 0.01 0.01

CD sin(x) 0.02 0.01 0.03 0.06 0.15 0.01 0.01

-5..5 x
1+5x2 2.68 2.68 3.45 2.76 3.30 2.93 2.92

-15..15 3
√
cosx 2.60 2.53 2.63 2.38 2.58 2.64 2.64
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Figure 21. Interpolation of x
1+5x2

A close examination of the graphs shows that if there are a few
nodes (or the function changes frequently), then the precision of the
piecewise-quadratic interpolant differs slightly from the accuracy of smooth
natural splines.

At the same time, the areas where simple functions interpolate
extremely roughly are highlighted. In the examples considered, these are
neighborhoods of singular points of a function and a place where the
one-side or second derivative many times exceeds the mean values or is
infinite (knee or vertical tangent on the graph). These are friendly bursts
of error in the extreme areas in the examples Figure 4, 13 and inside in the
examples Figure 13–17.

Note that in this study only linear interpolation algorithms on a
polynomial basis were considered. There was a hypothesis that interpolation
by such algorithms is difficult at these situations. To test it, consider more
expressive functions Figure 21 and 22.

It is clearly seen that the almost identical errors of all algorithms
reached and exceeded 50%. Worse, in the last figure, the smallest
error (both maximum and root-mean-square) was shown by piecewise
linear interpolation. This shows that the considered formulation of the
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Figure 22. Interpolation of 3


cos(x)

interpolation problem will not solve linear algorithms on a polynomial basis.
An interpolation algorithm is required that accurately restores all

(more precisely, almost all) rational functions of the second degree. It
cannot be linear, since the linear span of the set of rational functions of the
second (and even of the first degree) is infinite-dimensional. In publications
on the theory of interpolation, the ideas of such an algorithm are not visible.
It could affect the efficiency of various applications of approximation theory
methods, including nonlinear regression and extrapolation.

This idea indirectly confirms the well-known possibility of significantly
more accurate than polynomials approximation of algebraic and transcen-
dental functions by rational functions. Such a possibility is effectively
illustrated, for example, in [15].

Conclusions

1. The accuracy of recovery in areas with large derivatives is extremely
low and does not depend on the complexity of the considered algorithms.
The search for an algorithm that perfectly restores rational functions of
the second degree is an interesting new problem.
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2. The smoothness of the interpolants and the preservation of monotonicity
(convexity, sign) do not guarantee increased interpolation accuracy. The
tasks of interpolation, in which these qualities are not required, can be
solved in simpler and more economical ways.

3. With high requirements for spline locality (when the radius of locality
is less than 3), the considered simple quadratic spline is comparable in
accuracy to cubic ones.
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