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Abstract. A hybrid method of global optimization NNAICM-PSO is presented.
It uses neural network approximation of inverse mappings of objective function
values to coordinates combined with particle swarm optimization to find the
global minimum of a continuous objective function of multiple variables with
bound constraints. The objective function is viewed as a black box.

The method employs groups of moving probe points attracted by goals like
in particle swarm optimization. One of the possible goals is determined via
mapping of decreased objective function values to coordinates by modified Dual
Generalized Regression Neural Networks constructed from probe points.

The parameters of the search are controlled by an evolutionary algorithm.
The algorithm forms a population of evolving rules each containing a tuple of
parameter values. There are two measures of fitness: short-term (charm) and
long-term (merit). Charm is used to select rules for reproduction and application.
Merit determines survival of an individual. This two-fold system preserves
potentially useful individuals from extinction due to short-term situation changes.

Test problems of 100 variables were solved. The results indicate that
evolutionary control is better than random variation of parameters for NNAICM-
PSO. With some problems, when rule bases are reused, error progressively
decreases in subsequent runs, which means that the method adapts to the
problem.
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Introduction

Global optimization of multivariate objective functions (OFs) viewed
as black boxes with minimal restrictions on the function’s properties is an
important problem because it promises a universal way to solve many
practical problems of engineering, machine learning, etc.

Nowadays, nature-inspired computing is actively developing. It
solves computational problems through imitation of natural phenomena.
In optimization this approach gave birth to evolutionary algorithms
(evolutionary programming, evolutionary strategies, genetic algorithms,
differential evolution) [1,2] and a lot of other optimization algorithms
based on various physical, chemical and biological phenomena [3], such as
simulated annealing and particle swarm optimization (PSO).

Although for absolutely unrestricted OFs efficiency of all methods
averaged over all possible problems is equivalent [4], methods that work
with more restricted practically possible problems are of great interest.
These methods must make the best use of the information they obtain by
evaluating an OF at probe points. Long-term preservation of information
relevant for global minimum search is an important step towards this goal.

Proper parameter setting is crucial for optimization algorithm efficiency.
Optimal choice of parameters is an optimization problem in itself, where
some measure of quality dependent on parameters must be optimized.
Parameters may be set manually or automatically before the start of an
algorithm (the parameter tuning problem) or during its execution (the
parameter control problem) [5].

Manual parameter setting requires a good understanding of how
parameters affect an algorithm in various situations, which in turn entails
expert knowledge and experience. The data on effects and relations of
parameters gathered for one problem may be inapplicable to another.
Experimental exploration of parameters is difficult because the problem at
hand must be solved multiple times with different parameters, so resource
requirements increase manyfold.

The optimal values of parameters may be different not only for different
problems but also for different stages of a search [6, p. 1]. For example,
gradual reduction of the inertia weight or increasing of the neighbourhood
size was suggested for PSO [7, pp. 36, 40]. A parameter control mechanism
can actively interact with the search process and learn. As a result, the
problem of parameter control is particularly important.

The problem of automatic parameter setting attracted a lot of attention
in evolutionary optimization. A review of various approaches is presented
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in [5, 6]. The range of methods is diverse: from random variation
and deterministic heuristics to controllers based on fuzzy logic [8,9],
predefined heuristic rules [10], reinforcement learning [11–13] or an
auxiliary meta-evolutionary algorithm [12]. In [5] parameter setting
methods are classified into deterministic (no feedback from the algorithm
being configured, parameters are set according to a predetermined schedule),
adaptive (feedback from the algorithm is taken into account), self-adaptive
(parameter values are encoded in the genome along with the solutions and
evolve together).

Neural network approximation of inverse coordinate mappings
(NNAICM) is a heuristic method for finding the global minimum of a
continuous multivariate “black box” objective function with simple bounds
on the variables. The method is described in detail in [14,15]. It was
included in the hybrid heuristic parallel method [16], where fixed heuristics
without learning were employed to control its parameters.

Here we present a hybrid global optimization method based on
NNAICM and PSO with evolutionary parameter control. NNAICM helps
to find the goal to which a point (a particle in PSO terms) moving by
the rules of PSO is attracted. An evolutionary algorithm controls the
parameters of NNAICM at the same time.

The parameter control task in this work is special in that the parameters
pertain to individual agents (particles), not to the algorithm as a whole.
Hence, at each moment there may be multiple optimal parameter sets for
different agents.

A numerical global optimization problem is stated as follows. Consider
an objective function Φ(x) defined on a bounded set Ω, where

Ω =
{︁
x : Li ≤ xi ≤ Ui, i = 1, D

}︁
⊂ RD.(1)

Find an approximate minimum of the function Φ∗
min and a point x∗

min

where it’s attained:

Φmin = min
x∈Ω

Φ(x) = Φ(xmin),(2)

Φ∗
min = Φ(x∗

min) ≤ Φmin + εΦ,(3)

where εΦ > 0 is a tolerance that specifies the required accuracy of the
solution.

1. Neural Network Approximation of Inverse Coordinate Mappings

NNAICM is based on iterative decreasing of OF values and mapping
them to coordinates by a Generalized Regression Neural Network (GRNN).
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The GRNN is trained on samples ⟨Φ(x),x⟩, which consist of an OF value
and the corresponding coordinates. Therefore, the GRNN is said to
approximate an inverse coordinate mapping. One-step learning is an
important advantage of GRNN — it may be constructed from samples in
one step.

The basic NNAICM algorithm is as follows:
(1) Initialization. Set k := 1. Fill P [k] — a starting set of probe points

from the search space, which may be chosen at random.
(2) Train the network GRNN[k] to map OF values to coordinates on the

samples
{︁
⟨Φ(x),x⟩ : x ∈ P [k]

}︁
.

(3) Take the point x
[k]
min with the minimum OF value from the set P [k].

Lower the value by some decrement ε
[k]
f and map it to coordinates

by the GRNN: x∗[k]
min = GRNN[k]

(︂
Φ(x

[k]
min)− ε

[k]
f , sφ

)︂
, where sφ is

an approximation smoothing parameter.
(4) The new point is included in the set P [k+1] if its OF value is less

than the current minimum:

P [k+1] =

{︄
P [k] ∪R[k] ∪

{︂
x
∗[k]
min

}︂
if Φ(x∗[k]

min) < Φ(x
[k]
min),

P [k] ∪R[k] otherwise,
(4)

where R[k] is a set of random probe points.
(5) k := k + 1.
(6) Repeat steps 2–5 until stop conditions are satisfied.

These steps for the function y = x2 are shown in Figure 1.
In Figure 1 we made a GRNN approximation of an inverse coordinate

mapping based on probe points P1–P5. Then we used it to obtain a new
point P6 and refined the approximation taking P6 into account.

Practical application of the method described above meets with some
difficulties. Its efficiency quickly diminishes when the number of variables
goes up. It can get stuck because each iteration starts with a single (best)
probe point and random generation is not an effective source of new
probe points. To conquer this problem, NNAICM was included in the
hybrid heuristic parallel method [16] in which multiple optimization agents
search for the global minimum. The agents iteratively execute a set of
optimization algorithms (search tools), which share a common set of probe
points.

When an OF has a number of minima close by value, the inverse
mapping line can miss all of them by far. To overcome this issue, a special
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Figure 1. Principle of the basic NNAICM algorithm

modification of GRNN was proposed — Dual GRNN (DGRNN) [17].
Besides the input φ for OF values it has an additional input xf taking
coordinates of a point — a search focus. A training sample of DGRNN
consists of an input exemplar φi and an output exemplar Xi. The farther
is the memorized exemplar from the focus, the lower is its activation
and thus its contribution to the output, so exemplars near the focus
have an advantage. DGRNN has an additional smoothing parameter
sx, which is an analog of sφ for the second input. The first hidden layer
of DGRNN measures similarity between input values and exemplars.
Similarity coefficients are multiplied for each pair of an input and an
output exemplar in the second layer. The resulting coefficients are used for
weighted summation of output exemplars in the third and fourth layers.

In Figure 2 the DGRNN schematic for two pairs of exemplars is shown.
The connection weights not equal to 1 are printed nearby.

Finally, control of the εf , sφ, sx parameters and the search focus poses
a problem. In [16] DGRNN wasn’t used and fixed heuristics without
learning were employed to control εf and sφ. The decrement of the OF
value was computed as ε

[k]
f = 3(Φ

[k]
max − Φ

[k]
min)/Np, where Φ

[k]
max and Φ

[k]
min
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Figure 2. DGRNN schematic for two pairs of exemplars

are the maximum and the minimum OF values over the probe point set at
the kth iteration, Np is the number of the probe points. To simplify setting
of sφ, the distance function of the first GRNN layer was changed to:

dist[k] (φ1, φ2) =
|φ1 − φ2|

Φ
[k]
max − Φ

[k]
min

.(5)

This makes the distances and sφ relative quantities.

2. Hybrid NNAICM-PSO Method with Evolutionary Parameter
Control

To improve its efficiency, NNAICM was combined with PSO and
evolutionary parameter control.

Base points (BPs) are counterparts of PSO particles in the discussed
method. The number of BPs Nb is a parameter. Each BP at the kth
iteration has the position b[k], the velocity v[k] and the private goal g[k]

l .
Initially,

b[1] = g
[1]
l = U [L,U] ,(6)

v[1] = U [−kv1 (U− L) , kv1 (U− L)] ,(7)

where L = (L1, . . . , LD), U = (U1, . . . , UD) are the bounds on the search
space; U [l,u] is a vector of numbers uniformly distributed on the set{︁
x : li ≤ xi ≤ ui, i = 1, D

}︁
; kv1 is a parameter.

BPs are arranged in disjoint groups by Sbg points. Every group has
the group goal g[k]

g that is selected each iteration by the lowest OF value
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from the list: g[k−1]
g , private goals of the group. A group goal may be

improved by local search and trajectory extrapolation as explained below.
To prevent search stagnation, inactive BPs are restarted every Irest

iterations by random reinitialization described above. A BP is restarted at
the kth iteration if all conditions are satisfied:

∥v[k]∥ < vmin ,(8)
Φmin,b (k − Irest)− Φmin,b (k) < εbIrest ,(9)

where Φmin,b (k) = mini=1,k Φ(b
[i]) is the minimum OF value over all

positions of the BP from the first to the kth iteration; vmin , εb, Irest are
parameters of the algorithm.

A variant of DGRNN, QDGRNN (Quantile DGRNN), was created for
NNAICM-PSO. To limit the parameter ranges, differences between input
and exemplar OF values φ− φi, which are computed inside QDGRNN, are
divided by pf1 sample quantile of the absolute differences when negative
and pf2 quantile when nonnegative. The new parameters pf1, pf2 of
the neural network replace sφ. The OF decrement εf is another input
parameter. It’s relative too because it’s subtracted after the division.
Pointwise distances ∥xf −Xi∥ are divided by their own px sample quantile,
which replaces sx. Thus the mapping performed by QDGRNN is as follows:

x∗ =

∑︁Ne

i=1 C
(φx)
i Xi∑︁Ne

i=1 C
(φx)
i

,(10)

C
(φx)
i = C

(φ)
i · C(x)

i ,(11)

C
(φ)
i = exp

⎛⎝ln 0.5

(︄
φ− φi

Q
(︁⟨︁
|φ− φj | : j = 1, Ne

⟩︁
, pf (φ,φi)

)︁ − εf

)︄2
⎞⎠ ,

(12)

pf (φ,φi) =

{︃
pf1 if φ < φi,
pf2 if φ ≥ φi,

(13)

C
(x)
i = exp

⎛⎝ln 0.5

(︄
∥xf −Xi∥

Q
(︁⟨︁
∥xf −Xj∥ : j = 1, Ne

⟩︁
, px
)︁)︄2

⎞⎠ ,(14)

(15)

where x∗ is the output vector; φ is the input OF value; xf is the input
focus value; C(φ)

i , C(x)
i are the similarity coefficients between the inputs

and the corresponding exemplars φi, Xi; C
(φx)
i is the merged similarity
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coefficient of the ith pair of exemplars; Ne is the number of exemplar pairs;
Q (A, p) is the p quantile estimation for the sample A.

Parameter control is based on evolutionary principles. The parameters
are set by rules, which crossover, mutation and selection operators are
applied to. The population consists of Nr rules. A rule contains application
conditions (not used in this work), measures of fitness and a tuple of
parameters (genotype): εf , pf1, pf2, px, αb, Pr.

Fitness of each rule is measured by charm and merit. Charm is a
short-term measure and regulates selection of rules for reproduction and
application. Merit is a long-term measure. It’s based on an exponential
moving average of charm and determines survival of an individual.

This two-fold system preserves potentially useful individuals from
extinction due to short-term situation changes. While currently efficient
rules are actively reproducing and being applied, rules that became
inefficient recently are “sleeping” waiting for an opportunity to become
efficient again.

Iterations of the algorithm are divided into big, where application,
evaluation and evolution of all rules take place, and small, where only some
rules selected by charm are applied. The first and every Ibigth iteration are
big.

The population is initialized randomly or loaded from a saved rule
base.

At each big iteration all rules are applied to the predefined number Ntop

of BPs. At the ith big iteration the BPs with numbers from 1+(i−1) ·Ntop

to i ·Ntop are selected. The count continues from the start when it goes over
the end. For every unselected BP a randomly chosen rule is applied such
that the selection probability is proportional to krsel , where ksel ∈ (0, 1) is
a parameter and r is the zero-based rank of the rule in descending order of
charm. Hence, all rules are periodically evaluated for various BPs, but
rules with greater charm are applied more frequently.

Application of a rule at the BP b consists of the following steps:
(1) First, an attached set Pb of probe points is formed:

Pb =
{︁
b+ i · p : i = −Ns, Ns,p ∈ Pr

}︁
,(16)

where Pr is the pattern of the rule; p is a pattern vector ; Ns is an
algorithm parameter.

(2) QDGRNN is trained to map OF values to coordinates on the
attached set, then it maps BP’s OF value:

b∗ = QDGRNN(Φ(b),b, εf , pf1, pf2, px) .(17)
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BP’s position is the focus of QDGRNN and εf , pf1, pf2, px are
set by the rule. Let us call the point b̆ = b+ αb (b

∗ − b) the rule
candidate, where the parameter αb is set by the rule. The difference
ρ = Φ(b)− Φ(b̆) is the candidate progress.
Points from the attached set are possible solutions too.
After application of rules the private goal g[k]

l for each BP is determined.
At each iteration it’s chosen by the minimum OF value from the list:
g
[k−1]
l , the current rule candidates for the BP, b[k]. Finally, the BP moves

towards the goal according to the PSO-like rule:

v[k] = ωiv
[k−1] + ωlR1 ⊗

(︂
g
[k]
l − b[k]

)︂
+ ωgR2 ⊗

(︂
g[k]
g − b[k]

)︂
,(18)

b[k+1] = b[k] + v[k],(19)

where k is the iteration number; ωi, ωl, ωg are parameters of the algorithm;
g
[k]
l is the private goal of the BP; g[k]

g is the group goal; R1, R2 are vectors
of random numbers uniformly distributed between 0 and 1; ⊗ denotes
componentwise vector product.

Rules are evaluated by comparison of their candidate progress for the
selected BPs at big iterations. A single first place (maximum progress)
means higher charm than any number of second places, etc. Moreover, a
rule that produced only negative progresses has lower charm than a rule
that produced at least one positive progress. To achieve this, the vector of
scores (θ1, . . . , θ2Nr ) is associated with each rule at each big iteration:

θi =

Ntop∑︂
j=1

δsji, si =

{︃
ri if ρi ≥ 0,
ri +Nr if ρi < 0,

(20)

where Ntop is the number of selected BPs (an algorithm parameter); δij is
Kronecker delta; ρi is the progress of the rule candidate for the ith selected
BP; ri is the zero-based rank of ρi in descending order for the ith selected
BP.

Then rules are sorted in descending lexicographical order of their score
vectors. Let r be the zero-based rank of a rule in this list, then the rule’s
charm

charm [k+1] = krcd ,(21)

where kcd ∈ (0, 1) is an algorithm parameter.
Merit is calculated as follows:

merit [k+1] = merit [k] · kamd + charm [k] + ppe [k],(22)
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where kmd ∈ (0, 1) is a parameter; a is the age of the rule in iterations
(starts from zero and grows by one at the end of each iteration); ppe [k] is
the ratio of the average candidate progress of the rule to the maximum
average progress over all rules.

New rules are created by random generation, mutation and crossover.
The probability of a rule being selected as a parent is proportional to its
charm.

The procedure of random rule generation is as follows. Each scalar rule
parameter β is set to a random number that is uniformly distributed
on
[︂
l
(β)
rand , u

(β)
rand

]︂
. The number of pattern vectors is chosen at random

from 1 to D. To produce a pattern vector, uniformly distributed random
numbers p01, . . . , p0D ∈ [−1, 1] are generated. Then the components of
the pattern vector are pi = kmxp minj=1,D

(︂
Uj−Lj

|p0j |

)︂
p0i, where kmxp is a

coefficient equal to kmxp1 for the proportion kmxpf of the total number of
random rules and kmxp2 for others. Therefore, the pattern vector has at
least one component equal in magnitude to kmxp (Uj − Lj), and others are
less than or equal in magnitude. By using two values of kmxp we allow for
both small and big pattern vectors to be generated.

Mutation produces a new rule by random perturbation of a parent
rule’s parameters. Akin to evolutionary programming, in the discussed
algorithm mutation creates a new individual, so it’s asexual reproduction.
Mutation sets a scalar parameter of an offspring to a random value having
a truncated normal distribution

βo ∼ N
l
(β)
mut ,+∞

(︂
βp, σ

(β)
mut

)︂
,(23)

where βo, βp are the values of the parameter of the offspring and of the
parent respectively; Nl,u (µ, σ) is a truncated normal distribution with the
mean µ and the standard deviation σ on [l, u]; l(β)mut , σ

(β)
mut are algorithm

parameters defined independently for each rule parameter β.
Pattern vectors are distributed normally:

po,ij ∼ N
(︂
pp,ij , σ

(p)
mut (Uj − Lj)

)︂
,(24)

where po,ij , pp,ij are the jth components of the ith pattern vectors of the
offspring and of the parent respectively; N (µ, σ) is a normal distribution
with the mean µ and the standard deviation σ; σ(p)

mut is an algorithm
parameter.

Rules produced by mutation are tested for viability. An offspring is
eliminated if any of its parameters pf1, pf2, px is less than or equal to zero.



Global optimization via neural network approximation... 13

Crossover of scalar parameters is defined by the formula βo =
uβp1 + (1 − u)βp2, where βo, βp1, βp2 are the parameter values of the
offspring, first and second parents respectively, u ∈ [0, 1] is a random
uniformly distributed coefficient determined independently for each
parameter. Crossover of two pattern vectors is performed as componentwise
scalar crossover described above. The vectors are selected at random, one
from the first parent and one from the second. The offspring pattern size is
a random variable following the binomial distribution B (n, 0.5), where n is
the sum of the pattern sizes of the parents.

A new population of Nr rules is formed at each big iteration. First,
Nnr = ⌊(1− kelt)Nr⌋ new rules are created, among them ⌊krandNnr⌋
random rules, ⌊kcrosNnr⌋ crossover rules and ⌊kmutNnr⌋ mutation rules.
Pattern vectors with norms less than εpat are removed from the new rules.
Next, old rules are sorted in descending order of merit. First ⌊keltNr⌋ rules
from this list (the elite) are put into the new population. All new rules are
checked for correctness. A rule is correct, if pf1, pf2, px are positive and
the pattern is not empty. Incorrect rules are eliminated.

Local search and group goal trajectory extrapolation supplement the
main algorithm.

Local search is performed at each group goal every Iloc iterations. In
this work we used a modified BFGS [18, p. 136] algorithm. The algorithm
stops after 100 iterations or when the norm of the gradient falls below
10−12. The last inverse Hessian approximation Hk computed by BFGS is
saved and restored when local search is run next time. This memorized
value becomes obsolete if the group goal shifts a lot between runs of local
search. A modification of the algorithm done in this work allows for soft
resetting of Hk in the following way: if the solution is not improved at the
current iteration, then the next inverse Hessian approximation Hk+1 is
khHk + (1− kh)E, where kh ∈ [0, 1) is an algorithm parameter (equaled
0.75 in the experiments here), E is the identity matrix. The golden section
method of line search is used that stops after 10 iterations or when Wolfe
conditions with the coefficients c1 = 10−4, c2 = 0.9 are satisfied [18, p. 33].
The line search restarts with the interval shortened 10 times if the OF
value at the current point is greater than at the starting point.

The trajectory of every group goal is extrapolated each iteration.
Let g

∗[k]
g be the group goal at the kth iteration, G[k]

t =
{︂
g
[k1]
g , . . . ,g

[kn]
g

}︂
be the set of its last n ≤ Next best positions such that k > k1 > · · ·
and Φ(g

[k1]
g ) < · · · < Φ(g

[kn]
g ), where Next is a parameter. Let Pext ={︂

g
∗[k]
g +

(︂
g
∗[k]
g − g

[ki]
g

)︂
: i = 1, n

}︂
. Now the new group goal g[k]

g equals
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arg minx∈{g∗
g [k]}∪Pext

Φ(x).

The search continues until the stopping conditions are satisfied. They’re
checked each Istop iterations. The algorithm stops when any of the listed
conditions are satisfied: 1) the average decrease in the minimum OF value
over the last Istop iterations is less than εstop , 2) the average shift of the
best solution point over the last Istop iterations is less than δstop ; 3) the
number of iterations is greater than Imax . When the search stops, the
resulting population is saved as a rule base that can be loaded again next
time.

3. Experiments

To evaluate efficiency of the method, test minimization problems of 100
variables were solved (D = 100). They were based on well-known test
objective functions [19]. In all of the problems, the global minimum is at
(0, 0, . . .) with the OF value of 0.

The search spaces are from −100 to 100 for each coordinate by default.
For some problems, the spaces are ones frequently used in the literature.
As for Ackley’s function, its local oscillations completely hide the global
tendency far from the global minimum, so efficiency of the discussed
method in this case essentially depends on the space size. Hence, two
spaces were used: from −100 to 100 and from −50 to 50.

The test problems are as follows:
(1) Rastrigin’s function on [−100; 100]D:

f1(x) =

D∑︂
i=1

[︁
x2
i − 10 cos (2πxi) + 10

]︁
.

(2) Shifted Rosenbrock’s function on [−100; 100]D:

f2(x) =

D−1∑︂
i=1

[︂
100

(︁
(xi+1 + 1)− (xi + 1)2

)︁2
+ x2

i

]︂
.

(3) Ackley’s function on [−100; 100]D:

f3(x) = −20 exp

⎛⎝−0.2

⌜⃓⃓⎷ 1

D

D∑︂
i=1

x2
i

⎞⎠− exp

(︄
1

D

D∑︂
i=1

cos (2πxi)

)︄
+20+ e.

(4) Ackley’s function on [−50; 50]D.
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(5) Griewangk’s function on [−600; 600]D:

f4(x) =

D∑︂
i=1

x2
i

4000
−

D∏︂
i=1

cos

(︃
xi√
i

)︃
+ 1.

(6) Weierstrass’ function on [−0.5; 0.5]D:

f5(x) =

D∑︂
i=1

[︄
kmax∑︂
k=0

ak cos
(︁
2πbk (xi + 0.5)

)︁]︄
−D

kmax∑︂
k=0

ak cos
(︁
πbk
)︁
,

where a = 0.5, b = 3, kmax = 20.
(7) Katsuura’s function on [−100; 100]D:

f6(x) = 10D−2
D∏︂
i=1

⎛⎝1 + i

32∑︂
j=1

⃓⃓
2jxi − round

(︁
2jxi

)︁⃓⃓
2−j

⎞⎠10D−1.2

−10D−2,

where round (x) is x rounded to the closest integral value.
(8) Shifted Levy’s function on [−100; 100]D:

f7(x) = sin2(πw1) +

D−1∑︂
i=1

(wi − 1)2
[︁
1 + 10 sin2(πwi + 1)

]︁
+ (wD − 1)2

[︁
1 + sin2(2πwD)

]︁
,

where wi = 1 + 0.25xi.
(9) Sphere function on [−100; 100]D:

f8(x) =

D∑︂
i=1

x2
i .

(10) Disk function on [−100; 100]D:

f9(x) = 106x2
1 +

D∑︂
i=2

x2
i .

(11) Bent cigar function on [−100; 100]D:

f10(x) = x2
1 + 106

D∑︂
i=2

x2
i .

(12) Sum of different power function on [−100; 100]D:

f11(x) =

D∑︂
i=1

|xi|i+1.



16 Kirill V. Pushkaryov

(13) High conditioned elliptic function on [−100; 100]D:

f12(x) =

D∑︂
i=1

106(i−1)/(D−1)x2
i .

Classic test functions frequently have “convenient” properties: the
global minimum is at zero or another point with equal coordinates or it can
be found by searching along each coordinate independently:

xmin =

(︃
arg min
L1≤x≤U1

Φ(x, x2, . . .), arg min
L2≤x≤U2

Φ(x1, x, . . .), . . .

)︃
.(25)

Therefore, random shifts and random orthogonal transformations
are applied to all basic OFs, that is f∗

i (x) = fi(M(x − x0)), where
x0 = U [L+ 0.4 (U− L) ,L+ 0.6 (U− L)]. The matrix M is produced by
Gram–Schmidt orthonormalization of a random matrix with elements
uniformly distributed between 0 and 1. A similar approach was used in
[19].

Experiments of the following types were conducted:
(1) Control experiments with random variation of parameters. The algo-

rithm was run for each problem 100 times with random initialization.
The rule base, M , x0 were initialized randomly before each run.

The described above NNAICM-PSO algorithm with disabled
evolution was used. Charm and merit were set to random uniformly
distributed numbers between 0 and 1 at each rule evaluation. The
population was restricted to random rules without mutation or
crossover.

(2) Experiments to evaluate general efficiency of NNAICM-PSO. The
algorithm was run for each problem 100 times with random initializa-
tion. The rule base, M , x0 were initialized randomly before each
run.

(3) Experiments to explore long-term adaptation capability of NNAICM-
PSO. For each problem, 50 series by 10 runs of the algorithm were
performed. The rule base was initialized randomly before the first
run in series, saved after each run and reloaded for the next run (the
reused rule base mode). Initialization of M , x0 was random and took
place before the first and then each Rt runs in series. Experiments
were conducted for Rt = 0 (M , x0 don’t change inside series) and
Rt = 1.
For each run, the minimum OF value (Φmin), the number of OF

evaluations (Neval ), the number of iterations (Niter ) and the number of OF
evaluations per iteration (Nepi = Neval/Niter ) were registered.
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We use random variation as a control because it’s known [20] that
sometimes random variation of optimization algorithm parameters can
improve results over static parameters by itself. We implemented random
variation through modification of NNAICM-PSO to limit the differences
between configurations to how parameters are set.

The parameters in the experiments were set as follows:
• the parameters of population size and composition: Nr = 100,
kelt = 0.25, kcros = 0.5, kmut = 0.25, krand = 0.25;

• the parameters of mutation: l
(εf )
mut = l

(pf1)
mut = l

(pf2)
mut = l

(px)
mut = 10−2,

σ
(εf )
mut = σ

(pf1)
mut = σ

(pf2)
mut = σ

(px)
mut = 0.05, l(αb)

mut = 10−2, σ(αb)
mut = 0.05,

σ
(p)
mut = 5× 10−3;

• the parameters of rule evaluation: kcd = 0.95, kmd = 0.9999;
• the parameters of rule application: Ibig = 10, ksel = 0.95, Ntop = 10,
Ns = 1;

• the parameters of random rule generation: kmxp1 = 0.2, kmxp2 =

10−6, kmxpf = 0.5, εpat = 10−6, l(εf )rand = 10−2, u(εf )
rand = 10, l(pf1)

rand =

l
(pf2)
rand = l

(px)
rand = 10−2, u(pf1)

rand = u
(pf2)
rand = u

(px)
rand = 1, l(αb)

rand = 10−2,
u
(αb)
rand = 10;

• the parameters of local search: Iloc = 25, kh = 0.75;
• the parameters of BPs: Nb = 100, kv1 = 1, Sbg = 10, vmin = 10−5,
εb = 5× 10−6, Irest = 10, ωi = 0.9, ωl = 0.5, ωg = 0.5, Next = 10;

• the parameters of stopping conditions: Istop = 100, εstop = 10−7,
δstop = 0, Imax = ∞.

4. Results

The statistics of the experiments with random variation (RV) and
evolutionary control (EC) of parameters without reloading of the rule base
(the discarded rule base mode) are shown in Tables 1 and 2 respectively.

The results of the RV and EC experiments with discarded rule base are
compared in Figures 3–5 and in Table 3. In Figure 3 the results are shown
as box plots: the box represents the range between the first (Q1) and third
(Q3) quartiles, the orange line denotes the median, whiskers extend to
values not more than 1.5(Q3 −Q1) below Q1 or above Q3, more distant
values (outliers) are denoted by circles, the green triangle shows the mean.
In Figures 4, 5 error bars denote standard error of the mean.

The two-tailed Mann–Whitney test was used to test signifiance of
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Table 1. Results of the RV experiments

Pro-
blem

Para-
meter Minimum Median Maximum Average Standard dev.

1 Φ∗
min 196 326.8 448.7 329.6 58.45

Neval 9.817×106 1.238×107 2.468×107 1.224×107 2.162×106

Niter 400 500 1000 490 87.75
2 Φ∗

min 1.691×10−12 3.744×10−11 3.987 1.316 1.875
Neval 7.356×106 7.663×106 1.257×107 8.545×106 1.262×106

Niter 300 300 500 340 50.99
3 Φ∗

min 20 20 20 20 0.000 200 3
Neval 4.451×106 4.681×106 1.206×107 5.309×106 1.41×106

Niter 200 200 500 228 58.45
4 Φ∗

min 1.315×10−8 19.81 19.91 19.2 3.378
Neval 4.42×106 4.866×106 1.771×107 6.826×106 2.828×106

Niter 200 200 700 285 113.5
5 Φ∗

min 1.221×10−14 3.847×10−14 2.244×10−13 5.116×10−14 3.622×10−14

Neval 4.86×106 5.033×106 5.277×106 5.033×106 7.935×104

Niter 200 200 200 200 0
6 Φ∗

min 71.3 93.86 106.3 93.57 6.629
Neval 1.421×107 1.9×107 5.104×107 2.164×107 7.776×106

Niter 600 800 2100 893 316.6
7 Φ∗

min 0.017 05 0.0621 0.3598 0.079 02 0.061 23
Neval 6.731×106 1.134×107 1.409×107 1.059×107 1.497×106

Niter 300 500 600 459 61.8
8 Φ∗

min 4343 9905 1.225×104 9622 1535
Neval 4.692×106 7.331×106 9.822×107 1.137×107 1.193×107

Niter 200 300 3900 463 474.1
9 Φ∗

min 5.492×10−16 1.843×10−15 2.566×10−15 1.764×10−15 4.518×10−16

Neval 4.961×106 5.255×106 5.493×106 5.252×106 8.844×104

Niter 200 200 200 200 0
10 Φ∗

min 3.787×10−7 5.37×10−7 8.014×10−7 5.362×10−7 8.902×10−8

Neval 4.655×106 4.913×106 5.112×106 4.909×106 9.112×104

Niter 200 200 200 200 0
11 Φ∗

min 2.172×10−9 1.879×10−7 4.297×10−6 5.649×10−7 8.42×10−7

Neval 4.948×106 5.17×106 7.846×106 5.609×106 9.719×105

Niter 200 200 300 218 38.42
12 Φ∗

min 1.381×10−10 1.144×10−7 0.000 75 1.284×10−5 7.662×10−5

Neval 3.262×107 5.563×107 1.011×108 5.803×107 1.656×107

Niter 1100 1900 3500 1976 580.2
13 Φ∗

min 3.87×10−7 1.066×10−6 4.416×10−6 1.185×10−6 5.696×10−7

Neval 4.89×106 5.096×106 7.596×106 5.137×106 3.564×105

Niter 200 200 300 202 14

differences in Φ∗
min , Neval , Nepi

1. For each of the parameters separately,
p-values were adjusted for multiple comparisons by the Holm–Bonferroni
method2.

1The function scipy.stats.mannwhitneyu from SciPy 0.19.1 [21] was used.
2The function p.adjust with the parameter method = "holm" from R 3.4.4 [22] was

used.
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Table 2. Results of the EC experiments with discarded rule base

Pro-
blem

Para-
meter Minimum Median Maximum Average Standard dev.

1 Φ∗
min 5.862×10−14 3.428×10−13 54.72 15.68 17.44

Neval 8.175×106 9.86×106 1.677×107 1.072×107 2.073×106

Niter 300 300 600 358 73.73
2 Φ∗

min 1.606×10−12 2.991×10−11 3.987 1.037 1.749
Neval 8.071×106 9.312×106 1.522×107 1.002×107 1.523×106

Niter 300 300 500 339 50.78
3 Φ∗

min 20 20 20 20 0.000 319 6
Neval 4.15×106 5.458×106 1.441×107 6.26×106 1.739×106

Niter 200 200 500 239 63.08
4 Φ∗

min 8.689×10−9 19.76 19.93 17.58 6.182
Neval 4.211×106 7.423×106 1.876×107 7.969×106 3.271×106

Niter 200 300 800 296 118.3
5 Φ∗

min 1.044×10−14 3.825×10−14 4.118×10−13 5.061×10−14 4.683×10−14

Neval 5.194×106 6.228×106 6.819×106 6.193×106 3.46×105

Niter 200 200 200 200 0
6 Φ∗

min 39.17 73.61 87.24 72.53 9.259
Neval 1.751×107 2.312×107 1.056×108 3.031×107 1.767×107

Niter 600 750 2900 956 498.7
7 Φ∗

min 0.009 948 0.066 76 0.2953 0.082 15 0.052 62
Neval 7.304×106 1.177×107 2.132×107 1.175×107 2.315×106

Niter 300 500 800 468 81.09
8 Φ∗

min 4.268 9257 1.178×104 7998 3726
Neval 4.664×106 1.064×107 8.407×107 1.332×107 1.2×107

Niter 200 400 2800 479 421.5
9 Φ∗

min 4.741×10−16 1.195×10−15 2.149×10−15 1.236×10−15 4.056×10−16

Neval 5.094×106 6.505×106 7.379×106 6.483×106 4.42×105

Niter 200 200 200 200 0
10 Φ∗

min 3.54×10−7 5.437×10−7 7.794×10−7 5.491×10−7 8.739×10−8

Neval 4.857×106 5.465×106 6.317×106 5.487×106 3.104×105

Niter 200 200 200 200 0
11 Φ∗

min 1.617×10−9 2.423×10−7 7.641×10−6 5.306×10−7 9.742×10−7

Neval 5.512×106 6.435×106 1.014×107 6.69×106 9.355×105

Niter 200 200 300 209 28.62
12 Φ∗

min 8.579×10−11 3.468×10−7 0.004 809 8.098×10−5 0.000 542 7
Neval 3.623×107 5.498×107 1.267×108 6.038×107 1.812×107

Niter 1100 1600 3800 1778 543.1
13 Φ∗

min 3.427×10−7 1.03×10−6 2.895×10−6 1.085×10−6 4.042×10−7

Neval 5.155×106 5.95×106 8.479×106 6.033×106 4.624×105

Niter 200 200 300 202 14

The difference in Φ∗
min between the RV and EC experiments is

significant at the 0.05 level (see Table 3). Significant differences were
present in problems 1, 4, 6, 9. The minimum OF values for these problems
were higher in the RV mode than in the EC mode (Figure 3). It’s worthy
to note that in problem 8 the adjusted p-value of 0.14 was greater than the
significance level, but 15 values in the EC mode were less than 50 (with the
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Table 3. Comparison of Φ∗
min between the RV and EC experiments

Problem P -value Adjusted p-value

1 <0.0001 <0.0001*
2 0.0893 0.6850
3 0.0856 0.6850
4 0.0004 0.0042*
5 0.7545 1
6 <0.0001 <0.0001*
7 0.2785 1
8 0.0160 0.1444
9 <0.0001 <0.0001*

10 0.2433 1
11 0.9912 1
12 0.2009 1
13 0.3242 1

Note: *) statistically significant results (p < 0.05).

minimum of 4.268) and the minimum result in the RV mode was 4343.
In the EC mode Neval was significantly (p < 0.05) higher (in problems

2–11, 13) or lower (in problem 1) (Figure 4). There was no significant
change in problem 12. In all problems Nepi was significantly higher in the
EC mode (Figure 5).

The most substantial difference between the RV and EC modes was
observed in problem 1 with Rastrigin’s function. There was simultaneous
reduction of error, number of OF evaluations and iterations, which was not
seen in other cases.

Therefore, the experimental results are consistent with the hypothesis
that in some problems Φ∗

min is lower with evolutionary control of NNAICM-
PSO parameters than with random variation.

The statistics of the last run in series in the EC experiments with
reused rule base with random transformation at the start (Rt = 0) or
before each run (Rt = 1) are presented in Tables 4 and 5.

The results of the EC experiments with reused rule base are compared
for Rt = 0 and Rt = 1 in Figures 6–9 and in Table 6. In Figures 7–9
colored areas denote standard error of the mean.

The two-tailed paired Wilcoxon signed-rank test was used to test
signifiance of differences in Φ∗

min , Neval , Nepi between the first and the last
run in series3. For each of the three parameters separately p-values were
adjusted for multiple comparisons by the Holm–Bonferroni method.

3The function scipy.stats.wilcoxon with the parameter alternative = ’two-sided’
from SciPy 0.19.1 [21] was used.
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Figure 3. Φ∗
min in the RV and EC experiments with discarded rule base

The difference in Φ∗
min between the first and the last run in series

is significant at the 0.05 level for Rt = 0 and Rt = 1 (see Table 6). In
problems 1, 3, 4, 6, 8 the difference was present in both modes, while in
problem 13 it was present in the Rt = 0 mode only. In these problems
Φ∗

min obviously goes down in series (Figures 6, 7).
In most of the problems Neval goes up in series (Figure 8). The

differences between the first and the last run in series are significant
(p < 0.05) in problems 1, 2, 4, 5, 6, 9, 11, 13 with Rt = 0 and 1, 2, 3, 4, 5,
7, 9, 11, 13 with Rt = 1.

In both modes, in all problems except No. 10, Nepi goes up in series
(Figure 9). The differences in Nepi between the first and the last run in
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Figure 4. Average Neval in the RV and EC experiments with
discarded rule base

Figure 5. Average Nepi in the RV and EC experiments with
discarded rule base

series are also significant (p < 0.05) in all problems except No. 10. There
are no significant differences in problem 10 in any mode.

No significant differences in Φ∗
min , Neval , Nepi between the Rt = 0 and

Rt = 1 modes were discovered by the Mann–Whitney test (p > 0.05).
Therefore, the experimental results are consistent with the hypothesis

that in some problems evolutionary controlled NNAICM-PSO gives lower
Φ∗

min with reused rule base than with discarded rule base.
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Table 4. Results of the last run in series in the EC experiments
with reused rule base and Rt = 0

Pro-
blem

Para-
meter Minimum Median Maximum Average Standard dev.

1 Φ∗
min 6.395×10−14 9.415×10−14 1.634×10−13 1.006×10−13 2.451×10−14

Neval 1.075×107 1.171×107 1.234×107 1.162×107 4.48×105

Niter 300 300 300 300 0
2 Φ∗

min 2.191×10−12 3.458×10−11 3.987 1.037 1.749
Neval 9.954×106 1.111×107 1.675×107 1.202×107 1.882×106

Niter 300 300 500 340 56.57
3 Φ∗

min 20 20 20 20 0.000 609 6
Neval 4.734×106 6.804×106 1.28×107 7.36×106 2.116×106

Niter 200 200 400 258 75.07
4 Φ∗

min 8.239×10−9 1.779×10−8 19.86 6.682 9.31
Neval 5.553×106 1.306×107 2.688×107 1.344×107 4.848×106

Niter 200 400 800 414 154.9
5 Φ∗

min 1.232×10−14 3.531×10−14 2.001×10−13 4.908×10−14 4.164×10−14

Neval 6.779×106 7.703×106 8.103×106 7.685×106 3.045×105

Niter 200 200 200 200 0
6 Φ∗

min 29.23 42.8 52.7 42.91 5.748
Neval 2.017×107 3.231×107 7.287×107 3.696×107 1.242×107

Niter 500 800 1800 912 307
7 Φ∗

min 0.018 59 0.063 55 0.2023 0.077 94 0.047 29
Neval 7.554×106 1.332×107 2.502×107 1.382×107 3.14×106

Niter 400 500 800 472 84.95
8 Φ∗

min 4573 7670 1.141×104 7610 1625
Neval 5.139×106 1.515×107 8.605×107 1.873×107 1.412×107

Niter 200 450 2200 570 392.6
9 Φ∗

min 5.241×10−16 1.192×10−15 2.145×10−15 1.198×10−15 3.635×10−16

Neval 7.097×106 7.904×106 8.587×106 7.883×106 3.433×105

Niter 200 200 200 200 0
10 Φ∗

min 3.2×10−7 4.975×10−7 8.597×10−7 5.253×10−7 1.154×10−7

Neval 4.731×106 5.474×106 6.203×106 5.469×106 3.423×105

Niter 200 200 200 200 0
11 Φ∗

min 2.003×10−9 2.199×10−7 1.65×10−5 8.341×10−7 2.444×10−6

Neval 7.014×106 7.874×106 1.222×107 7.942×106 6.694×105

Niter 200 200 300 202 14
12 Φ∗

min 7.689×10−11 2.102×10−7 0.000 694 7 1.686×10−5 9.707×10−5

Neval 3.901×107 6.153×107 1.137×108 6.553×107 1.751×107

Niter 1100 1750 3600 1800 523.5
13 Φ∗

min 4.134×10−7 9.624×10−7 1.968×10−6 9.968×10−7 3.303×10−7

Neval 5.578×106 6.512×106 7.56×106 6.493×106 4.409×105

Niter 200 200 200 200 0

5. Conclusion

Evolutionary control of parameters improves accuracy of the NNAICM-
PSO method over random variation of parameters. The progressive decline
of errors in objective function values in the reused rule base mode suggests
adaptation of the method to the problem at hand.
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Table 5. Results of the last run in series in the EC experiments
with reused rule base and Rt = 1

Pro-
blem

Para-
meter Minimum Median Maximum Average Standard dev.

1 Φ∗
min 4.796×10−14 1.075×10−13 2.363×10−13 1.058×10−13 3.215×10−14

Neval 1.084×107 1.162×107 1.241×107 1.158×107 3.96×105

Niter 300 300 300 300 0
2 Φ∗

min 1.456×10−12 1.868×10−11 3.987 0.3987 1.196
Neval 9.828×106 1.097×107 1.804×107 1.14×107 1.534×106

Niter 300 300 500 316 41.76
3 Φ∗

min 20 20 20 20 0.000 451 7
Neval 4.5×106 6.291×106 1.371×107 7.163×106 2.146×106

Niter 200 200 400 252 64
4 Φ∗

min 7.62×10−9 2.076×10−8 19.86 7.934 9.636
Neval 5.842×106 1.275×107 2.632×107 1.33×107 5.439×106

Niter 200 400 700 416 151.5
5 Φ∗

min 8.216×10−15 3.014×10−14 1.402×10−13 4.073×10−14 2.919×10−14

Neval 7.109×106 7.672×106 8.296×106 7.674×106 2.754×105

Niter 200 200 200 200 0
6 Φ∗

min 31.01 43.91 54.41 42.82 4.86
Neval 2.425×107 3.221×107 6.958×107 3.442×107 9.846×106

Niter 600 800 1700 848 241.9
7 Φ∗

min 0.015 14 0.061 95 0.2733 0.080 82 0.056 64
Neval 7.564×106 1.351×107 2.24×107 1.379×107 3.266×106

Niter 300 500 800 468 88.18
8 Φ∗

min 55.9 7049 1.001×104 6852 2034
Neval 5.144×106 1.739×107 6.373×107 1.95×107 1.118×107

Niter 200 600 1700 594 299.6
9 Φ∗

min 2.653×10−16 1.149×10−15 2.311×10−15 1.151×10−15 4.224×10−16

Neval 6.766×106 7.846×106 8.454×106 7.831×106 3.881×105

Niter 200 200 200 200 0
10 Φ∗

min 3.488×10−7 5.145×10−7 8.542×10−7 5.298×10−7 9.497×10−8

Neval 4.412×106 5.495×106 6.564×106 5.498×106 3.806×105

Niter 200 200 200 200 0
11 Φ∗

min 3.557×10−9 3.093×10−7 9.728×10−6 7.629×10−7 1.571×10−6

Neval 6.495×106 7.887×106 1.2×107 7.972×106 8.765×105

Niter 200 200 300 206 23.75
12 Φ∗

min 2.277×10−10 2.427×10−7 0.005 974 0.000 123 7 0.000 835 8
Neval 3.3×107 6.262×107 1.433×108 6.693×107 2.334×107

Niter 900 1700 4200 1854 689.1
13 Φ∗

min 2.684×10−7 8.417×10−7 2.753×10−6 9.329×10−7 4.336×10−7

Neval 5.121×106 6.492×106 7.811×106 6.53×106 4.678×105

Niter 200 200 200 200 0

With evolutionary control and reusing of the rule base, there is no
significant difference in results between random transformation of the
problem at the start (Rt = 0) or before each run of the algorithm in series
(Rt = 1). This indicates that the process is not sensitive to orthogonal
transformations and limited shifts of the objective function.
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Figure 6. Median Φ∗
min plotted against run number in series in

the EC experiments with reused rule base

For random variation of parameters, the lowest average error was
observed in problems 5, 9–13 and the lowest median error in problem 2.
Only in problem 9 of these evolutionary control significantly reduced error.
Moreover, there was no difference between the rule base being reused or
discarded in these problems, except No. 13 with Rt = 0, during 10 runs of
the algorithm. It’s noteworthy that in all these problems the objective
functions are polynomial or almost polynomial, including quadratic. For
example, transformed Griewangk’s function of 100 variables, used in
problem 5, is quadratic in almost all of the search space except a small
neighbourhood of the global minimum. High efficiency in such problems is
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Figure 7. Average Φ∗
min plotted against run number in series

in the EC experiments with reused rule base

presumably due to supplementary quasi-Newton modified BFGS search.
The method worked well with transformed Rastrigin’s function (problem

1), which is hard to minimize. Evolutionary control strongly reduced error
in comparison to random variation of parameters in this case. In the reused
rule base mode, average error quickly decreased from approximately 19
at the end of the first run to 10−13 at the end of the 7th run in series
(Figure 7). Results were also good for transformed Ackley’s function
(problem 4) in this mode, where in 10 runs the median error decreased
from 20 to 2× 10−8.
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Figure 8. Average Neval plotted against run number in series
in the EC experiments with reused rule base

Statistical significance of the results was high. Usually the p-values
were well below the threshold of 0.05.

Evolutionary control of NNAICM-PSO parameters has advantages over
manual tuning. It allows to preserve, accumulate and reuse experience of
solving a problem or problem class. Application of evolutionary control
also allows us to exploit results from the field of evolutionary computation.

The evolutionary controller relieves the user of the burden of manual
tuning of NNAICM-PSO parameters, although the ranges of random
generation and mutation and other metaparameters of the controller itself
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Figure 9. Average Nepi plotted against run number in series in
the EC experiments with reused rule base

must still be tuned manually. Nevertheless, this task seems easier than
direct manual tuning because, after initial metaparameter setting, the
process will adapt to the problem. Suboptimal parameters can hinder
evolution, but can’t stop it. They can be corrected based on the direction
of evolution deduced from the rule base.

The subjects of future study are (1) causes of efficiency or inefficiency
of evolutionary controlled NNAICM-PSO in various situations, (2) how to
reduce the number of objective function evaluations, (3) how to reduce the
number of metaparameters.
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Table 6. Comparison of Φ∗
min between the first and the last

run in series in the EC experiments with reused rule base

Problem Rt = 0 Rt = 1

P -value Adjusted p-value P -value Adjusted p-value

1 <0.0001 <0.0001* <0.0001 <0.0001*
2 0.7030 1 0.1410 0.9333
3 0.0002 0.0022* 0.0012 0.0105*
4 <0.0001 <0.0001* <0.0001 <0.0001*
5 0.5955 1 0.1333 0.9333
6 <0.0001 <0.0001* <0.0001 <0.0001*
7 0.3466 1 0.6958 1
8 0.0022 0.0180* 0.0002 0.0022*
9 0.9961 1 0.2408 1

10 0.8734 1 0.4602 1
11 0.6191 1 0.5023 1
12 0.4840 1 0.9654 1
13 <0.0001 0.0002* 0.0341 0.2728
Note: *) statistically significant results (p < 0.05).
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