ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 10, No2(41), pp. 67-77

UDC 517.977 '.)

Irina V. Rasina, Oles V. Fesko

Approximate optimal control synthesis for nonuniform
discrete systems with linear-quadratic state

ABsTrRACT. Nonuniform discrete systems linear-quadratic over its state are
the subject of intense study in optimal control theory. This work presents an
approximate optimal control synthesis method in this class based on Krotov’s
sufficient optimality conditions and illustrates it with a simple example.
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Introduction

Nonuniform control systems are the subject of intense study in
optimal control theory. Their state in terms of controlled differential and
discrete systems depends on time. Approaches to the development of their
mathematical models and investigations, as well as the terminology, e.g.,
systems with variable structure [?1], discrete-continuous [?2], logic-dynamic
[?3, 74], impulsive [?5], and hybrid systems [?6,?7], are very diverse. One
possible approach to study optimal control problems for such systems is the
generalization of Krotov’s sufficient optimality conditions for them [?8, 79].
In [72,710,711,712], the authors propose a two-level mathematical model
of a discrete-continuous system (DCS). The lower level describes the
continuous controllable processes at the individual stages. The upper level
integrates system descriptions into a unique process and controls the
functioning of the entire system as a whole to ensure the minimum of the
functional. The work [?12] establish sufficient optimality conditions for the
model and presents control improvement methods.
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Work [713] extends this model to the case where the lower level contains
discrete systems. This case is called the nonuniform discrete systems
(NDS). In [?714], the authors propose an iterative control improvement
method for this model with the resolving Krotov functions linearly depend
on the states at both levels. In the case of linear-quadratic nonuniform
discrete systems, if we specify the Krotov functions as linear-quadratic,
then we get the solution as an approximate synthesis of optimal control.
The purpose of this work is to derive the method and illustrate it by
example.

1. Nonuniform discrete systems with linear-quadratic state

We consider the NDS model representing a two-level controlled system
of the form

1
2k +1) = 2"(k) + ga(k)[z* + b(k,u),  a>0,

2(k+1) = AR)a(k) + B(k,u), 2°€R, zeR™®),
kEK:{k[,kI+1,...,kF}, UEU(k,x) C}Rr(k)7

where k is the step (stage) number, U(k, x) is the set given for each k and
x, A(k) is an m(k) x m(k) matrix, B(k,u) is an m(k) x 1 matrix, a(k),
b(k,u) are given functions.

On some subset K’ C K, kr ¢ K’, there is a discrete system of the
lower level

1
w0k, t+1) = 2P (k, 1) + S (b, O + b (k tu?), 2P ER,
¥k, t 4+ 1) = A%k, t)z? + Bk, t,u?), % e X(z,t) C R™5),
teT(2)={tr(2),tr(2) +1,...,tp(2)},  a® >0,
u? e U? (z,t,xd) c RP(R),
where A%(k,t) is an n(k) x n(k) matrix, B%(k, t,u?) is an n(k) x 1 matrix,

a(k,t), b¥(k,t,u?) are given functions, the right-hand side operator is
given by

2%k +1) = 2"(k) + S BR) 2%, w(k+1) = x(k) + C(k)2f,

1
{Ed(k,t[) :f(lﬂ)l', de(katI) = igl(k)|m‘2a k GK/a
where &, €', ¢, 8 are matrices of the corresponding dimensions. Here
z = (k,z) is a set of the upper-level variables playing the role of lower-level
parameters.
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The solution of this two-level system is the set
m = (2°(k), z(k),u(k)),

where for k € K': u(k) = (u?(k),m%(k)), m?(k) € D% (z(k)) (called a
nonuniform discrete process with linear-quadratic state), where m?(k) is a
discrete process (z%° x%(k,t),u?(k,t)), t € T(z(k)), and D(2) is the set
of admissible processes m? satisfying with the specified discrete system.
Let us denote the set of elements m satisfying all the above conditions
by D and call it a set of admissible nonuniform discrete processes with
linear-quadratic state.

We consider the problem of finding the minimum on D of the functional
I =1T2(kp)+ 3k|lz(kr)* + d, where [ is a vector, x is a matrix, d is a
constant, for fixed k; = 0, kr = K, x (k) and additional constraints
z(k) € X(k), 2% € X4 (2,t), where X(k), X% (z,t) are given sets.

2. Basic constructions and sufficient optimality conditions

The sufficient optimality conditions for this model are derived by
analogy with Krotov’s sufficient conditions for discrete systems [79] as
follows. The discrete chains from D and D? are excluded and scalar
functions (functionals) ¢ (k,x), ¢° (z,t,xd) are introduced. Then we
construct a generalized Lagrangian by analogy with the Krotov Lagrangian
for discrete systems:

L =G (x(kp)) = > R(kx(k),u(k))+

K\K'\kr
+30(GUE) = D0 Rt (), (1)),
K’ T(2)\tr
G(z) =F () + ¢ (kr,x) — ¢ (kr,x (k1))
R(k,z,u)=p((k+1, f(k,z,u)) —¢(k,x),
G* (k,2,77) = —so(k+1,9(k,z,vd)) + (k,a (k) +
+<p (k z tF,xF) (k,z,tl,x?),
R? (k‘,z,t,md,ud) = 4 (k:,z,t—|— 1,4 (k‘,z,t,x ) )) — Uk, z,t, x),
p? (k, z,t) = sup {R? (k,z,t,xd,ud) cx? e XUk, 2,t),
u? e U? (k‘, z,t, :vd)},
1 (k,z) = inf {G* (k,2,7%) : (v}) € T4k,2), 2% € XUk, z,tr)}.
k):{sup{R(k,a@u):xeX(k)meU(k:,x)}, te K\ K/,

A —inf{l(2): z e X(k), u e€U’(kx)}, keK,
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Il=inf{G(z): x e TNX(kp)}.

Here ¢ (k,z) is an arbitrary functional, ¢? (k, z,t,xd) is an arbitrary
parametric family of functionals (with parameters k, z), and f, 6, f¢ denote
the right-hand sides of disctete systems at the lower and upper-levels on
K\K', K’, T, respectively.

THEOREM 1. For any element m € D and any ¢, ¢ the estimate is

I(m)—i%fISAzl(m)—l.

Let there be two processes m* € D and m' € E and functionals ¢ and
©? such that L (mH) <L (mI) =1 (mI) , and m! € D.
Then I(m'') < I(m?).

THEOREM 2. Consider a sequence of processes {ms;} C D and
functionals @, % such that
(1) R(k, s (k) us (k) = p(k), keK;
(2) R (25, t, 22 (t) ,uld () — p? (25,1) = 0, keK', teT(z);
(3) G¢ (zs,’yg) —1%(z) =0, keK
(4) G(zs (tp)) — L

Then {ms} is a minimizing sequence for I on D.
The proofs of these theorems are given in [?713].

3. Approximate optimal control synthesis and algorithm

To construct an approximate optimal control synthesis method, here
we use Krotov’s sufficient optimality conditions, the extension [?gurman)|
and localization priciples [?gurman_rasinal. Suppose that U(k,z) = R"(*),
Ul (z, t, ;Cd) = RP(*) and the used constructions of sufficient optimality
conditions are such that all the following operations are valid. The method
for solving this problem is generated via some improvement operator
n(m) : D — D such that I(n(m)) < I(m) [?15].

We define an auxiliary functional [?gurman_rasinal

Ia:La:aI—i—%(l—a) S ae®P+Y S 1At k),
—

K\K'\kp T(2)\tr
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where « € [0, 1] and its increment:

1
AL, ~ GTAz — Z (REAJ) + RFAu + QAuTRuuAu) -
K\K’

-3 ((GgTAx + GI At -
KI

1
~ Y (RIAz+ R A+ R Au + iAudTRgdudAud)),
T(2)\tr

where R, G, R? G¢, L are the constructions of sufficient optimality
conditions and Au = u—ul, Au? = u?—u, Az =z —2', Azx? = 2@ —z¥
m! = (u®, 21, udl, %) is the given element from D.

Suppose that matrices R, and RZdud are negative definite (we can
always make it so by varying « [?gurman_rasinal) and find the minimum of
AL, with respect to Au, Au?, Az, Az, Ax?. We specify the functions

@, °

)

o= T (k) (k) + 5o (K)o (k) (k) +

1
p? = (k,t) 2 (k1) + gxdT (k,t) o (k,t) 2 (k, 1) + 2,

where 1, 1% are the vector functions, o, o are matrices of the corresponding
dimensions.

Taking into account these requirements, we get

(1) Au=—R;'R,,  Au’=—-R%..R"

udydtlyd

(2) G,. =0, R, =0, G?=0, Gi% =const, R?=0, R% =0.
The condition (??) may be detailed by
(3) Gop = a(l+ kxp) + Y(kp) + o(krp)zr =0,
R, = ATp(k 4+ 1) + %(A:c +B)To(k+1)A+
+ %ATU(/@ +1)(Az + B) + az — (k) — o(k)z = 0,
Gt = —(k+1) — otk + V(a +C(k)rh)-

6) @+ R o+ 1) + p(k) + o (k) — €7

- Leatunga - Lottt - e =0
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Gy = 000 (k1) — 5C(0) ok + 1) + ()~
(6 — 5+ )T+ 1))
— B + ¢ (tr) + o (tr)2h = 0,
R, = ATy (k,t +1) + %(Ada;djL
(7) + BY ol (k,t + 1)A% + 1AUlT Uk, t 4+ 1)(A% + B+
+ a%z? — Yk, t) — o(k,t)x? = 0.

The equalities (??)—(?7) are valid if

- v(k) = Ak )Tw(k+1)+2A(k) o(k+1)B(k)+
+

1B(k) olk+1)A(k), ¢(krp)=—al,
9) o(k) = A(k)Yo(k + l)A(k) a(k), ke K\K', o(kp)=—ax,

(10) k) =v(k+1)+ a(k+1)ﬁ(k) 2( Bk)zp) ok + 1)+
+ Mk, m ok)=0o(k+1)+To(t)E+¢' keK,
(k. t) = A(k, t)dde( s t+ 1)+
d( ) Tol(k,t +1)BY(k,t)+
(11)
+ §Bd(k, ) ok, t + 1) A%k, 1),
I (k,tp) =Tk +1) = Hyap,
ocltp) =CTo(k+1)¢+ 8, keK,

(12) ol(k,t) = A%k, )T (k, t + 1) A%k, t) + a®(k, 1).

Note that system (??)-(??) is linear, i.e., it is certainly feasible.
Denote
H k2, bk + 1)) =
1
= ¢ (k+ D) (AR)z(k) + Bk, u)) = b(k) = 5 (1 = ) Aul?,
ke K \ K’ \ kg,
H (kb2 2% u?, (k. 1)) =
= T (k, ) (A (k, )2 + B (k. t,u))—

1
— b4 (k,t,u) — 5(1 —a)|Au? (k,t) |
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Then
L7 L oo L7 I o7
Ru:Hu+§BuAJx+§x A UBquiB UBu+§BuUB+bua

1 1
Ryw = Hyy + §BguAaa: + ixTATUBuu + BEaBu + B0 By + buu,
1 1
Ria = Hyu+ 5 BuiAlota? + Sat AT o Bl +
+%BdTO_dBd BdT dBd+b

ud>s

1
RZdud - Hddud + =

1
< 5 BiT jA%iat 4+ — 29T AT e dBudud+

—|—Bd o Bd +BdT dBudud +bu dod+

Note that from the equality RY = 0 we can’t obtain equations.
Obviously, these formulas for first and second derivatives of R, R? with
respect to control variables linearly depend on state variables of the upper
and lower levels, respectively. Therefore, the obtained solution represents
approximate optimal control synthesis.

4. lterative procedure

As a whole, we get the following iterative procedure on a step s.

1. «Left to right» we compute NDS for u = u,(k), u? = ud(k,t)
with given initial conditions, getting the corresponding trajectories
ws(k), 2l(k,t).

2. «Right to left» we resolve NDS with respect to 1 (k), ¥ (k,t), o(k),
od(k,t) according to (?7)-(?7?).

3. We find Au, Au? and new controls us1 (k) = us(k)+Au, ul  (k,t) =
u¢(k,t) + Au? according to (77?).

4. «Left to right» we calculate the initial NDS with the controls found
and given initial conditions.

This iterative process is over when |I;41 — I4| ~ 0 with a given precision.

THEOREM 3. Suppose that the formulated iterative procedure is
constructed for a given NDS, and functional I is bounded from below. Then
it generates the improving sequence {ms} € D that converges with respect to
the functional, i.e., there is a number I* such that I* < I(my), I(mgs) — I*.

PRrROOF. The proof immediately follows from the monotone property of
the improvement operator under consideration. Thus, we get a monotone
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sequence of numbers

{IS} = {I(ms)}a Is+1 S Is,

bounded from below, that converges to a certain limit Iy — I,. O
5. Example
Consider the following NDS
1

et +1) = 2™(t) + 2( “(t))? g(U‘f)?’

2t +1) = —229t) + (u{ — 1)%, z%0)=1, t=0,1,2,3,

1
2O+ 1) = 290(0) + 5 (@2 + o,

p(t+1) = (t—u3)?,  t=456,
I =2%7) — min.
It is easy to see that K = 0,1,2. Since x¢ is a linking variable in the two
periods under consideration, we can write a process of the upper level in
terms of this variable z(0) = 2¢(0,0), x(1) = z%(0,4), z(2) = z%(1,7),
z(1) = 24(0,4), and 2%(1,4) = x(1). Then I = x(2). From this it
follows a?(0,¢) = 1, b%(0,1) = % (uf)?, A%4(0,t) =1, BY(0,1) = (uf — 1),
al(1,t) =1, A41,¢) =0, B4(1,t) = (t—u$)?, (=1,£=1, £ =0, B=0.
The equations of the method have the form
wd(07t) = _de(OVt—'_ 1) - 20d(07t+ 1)(“’? - 1)27
0?(0,t) = 40¢(0,t + 1) + 1,

¢d(17t) =0, Ud(l,t) =1,

’(/Jd(l,tp) = w(k‘F) = —qQ, O'd(l,tF) = 0,

¥(2) = —a, o(2) =0,

YO =v@) 4502, o()=0(2)+0'(1 1)

"/}d<0’tF) = (1)’ Ud(ovtF) = 0(1)7
RY0,1) 0 = 2070, + 1) (ud — 1)+

d
2070, ¢+ 1)((u — 12 — 20%) (uf — 1) + (u)? — (1 — o) A,
RY0, 1) a0 = 207(0,t 4 1) + 60(0,¢ + 1) (uf — 1)*—
—40%(0,t + 127 + 2uf — (1 — ),
RY1,t)g = =207 (1,6 + 1)( — ug) — 20%(1, ¢+ 1)(t — ug)*+
+1-(1—a)Aud,
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RY1,t) a0 = 207 (1,0 4+ 1) + 60 (1, ¢+ 1)(t — ug)® — (1 — ).

The initial approximation for the improvement procedure is u¢(0) =
ul(1) = 1, u?(2) = u¥(3) = 2, u¥(4) = -1, u4(5) = -1, u4(6) = —1. The
results are given by Fig. 7?7 and Table ?7.

60 6 .
@ L ]
40 4
®
* d
X720 u,,» ° °
°
° ® ® .
®
® 5 . 0
[ J
® ® °
L ]
20 2
0 2 4 6 8 0 2 4 6
t t

FIGURE 1. The initial (blue) and final (red) iterations of the method

TaBLE 1. Changes of the functional on iterations

Iteration Functional

0 49
1 16
2 4
3 0

Conclusions

In this paper, we propose an approximate optimal control synthesis
method for nonuniform discrete systems linear quadratic with respect to
state. It is derived from the well-known scheme when specifying Krotov
function. We develop an algorithm that implements this method and
demonstrates its quality through a model example.
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