
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 10, No 1(40), pp. 19–32

UDC 004.942

E. A. Barkovsky, A. A. Lazutina, A. V. Sokolov

The Optimal Control of Two Work-Stealing Deques,
Moving One After Another in a Shared Memory

Abstract. In the parallel work-stealing load balancers, each core owns personal
buffer of tasks called deque. One end of the deque is used by its owner to add and
retrieve tasks, while the second end is used by other cores to steal tasks. In the
paper two representation methods of deques are analyzed: partitioned serial cyclic
representation of deques (one of the conventional techniques); and the new
approach proposed by our team, without partition of shared memory in advance
between deques moving one after another in a circle. Previously we analyzed these
methods for representing FIFO queues in network applications, where the “One
after another” way gave the best result for some values of the system parameters.

Purpose of this research is to construct and analyze models of the process
of work with two circular deques located in shared memory, where they movie one
after another in a circle. The mathematical model is constructed in the form
of a random walk by integer points in the pyramid. The simulation model is
constructed using the Monte Carlo method. The used work-stealing strategy is
stealing of one element. We propose the mathematical and simulation models
of this process and carry out numerical experiments.

Key words and phrases: work-stealing Schedulers, work-stealing deques, data structures, absorbing
Markov chains, random walks.

2010 Mathematics Subject Classification: 68Q85; 68P05, 68Q87

Introduction

There are two main strategies of parallel computations balancing:
static and dynamic. In the static strategies, it is assumed that the order
of tasks execution is known in advance. In that case, it is possible to

This work was supported by grant RFBR No 18-01-00125-a.
c⃝ E. A. Barkovsky(1), A. A. Lazutina(2), A. V. Sokolov(3), 2019
c⃝ LLC Small innovative enterprise “Arvata” (1), 2019
c⃝ Lomonosov Moscow State University(2), 2019
c⃝ Institute of Applied Mathematical Research(3), 2019
c⃝ Program Systems: Theory and Applications (design), 2019

DOI: 10.25209/2079-3316-2019-10-1-19-32 CC-BY-4.0

http://psta.psiras.ru/index_en.htm
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2019-10-1-19-32&domain=pdf&date_stamp=2019-02-15
http://arvata/
http://www.msu.ru/en/
http://mathem.krc.karelia.ru/index.php?&plang=e
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2019-10-1-19-32
https://creativecommons.org/licenses/by/4.0/


20 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

construct the optimal schedule before the work started. This situation is
rarely achievable and the solution, in this case, is an NP-complete problem.

The dynamic strategies use simplified schemes: work-sharing—tasks
are transmitted from a more loaded core to a less loaded one; work-stealing—
empty cores steal tasks from other cores [1,2].

Work-stealing is used in such systems as Cilk [3], Cilk++, TPL [4],
X10 [5], TBB, JSR166 (java.util.concurrent package), Erlang, OpenMP
in ICC [6]. Each core executes tasks, pointers to which are stored in its
deque. If a new task is created, the core adds its pointer to the deque;
if core needs a task, it reads a pointer from the top of the deque. But
if it finds that the deque is empty, the core will start to steal pointers
from deques of the other cores. Stealing occurs from the bottom of the
deque—similar to FIFO-queues—while operations of insertion and deletion
are executed in the LIFO order. In the book by D. Knuth, this data
structure is called “an input restricted deque” [7]. Some of the work-stealing
strategies are: stealing of one element [1], stealing of half the elements [8].

There are several ways to represent the input restricted deques
in memory, for example, using linked lists. In [9] the models of linked
representation of stacks and queues are described. The model of linked
representation of deques can be built in the same way.

For stacks and queues, the paged implementation can be used in the
form of a single-linked list with pages of the same length. This method was
presented and analyzed in [10]. In [11] a variant of this method was
proposed for deques, only it requires a double-linked list. The model
of work-stealing balancer built on the basis of the queuing theory was
described in [12], but no specific ways of representing deques in memory
were considered.

In this paper, we analyze the work of two deques. While this particular
case is the beginning of the research, such model can be already used
in practice, for example, in the architectures where the cache memory is
absent. Thus, in SEAforth architecture each core has two stacks (for
storing data and return addresses), and there are two FIFO-queues per
core in AsAP-II architecture [13]. In these architectures stacks and queues
are implemented cyclically and separated from each other, and the overflow
of data structures may cause loss of elements. We assume that it is possible
to implement work-stealing deques in a similar way and build desired chips
by composing them from a “two-deques” ones.

In this paper, we propose simulation and mathematical models of the
new method of representation of work-stealing deques. They move one after



Control of two work-stealing deques 21

another in a circle in the same partition of shared memory (the method is
patented [14]). For FIFO-queues, a similar method was proposed in [15]
and analyzed in [16]. It is possible to implement deques in RAM or in
registers, so here we do not specify the type of memory.

The mathematical model of this process is built as a random walk on
integer points in a pyramid. The transitions are carried out by the discrete
process with given probabilities. Preliminary results were reported in [19].
Previously, such models were built by our team for some other dynamic
data structures: FIFO-queues, stacks, priority queues [9,10,15,17,18].

Our team proposed and analyzed models, where sequential deques
are located in the separated parts of shared memory [20], with the
discrete execution of operations [21–23]. On the basis of the models,
optimization problems were solved. The optimality criterion is the
maximum mathematical expectation of time before the redistribution
(overflow) of memory.

Such an optimality criterion is useful in applications, where memory
overflow is an emergency. For example, real-time applications of work-
stealing load balancers or hardware implementations of deques [24].

We also note that the question of the correctness of using a probabilistic
approach to model the behavior of data structures in parallel programs is
a legitimate one. First of all, it should be noted that even in classical
sequential programs the order of operations with data structures depends
on the input data and is determined in real time. In parallel programs,
non-determinism is further enhanced. Here you can quote from the
work [25]: “Parallel programming fundamentally cannot completely get rid
of non-determinism, since the corresponding programming tools—processes,
threads, and their interaction through a common resource—are required for
effective implementations on modern hardware, and also because of the
distributed nature of applications functioning in the real world”.

The probabilities of operations on deques (sequential cyclic representa-
tion) were estimated in [26] using statistic data collected from several tests
in [27]. The obtained probabilities of operations were used in numerical
experiments to analyze the developed models. Statistics were collected
using a version of the load balancer, where deques store pointers to the
tasks. In this version, it is necessary to refer to the memory allocator twice
for each task: allocate memory of the task object and then release it when
the task is completed. Thus, the associated with the memory allocator
overhead arises.



22 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

The memory manager implemented [28] in the aforementioned version
of the work-stealing load balancer. In this manager, the following memory
management methods based on the developed models [26] were implemented
and analyzed: optimal partition, partition in half. The study showed
that when shared memory is partitioned optimally, the tasks require less
memory, but the mathematical expectation of the time of their solution
becomes longer. Such characteristics of the manager can be useful in the
real-time applications, where a small increase in operating time may be
acceptable, while memory overflow leads to the program crash.

The new version of the load balancer is described in [29]. There, objects
are stored in deques, which are represented in the heap as doubly-linked
lists of arrays. To work with deques, one can use the same models and
methods as in the previous version. The difference is, in the new version
deques take up more memory, because task objects are larger than pointers
to tasks.

Usually, in the work-stealing load balancers work with deques happens
via cyclic arrays. For the deques, arrays are allocated from the heap using
classic memory functions in C/C++ translators. When deques grow or
shrink significantly, new arrays of larger or smaller size are allocated.

In this paper we solve the problem of finding the optimal memory
allocation algorithms for deques, assuming that the probabilities of
operations performed on them are known.

1. The Mathematical Model

Suppose that the size of shared memory is m units. Two cyclic
work-stealing deques moving one after another in a circle are located in
this shared memory. Empty deque continues its work/movement from
the middle of the vacant memory. The movement pattern of the data
structures is shown in Figure 1.

The entire work of the system is divided into operations, where
elements are inserted and/or deleted per unit of time.

The probabilities of operations are the following:
• With the probability p1 insertion in the I deque occurs;
• With the probability p2 insertion in the II deque occurs;
• With the probability p12 parallel insertion in both deques occurs;
• With the probability q1 deletion from the I deque occurs;
• With the probability q2 deletion from the II deque occurs;



Control of two work-stealing deques 23

Figure 1. The movement scheme of two work-stealing deques
moving one after another in a circle

• With the probability q12 parallel deletion from both deques occurs;
• With the probability pq12 insertion in the I deque and deletion from

the II one occur;
• With the probability pq21 insertion in the II deque and deletion from

the I one occur;
• With the probability r size of deques does not change (for example,

reading operation).
p1 + p2 + p12 + q1 + q2 + q12 + pq12 + pq21 + r = 1.
If the system is trying to delete an element from the empty deque, then

the work-stealing process starts: empty deque steals work (an element)
from the other deque. The following work-stealing strategy was used:
stealing of one element.

The task is to determine the mean operating time of the system to
memory overflow, and compare it with the mean operating time of the
system based on the cyclical organization of deques.

Denote the current lengths of the first and the second deques as x and
y, and the distance between them as z. The mathematical model of the
process is a random walk inside the integer pyramid, with the top (0, 0, 0)
and the base x+ y + z = m (Figure 2).

Schemes of transitions between states are shown below. Here (x, y, z)



24 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

Figure 2. The area of walk and the numbering of states for two
deques moving one after another in the memory of size m = 6

is the previous state of the process, and (x′, y′, z′) is the new state of the
process.

The walk inside the pyramid is as follows:

(x, y, z)
r→ (x, y, z)

(x, y, z)
p1→ (x′, y′, z′)

=


(x+ 1, y, z − 1), x, y, z > 0, x+ y + z < m

(x+ 1, y, z), 0 < x < m, y = 0, z = 0

(x+ 1, y, z + [m−y−1
2 ]), x = 0, 0 < y < m, z = 0

(x, y, z)
p2→ (x′, y′, z′)



Control of two work-stealing deques 25

=


(x, y + 1, z), x, y, z > 0, x+ y + z < m

(x, y + 1, z + [m−x−1
2 ]), 0 < x < m, y = 0, z = 0

(x, y, z)
p12→ (x′, y′, z′)

=


(x+ 1, y + 1, z − 1), x, y, z > 0, x+ y + z < m

(x+ 1, y + 1, z + [m−x−2
2 ]), 0 < x < m− 1, y = 0, z = 0

(x+ 1, y + 1, z + [m−y−2
2 ]), x = 0, 0 ≤ y < m− 1, z = 0

(x, y, z)
q1→ (x′, y′, z′)

=


(x− 1, y, z + 1), x, y, z > 0, x+ y + z ≤ m

(x+ 1, y − 1, z + [m−y
2 ]), x = 0, 1 < y ≤ m, z = 0

(x, y, z), x = 0, 0 ≤ y ≤ 1, z = 0

(x, y, z)
q2→ (x′, y′, z′)

=


(x, y − 1, z), x, y, z > 0, x+ y + z ≤ m

(x− 1, y + 1, z + [m−x
2 ]), 1 < x ≤ m, y = 0, z = 0

(x, y, z), 0 ≤ x ≤ 1, y = 0, z = 0

(x, y, z)
q12→ (x′, y′, z′)

=



(x− 1, y − 1, z + 1), x, y, z > 0, x+ y + z ≤ m

(x+ 1, y − 2, z + [m−y
2 ]), x = 0, 2 < y ≤ m, z = 0

(x− 2, y + 1, z + [m−x+1
2 ]), 2 ≤ x ≤ m, y = 0, z = 0

(x− 1, y, z), 0 < x ≤ 2, y = 0, z = 0

(x+ 1, y − 2, z), x = 0, y = 2, z = 0

(x, y − 1, z), x = 0, y = 1, z = 0

(x, y, z), x = 0, y = 0, z = 0

(x, y, z)
pq12→ (x′, y′, z′)

=


(x+ 1, y − 1, z − 1), x, y, z > 0, x+ y + z ≤ m

(x, y + 1, z + [m−x−1
2 ]), 0 < x < m, y = 0, z = 0

(x+ 1, y − 1, [m−y
2 ]), x = 0, 0 < y < m, z = 0

(x+ 1, y, z), x = 0, y = 0, z = 0

(x, y, z)
pq21→ (x′, y′, z′)

=


(x− 1, y + 1, z + 1), x, y, z > 0, x+ y + z ≤ m

(x− 1, y + 1, z + [m−x−1
2 ]), 0 < x < m, y = 0, z = 0

(x+ 1, y, z + [m−y−1
2 ]), x = 0, 0 < y < m, z = 0

(x, y + 1, z), x = 0, y = 0, z = 0

Then, based on the numbering of states and transition schemes, the



26 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

matrix of transition probabilities P is constructed. This matrix has
a submatrix Q, which describes the process before it leaves the set of
non-return states. This submatrix is needed to compose the fundamental
matrix N of the absorbing chain N = (I −Q)−1, where I is the identity
matrix. The sum of the elements of the N matrix in the line corresponding
to the initial state is the mean time to absorption (overflow) if the process
started from zero (x = 0 and y = 0) [30].

2. The simulation model

To confirm the results of mathematical modeling, simulation modeling
was used (Monte Carlo methods). Parameters of the simulation model are
sizes of deques (x, y), the distance between the tail of the first deque and
the head of the second one (z) and probabilities of operations (p1, p2, p12,
q1, q2, q12, pq12, pq21, r).

To determine which operation to execute, an interval from 0 to 1 must be
divided according to the probabilities. Next, the random number generator
(standard gcc generator was used) generates a sequence of operations.
Deques move one after another in a circle according to this sequence
(Figure 1) while z ̸= −1 or x+ y + z ̸= m+ 1. The result of the model is
the number of steps to memory overflow.

3. Some Examples of Numerical Analysis

To analyze the described in the paper “One after another” method
of representation of work-stealing deques, it needs to be compared with the
already analyzed method, namely the sequential cyclic method, where the
shared memory is divided in half [26]. To do this, a series of experiments
were conducted based on several sets of input data.

The results of some calculations with mathematical models are given in
Table 1, Table 2, and Table 3 (these results were confirmed by simulation
models). The analytical solution for this problem was not obtained, thus
calculations must be performed for the specific memory sizes (value m).
Sizes m = 4, 6, 8, 10, 100 are given as an example.

In Table 1 input data are the theoretical case of equal probabilities.
In Table 2 and Table 3 probability estimates (in frequency) are taken. They
occur when the system is engaged in solving the following problems: matrix
multiplication, knapsack problem. The frequencies were obtained as a result
of experiments with the work-stealing load balancer [27]. For these input
data, the additional calculations were carried out with simulation models,
where the memory size m = 100 (Table 1, Table 2, and Table 3).



Control of two work-stealing deques 27

Table 1. The average time to memory overflow (p1 = p2 =
p12 = q1 = q2 = q12 = pq12 = pq21 = 0.11)

m partition in half one after another
4 13.759 13.219
6 21.208 22.872
8 31.888 33.595
10 45.508 45.143
100 3158.0 3297.0

Table 2. The average time to memory overflow, matrix
multiplication (p1 = 0.071, p2 = 0.108, p12 = 0.014, q1 = 0.071,
q2 = 0.108, q12 = 0.014, pq12 = 0.013, pq21 = 0.013)

m partition in half one after another
4 37.050 38.932
6 57.243 65.721
8 88.169 88.458
10 126.268 119.246
100 8878.300 9320.350

Table 3. Comparison of runtime to overflow, knapsack problem
(p1 = 0.025, p2 = 0.05, p12 = 0.002, q1 = 0.025, q2 = 0.05,
q12 = 0.002, pq12 = 0.002, pq21 = 0.002)

m partition in half one after another
4 101.310 112.718
6 156.527 187.609
8 242.151 241.730
10 346.735 329.609
100 24334.267 26129.358

Runtime of the system based on “One after another” method is
compared with the runtime of the system, where shared memory is split in
advance between deques so that each deque has m/2 units of memory. The
used work-stealing strategy is stealing of one element.

Analyzing the results, one can make the following conclusion: for some
memory sizes, the system built on the basis of the proposed method works
longer. In an example, for the matrix multiplication problem, the difference



28 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

in the system runtime until overflow (where the memory of size m = 6 is
used) is 8.5. This means the system runs by 8 operations longer if deques
are located in the memory one after another in a circle. For the knapsack
problem, it runs by 31 operations longer.

With the increase of memory size, the difference in runtimes of the
systems also increases. In an example, for the memory size of m = 100
and for the matrix multiplication problem the system will run by 442
operations longer if deques are located one after another in a circle. For the
knapsack problem, it runs by 1795 operations longer.

4. Conclusion

Mathematical and simulation models of the process of work with
two work-stealing deques moving one after another in a circle were built.
The numerical analysis of this method was carried out. Theoretical and
practical input data were used in the experiments.

The mathematical model was built as a random walk inside an integer
pyramid with reflecting and absorbing screens. The algorithm and the
program for calculating the mean runtime of the system to overflow have
been developed. The simulation model of the process was built. The
described method has been patented [14].

For each task, 10 million simulation experiments were conducted, for a
smaller number leads to discrepancies with the results of mathematical
modeling. This number of experiments can be explained by the large
variance of the random variable (the number of steps to overflow), but it is
worth noting that in these problems it does not accurately determine the
quality of the experiments. Since the meantime of work is maximized, any
deviations from the mean value upward are desirable.

It can also be noted that the paper does not give the conventional
formulation of the optimization problem. Here, the optimality criterion
cannot be written analytically, and it is calculated algorithmically. It will
not be possible to solve the system of differential equations in this problem,
but in some other problems, such systems were solved numerically [32].

Proposed models, algorithms and programs for analyzing “One after
another” method of work-stealing deques representation can be used in the
development of operating systems, schedulers, memory managers and other
system programs.

Using the built models one can choose (knowing probabilistic charac-
teristics of deques in advance) the best method of representation of the
data structures, for example, from the two methods: classic sequential
cyclic method or “One after another” method.

In [17] and [31] the mathematical models of optimal control of one
and two stacks in two-level memory were proposed, in [32]—models



Control of two work-stealing deques 29

of the optimal control of FIFO-queues. In practice, various architectures
have hardware implemented a number of methods for managing stacks
in two-level memory as an alternative to the classic cache memory [33].
In the paper, we have discussed the models of optimal control of two
deques in single-level memory, but in the future, it will be important to
build the models of optimal control of deques in two-level memory.

As our experience in software implementation has shown, the correct
usage of cache memory in the parallel work-stealing load balancers is
of great importance. For example, in the implementation proposed in [29],
it was possible to reduce the overhead of the scheduler by 2.5 times and
misses at the last cache level by 30% in comparison with the work-stealing
schedulers by Intel TBB and Intel/MIT Cilk.

Therefore it is necessary to research and implement the optimal
hardware implementations of deques, rather than trying to adapt to the
universal implementations of cache memory.

References
[1] R.D. Blumofe, C.E. Leiserson. “Scheduling multithreaded computations by

work stealing”, Journal of the ACM, 5:46 (1999), pp. 720–748. [DOI]↑20

[2] M. Herlihy, N. Shavit. The art of multiprocessor programming, Elsevier,
2008, 536 pp. [URL]↑20

[3] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall,
Y. Zhou. “Cilk: an efficient multithreaded runtime system”, Journal of
Parallel and Distributed Computing, 37:1 (1996), pp. 55–69. [DOI]↑20

[4] D. Leijen, W. Schulte, S. Burckhardt. “The design of a task parallel library”,
ACM SIGPLAN, 44:10 (2009), pp. 227–242. [DOI]↑20

[5] O. Tardieu, H. Wang, H. Lin. “A work-stealing scheduler for X10’s task
parallelism with suspension”, ACM SIGPLAN, 47:8 (2012), pp. 267–276. [DOI]

↑20

[6] G. Varisteas. Effective cooperative scheduling of task-parallel applications on
multiprogrammed parallel architectures, Doctoral Thesis in Information
and Communication Technology, Royal institute of Technology, KTH,
Stockholm, Sweden, 2015. [URL]↑20

[7] D. Knuth. The art of multiprocessor programming. V. 1, Addison-Wesley
Professional, 1997. ↑20

[8] D. Hendler, N. Shavit. “Non-blocking steal-half work queues”, Proceedings of
the twenty-first annual symposium on Principles of distributed computing,
PODC ’02, 2002, pp. 280–289. [DOI]↑20

[9] A.V. Sokolov, A.V. Drac. “The linked list representation of n LIFO-stacks
and/or FIFO-queues in the single-level memory”, Information Processing
Letters, 113:19–21 (2013), pp. 832–835. [DOI]↑20,21

[10] Ye.A. Aksenova, A.A. Lazutina, A.V. Sokolov. “About the optimal methods

https://doi.org/10.1145/324133.324234
https://www.e-reading.club/bookreader.php/134637/Herlihy,_Shavit_-_The_art_of_multiprocessor_programming.pdf
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1145/1639949.1640106
https://doi.org/10.1145/2370036.2145850
http://kth.diva-portal.org/smash/get/diva2:861129/FULLTEXT01.pdf
https://doi.org/10.1145/571825.571876
https://doi.org/10.1016/j.ipl.2013.07.021


30 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

of representation of dynamic data structures”, Obozreniye prikladnoy i
promyshlennoy matematiki, 10:2 (2003), pp. 375–376 (in Russian). ↑20,21

[11] D. Hendler, Y. Lev, M. Moir, N. Shavit. “A dynamic-sized nonblocking work
stealing deque”, Distributed Computing, 18:3 (2006), pp. 189–207. [DOI]↑20

[12] M. Mitzenmacher. “Analyses of load stealing models based on differential
equations”, Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’98, 1998, pp. 212–221. [DOI]↑20

[13] A.V. Kalachev. Multicore Architectures, BINOM, Moscow, 2014 (Russian),
247 pp. ↑20

[14] E.A. Barkovsky, A.V. Sokolov. “A Way to Manage the Memory of a
Computer System. No. 2647627”, Bulletin no. 8, publ. 16.03.2018 (Russian).
↑21,28

[15] A.V. Sokolov. Mathematical Models and Algorithms of the Optimal Control
of Dynamic Data Structures, Petrozavodsk, PetrSU, 2002 (Russian). ↑21

[16] E.A. Barkovsky, A.V. Sokolov. “Management Model for Two Parallel FIFO
Queues Moving One after Another in Shared Memory”, Information and
Control Systems, 2016, no.1, pp. 65–73 (Russian). [DOI]↑21

[17] E.A. Aksenova, A.A. Lazutina, A.V. Sokolov. “Study of a non-Markovian
stack management model in a two-level memory”, Programming and
Computer Software, 30:1 (2004), pp. 25–33. [DOI]↑21,28

[18] E.A. Aksenova, A.V. Sokolov. “Optimal implementation of two FIFO-queues
in single-level memory”, Applied Mathematics, 2:10 (2011), pp. 1297–1302.
[DOI]↑21

[19] Ye.A. Barkovskiy, A.A. Lazutina, A.V. Sokolov. “The model of control of
two work-stealing deques moving one after another in a shared memory”,
Obozreniye prikladnoy i promyshlennoy matematiki, 25:1 (2018), pp. 77
(in Russian). ↑21

[20] D. Chase, Y. Lev. “Dynamic circular work-stealing deque”, Proceedings of
the seventeenth annual ACM symposium on Parallelism in algorithms and
architectures, SPAA ’05, 2005, pp. 21–28. [DOI]↑21

[21] Ye.A. Barkovskiy, A.V. Sokolov. “Probabilistic model for the problem of opti-
mal control of work-stealing deques with various strategies of work-stealing”,
Veroyatnostnyye metody v diskretnoy matematike, IX Mezhdunarodnaya
Petrozavodskaya konferentsiya, 2016, pp. 11–13 (in Russian). [RSCI]↑21

[22] A.V. Sokolov, E.A. Barkovsky. “The mathematical model and the problem of
optimal partitioning of shared memory for work-stealing deques”, PaCT 2015:
Parallel Computing Technologies, Lecture Notes in Computer Science,
vol. 9251, 2015, pp. 102–106. [DOI]↑21

[23] E.A. Aksenova, A.V. Sokolov. “Modeling of the memory management
process for dynamic work-stealing schedulers”, 2017 Ivannikov ISPRAS
Open Conference (ISPRAS), 2018, pp. 12–15. [URL] [DOI]↑21

[24] S. Mattheis, T. Schuele, A. Raabe, T. Henties, U. Gleim. “Work stealing
strategies for parallel stream processing in soft real-time systems”, ARCS 2012:

https://doi.org/10.1007/s00446-005-0144-5
https://doi.org/10.1145/277651.277687
https://doi.org/10.15217/issn1684-8853.2016.1.65
https://doi.org/10.1023/B:PACS.0000013438.25368.b4
https://doi.org/10.4236/am.2011.210180
https://doi.org/10.1145/1073970.1073974
https://elibrary.ru/item.asp?id=28411582
https://doi.org/10.1007/978-3-319-21909-7_11
http://www.ispras.ru/conf/2017/pdf/Sokolov.pdf
https://doi.org/10.1109/ISPRAS.2017.00009


Control of two work-stealing deques 31

Architecture of Computing Systems – ARCS 2012, Lecture Notes in Computer
Science, vol. 7179, 2002, pp. 172–183. [DOI]↑21

[25] A.I. Adamovich, A.V. Klimov. “How to create deterministic by construction
parallel programs? Problem statement and survey of related works”, Program
Systems: Theory and Applications, 8:4 (2017), pp. 221–244 (in Russian).
[DOI]↑21

[26] Ye.A. Barkovskiy, R.I. Kuchumov, A.V. Sokolov. “Optimal control of two
deques in shared memory with various work-stealing strategies”, Program
Systems: Theory and Applications, 8:1 (2017), pp. 83–103 (in Russian). [DOI]

↑21,22,26

[27] R.I. Kuchumov. “Implementation and analysis of the work-stealing task
scheduler”, Stokhasticheskaya optimizatsiya v informatike, 12:1 (2016),
pp. 20–39 (in Russian). [RSCI]↑21,26

[28] Ye.A. Barkovskiy. “Implementation of the memory manager in the work-
stealing scheduler”, Stokhasticheskaya optimizatsiya v informatike, 13:1
(2017), pp. 56–65 (in Russian). [RSCI]↑22

[29] R. Kuchumov, A. Sokolov, V. Korkhov. “Staccato: cache-aware work-stealing
task scheduler for shared-memory systems”, ICCSA 2018: Computational
Science and Its Applications – ICCSA 2018, Lecture Notes in Computer
Science, vol. 10963, 2018, pp. 91–102. [DOI]↑22,29

[30] J.G. Kemeny, J.L. Snell. Finite Markov chains, Van Nostrand, 1969. [MathSciNet]↑26

[31] E. A. Aksenova, A. V. Sokolov. “Optimal management of two parallel stacks
in two-level memory”, Discrete Math. Appl., 17:1 (2007), pp. 47–55. [DOI] [RSCI]

↑28

[32] A.V. Sokolov. “About the optimal caching of FIFO queues”, Stokhasticheskaya
optimizatsiya v informatike, 9:2 (2013), pp. 108–123 (in Russian). [RSCI]↑28

[33] P.J. Koopman. Stack computers: the new wave, Ellis Horwood Ltd., 1989,
502 pp. ↑29

Received 28.10.2018
Revised 20.11.2018
Published 15.02.2019

Recommended by p.h.d. Sergey A. Amelkin

Sample citation of this publication:
Eugene Barkovsky, Anna Lazutina, Andrew Sokolov. “The Optimal Control

of Two Work-Stealing Deques, Moving One After Another in a Shared Memory”.
Program Systems: Theory and Applications, 2019, 10:1(40), pp. 19–32.
DOI: 10.25209/2079-3316-2019-10-1-19-32
URL: http://psta.psiras.ru/read/psta2019_1_19-32.pdf

The same article in Russian: DOI: 10.25209/2079-3316-2019-10-1-3-17

https://doi.org/10.1007/978-3-642-28293-5_15
https://doi.org/10.25209/2079-3316-2017-8-4-221-244
https://doi.org/10.25209/2079-3316-2017-8-1-83-103
https://elibrary.ru/item.asp?id=25987084
https://elibrary.ru/item.asp?id=30796909
https://doi.org/10.1007/978-3-319-95171-3_8
http://www.ams.org/mathscinet-getitem?mr=115196
https://doi.org/10.1515/DMA.2007.006
https://elibrary.ru/item.asp?id=26780444
https://elibrary.ru/item.asp?id=20960447
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2019-10-1-19-32
http://psta.psiras.ru/read/psta2019_1_19-32.pdf
http://psta.psiras.ru/read/psta2019_1_3-17.pdf
http://doi.org/10.25209/2079-3316-2019-10-1-3-17


32 Eugene Barkovsky, Anna Lazutina, Andrew Sokolov

About the authors:

Eugene Aleksandrovich Barkovsky
Graduated from the Petrozavodsk State University in 2012.
In 2015, graduated from the graduate school of the Institute
of Applied Mathematical Research of the Karelian Research
Center of the Russian Academy of Sciences (laboratory of
information computer technologies). Author of 17 scientific
publications on parallel dynamic data structures. Research
interests: problems of optimal control of parallel dynamic
data structures, work-stealing balancers.

iD: 0000-0001-9041-6453

e-mail: barkevgen@gmail.com

Anna Aleksandrovna Lazutina
Chief specialist of the Information Resources Department
of the Informatization Department of the Moscow State
University. Graduated from Petrozavodsk State University in
2004, Ph.D. (2006). Author of publications about optimal
stack control problems. Research interests: applied mathe-
matics and computer science, optimal control of dynamic
data structures, controlled random walks, Markov chains.

iD: 0000-0001-7569-114X

e-mail: alazutina@yandex.ru

Andrew Vladimirovich Sokolov
Professor, a leading researcher in the Institute of Applied
Mathematical Research of the Karelian Research Center of
the Russian Academy of Sciences. Graduated from Leningrad
University in 1974, Ph.D. (2006). The author of more than
100 scientific publications. Research interests: optimal control
of dynamic data structures, optimal dynamic distribution of
non-paged memory, controlled random walks, Markov chains,
parallel computing, dynamic work-stealing balancers.

iD: 0000-0003-3787-7765

e-mail: sokavs@gmail.com

Эта же статья по-русски: DOI: 10.25209/2079-3316-2019-10-1-3-17

https://orcid.org/0000-0001-9041-6453
mailto:barkevgen@gmail.com
https://orcid.org/0000-0001-7569-114X
mailto:alazutina@yandex.ru
https://orcid.org/0000-0003-3787-7765
mailto:sokavs@gmail.com
http://psta.psiras.ru/read/psta2019_1_3-17.pdf
http://doi.org/10.25209/2079-3316-2019-10-1-3-17

	Introduction
	1. The Mathematical Model
	2. The simulation model
	3. Some Examples of Numerical Analysis
	4. Conclusion
	References

