
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 10, No 3(42), pp. 41–58

CSCSTI 50.07.05,50.33.04
UDC 519.681.5:004.272.25

Alexey A. Rybakov, Sergey S. Shumilin
Vectorization of the Riemann solver using the AVX-512

instruction set

Abstract. Numerical methods based on solving the Riemann problem of the
decay of an arbitrary discontinuity are extremely demanding of computational
resources. Applying the data of numerical methods to modern computational grids
requires the use of a supercomputer. Among the various tools for improving the
performance of supercomputer applications, we can emphasize the vectorization
of program code. The AVX-512 instruction set has a number of unique features
allowing to apply vectorization to the Riemann solver software context, which
results in a significant acceleration of the solver. Using the exact Riemann
solver as an example, the article discusses practical approach to vectorizing
a various program contexts, including simple linear blocks, regions with complex
control, and nested loops. The basis of the approach under consideration is the
possibility of simultaneously executing several instances of some pure function
on the same processor core. This feature is achieved by translating the program
code into the predicate form and using AVX-512 vector instructions. In this case
the number of simultaneously running instances is equal to the width of the
vector. It is shown that using the features of the AVX-512 instruction set allows
to successfully vectorize the considered program context. The proposed approach
can be applied to vectorize a wide range of applications.

Key words and phrases: Riemann problem of the decay of an arbitrary discontinuity, Riemann
solver, AVX-512, KNL, vectorization, intrinsic functions.

2010 Mathematics Subject Classification: 68W10; 65P99,68M07,

Introduction

The solution of the Riemann problem is used in numerical methods for
non-stationary problems with large discontinuities [1]. At the same time,
this approach can be applied both to ordinary single-component gas-dynamic
equations and to the equations of multicomponent gas dynamics [2]. The
Godunov method for solving systems of unsteady equations of gas dynamics
[3] is based on an exact or approximate solution of the Riemann problem.
In this method, at each iteration of the calculations, the Riemann problem is

The work was done at the JSCC RAS as part of the state assignment on the topic
0065-2019-0016 with the support of RFBR grant 18-07-00638_a.
c⃝ A. A. Rybakov, S. S. Shumilin, 2019
c⃝ Joint Supercomputer Center of RAS, 2019
c⃝ Program Systems: Theory and Applications (design), 2019

DOI: 10.25209/2079-3316-2019-10-3-41-58 CC-BY-4.0

http://psta.psiras.ru/index_en.htm
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2019-10-3-41-58&domain=pdf&date_stamp=2019-09-30
http://scs.viniti.ru/rubtree/main.aspx?tree=RGNTI
http://scs.viniti.ru/udc/
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W10
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=65P99,68M07
http://www.jscc.ru/eng/index.shtml
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2019-10-3-41-58
https://creativecommons.org/licenses/by/4.0/

42 A. A. Rybakov, S. S. Shumilin

solved on each face of each cell of the computational grid to determine the
flows through these faces. Due to the fact that the sizes of computational
grids, which are used today for carrying out calculations, amount to tens,
hundreds of millions of cells and more, it is necessary to use supercomputers
and the entire spectrum of approaches to parallel computing. To increase
the efficiency of supercomputer computing, tools such as MPI, OpenMP,
OpenACC and others are used.

The most low-level approach used to improve the performance of super-
computer applications is code vectorization. The use of a special instruction
set AVX-512 has unique features that make it possible to create an effective
parallel code, which leads to a multiple acceleration of supercomputer
applications.

Improving the performance of Riemann solvers on parallel architectures
has been the subject of much research, which continues to this day, as new
architectures constantly emerge with new features. The [4] demonstrated
an algorithm for parallelizing numerical methods using an approximate
Riemann solver for problems of magnetohydrodynamics, leading to parallel
operation on a multiprocessor machine with parallelization efficiency
close to unity. The work [5] provides a comprehensive study on the
parallelization of computational methods based on the Riemann solver using
MPI, OpenMP and graphics accelerators. As a result, good performance
in terms of scalability was demonstrated, in particular, a strong scalability
indicator at around 85%. The [6] work highlights the use of the PetClaw
tool, which allows to apply numerical methods based on the Riemann
solver on several thousand computational processes with a parallelization
efficiency close to unity. The works [7], [8] highlighted the issues of parallel
implementation of the AstroPhi program for modeling astrophysical flows. It
is shown that the current implementation allows achieving almost 50%
of the scalar peak performance of the Intel Xeon Phi KNC coprocessors and
provides the estimate of the expected effect of future vectorization (more
than 80% of the total peak performance). As one of the most detailed
studies on the vectorization of Riemann solvers, we can mention the work
[9], which deals with the optimization of an approximate Riemann solver for
solving shallow water equations. The approaches used made it possible
to achieve acceleration of 6-7 times on the Intel Xeon Phi KNC coprocessors
on real operations with single precision. Later this study was continued
and the work [10] describes methods by which acceleration was obtained
in the 2.4-6.5 times range for double precision operations (calculations were
performed on Intel Xeon Phi KNL microprocessors).

This article discusses the vectorization of the exact Riemann solver
containing complex structures, including solving a nonlinear equation and
complex control. The article shows that using the features of the AVX-512
instruction set allows you to successfully vectorize this software context.

vectorization of the Riemann solver 43

The main contribution of this article is the development of approaches
to vectorization of complex program context using a unique set of instructions
AVX-512. The exact Riemann solver is very suitable for this purpose, as it
has a compact implementation and at the same time contains a number
of features of the program context that require their own techniques during
vectorization.

The first section of the article provides a brief description of the features
of the AVX-512 instruction set, which allow vectorization of a complex
program context using a predicate code representation. The second section
presents the general scheme of the exact Riemann solver, and sections
3-5 reveal the features of the vectorization of its individual parts (simple
linear context, sections with complex controls and a nested loop). Section 6
presents the results of numerical experiments on the Intel Xeon Phi KNL
microprocessor, and section 7 presents a comparison with related works.

1. Features of the AVX-512 instruction set

The AVX-512 instruction set is an extension of the 256-bit AVX
instruction of the Intel x86 architecture. This instruction set is supported
in the second-generation Intel Xeon Phi microprocessor (Knight Landing,
KNL) and Intel Xeon Skylake families.

AVX-512 instructions work with 512-bit vector registers (zmm), which
may contain integer or real data. Each zmm register is capable of holding,
for example, 8 real double precision values (double) or 16 real single
precision values (float). The AVX-512 instruction set implements a variety
of operations with vector arguments, including arithmetic operations,
comparison operations, memory read and write operations, transcendental
operations, combined operations like ±a · b± c, elements permutation
operations vectors and others.

To support selectively applying packed data operations to specific vector
elements, most of the AVX-512 instructions use special mask registers as
arguments. There are 8 such registers (k0-k7). When performing a vector
operation, the element of the result vector will be calculated only if the bit
of the mask with the corresponding number is set to one, otherwise the
operation for these elements will be ignored. This unique feature of the
AVX-512 instruction set provides the implementation of the predicate
execution mode [11], which is supported in such architectures as ARM
or «Elbrus» [12]. The presence of the predicate execution mode allows
you to apply merger optimization of execution branches and, thus, get rid
of unnecessary control transfer operations, which helps to create highly
efficient parallel code.

Other important features of the AVX-512 instruction set include multiple
reads of vector elements located in memory with arbitrary offsets from the

44 A. A. Rybakov, S. S. Shumilin

base address, as well as similar operations of writing vector elements into
memory with arbitrary offsets (gather/scatter operations). Although these
operations are extremely slow, they in some cases help to significantly
simplify the logic of vectorized code. It should also be noted a large variety
of different operations of permutation, mixing, duplication, transfer of vector
elements, which allows arbitrary change the order of data processing. Also,
combined operations that combine the multiplication and addition operations
into one operation can bring significant acceleration.

To simplify the use of vector instructions for optimizing the program
code for the icc compiler, special intrinsic functions have been developed
(they are defined in the header file immintrin.h) [13]. These functions do
not cover the entire set of AVX-512 instructions, however they eliminate the
need to manually write assembly code. Instead, it is possible to operate the
built-in data types for 512-bit vectors and use them when working with the
intrinsics functions as normal base types (the zmm registers will be used when
building the executable code by the compiler). Some intrinsic functions
correspond not to one separate command, but to an entire sequence, such as
the group of reduce functions, while others simply expand into a call
of library function (for example, trigonometric functions or the hypot
function).

In this article, we consider the features of the Riemann solver in the
classical implementation of E. F. Toro [14] and describe approaches that
allow to vectorize this solver to simultaneously solve 16 copies of the
Riemann problem of decay of an arbitrary discontinuity at once.

2. Description of the Riemann Solver

The implementation of the Riemann solver considered in this article is
in the public domain on the Internet as part of the NUMERICA. In this
case, we will be interested in the one-dimensional case for a single-component
medium, implemented as a pure function (function without side effects, the
result of the function depends only on the values of the input parameters),
which, by the density, velocity and gas pressure values to the left and
right of the discontinuity, finds the values of the same quantities at the
discontinuity at zero time after removal of the septum.

Ul =

(︃
dl
ul
pl

)︃
, Ur =

(︃
dr
ur
pr

)︃
, U =

(︃
d
u
p

)︃
= riem(Ul, Ur).(1)

In the formula (1), dl, ul, pl denote the density, velocity and pressure
of the gas to the left of the discontinuity (they are combined into the Ul

structure — the state of the gas to the left of the discontinuity). Similarly,
dr, ur, pr denote the density, velocity and pressure of the gas to the right
of the discontinuity, combined into a gas state Ur. The variables d, u, p

https://github.com/dasikasunder/NUMERICA

vectorization of the Riemann solver 45

fl, fld,

call prefun

dl, pl, cl, pold

call prefun

dr, pr, cr, pold

fl, fr,fld frd

calc pm

pold,
ul, ur, fr, frd

pm

check

call guessp

dl, ul, pl, cl,
dr, ur, pr, cr

pstart
pold = pstartpold = pm

calc um

um

call starpu

call sample

pm, pold fl, fr, ul, ur

dl, ul, pl, cl, dr, ur, pr, cr

pm, um

calc cl, cr

cl, cr

dl, pl, dr, pr call riemann

dl, ul, pl, cl, dr, ur, pr, cr, pm, um

d, u, p
d, u, p

dl, ul, pl, dr, ur, pr

l
o
o
p

Figure 1. Data flow diagram in Riemann solver

denote the density, velocity and pressure of the gas obtained by solving the
Riemann problem.

The NUMERICA library is implemented in the FORTRAN programming
language, therefore the vectorization of this code using intrinsic functions is
not directly possible, so the version of the code ported to the C programming
language was used.

Figure 1 shows a diagram of the work of the Riemann solver with
the indicated data streams and calls of all the functions involved in the
implementation. The riemann function calculates the speed of sound on the
right and left, performs a vacuum test, and subsequently calls the starpu
and sample functions. The starpu function calculates the velocity and
pressure values in the middle region between the left and right waves
(star region), and the function contains a cycle with an unknown number
of iterations to solve a non-linear equation by the iterative Newton method,
inside which there are calls to other functions (prefun). The guessp and
prefun functions contain only arithmetic calculations and simple conditions
and are the simplest from the point of view of vectorization. Finally, the last
sample function determines the final gap configuration by calculating a set
of conditions. This function contains a very branched control, the nesting
of conditions in it reaches four, which makes it difficult to use vectorization.

In the counting process, a number of calls to the riemann function
with different sets of input data are made using numerical methods based

46 A. A. Rybakov, S. S. Shumilin

01 void prefun(float &f, float &fd, float &p,
02 float &dk, float &pk, float &ck)
03 {
04 float ak, bk, pratio, qrt;
05
06 if (p <= pk)
07 {
08 pratio = p / pk;
09 f = G4 * ck * (pow(pratio, G1) - 1.0);
10 fd = (1.0 / (dk * ck)) * pow(pratio, -G2);
11 }
12 else
13 {
14 ak = G5 / dk;
15 bk = G6 * pk;
16 qrt = sqrt(ak / (bk + p));
17 f = (p - pk) * qrt;
18 fd = (1.0 - 0.5 * (p - pk) / (bk + p)) * qrt;
19 }
20 }

Figure 2. Original version of the function prefun

on the Riemann solver (during each counting iteration, one call is made
for each face of each cell of the computational grid). Since the riemann
function is pure, calls for different input data sets (dl, ul, pl, dr, ur, pr) are
independent and there is a desire to merge calls for the purpose of effective
use of vector (element-wise) instructions. As such a combined call, we will
consider a function in which, instead of atomic data of the type float, the
corresponding vectors containing 16 elements each are passed:

Ul =

(︄
dl
ul
pl

)︄
, Ur =

(︄
dr
ur
pr

)︄
, U =

(︄
d
u
p

)︄
= riem(Ul, Ur).(2)

In the formula (2), all variables dl, ul, pl, dr, ur, pr, d, u, p are vectors
of length 16. For example, the vector d contains 16 values of gas density,
obtained by solving 16 Riemann problems combined into one challenge. This
also applies to other variables.

At the same time, it is possible to perform the same actions with vector
data as with basic types — perform calculations, pass to functions, and
return as a result. In the process of optimization, for clarity, we will avoid
substitution of the function body into the call point. Thus, as a result
of vectorization, our goal is to obtain vector analogs of all the functions used
in the Riemann solver which were described above.

3. Simple context vectorization

The simplest context for computing vectorization when combining calls
is the prefun function (the guessp function has similar properties and is
not considered). A non-vectorized version of the function is presented
in Figure 2.

This code contains only simple arithmetic operations, square root

vectorization of the Riemann solver 47

01 void prefun_16(__m512 *f, __m512 *fd, __m512 p,
02 __m512 dk, __m512 pk, __m512 ck,
03 __mmask16 m)
04 {
05 __m512 pratio, ak, bkp, ppk, qrt;
06 __mmask16 cond, ncond;
07
08 // Conditions.
09 cond = _mm512_mask_cmp_ps_mask(m, p, pk, _MM_CMPINT_LE);
10 ncond = m & ~cond;
11
12 // The first branch.
13 if (cond != 0x0)
14 {
15 pratio = _mm512_mask_div_ps(z, cond, p, pk);
16 *f = _mm512_mask_mul_ps(*f, cond, MUL(g4, ck),
17 SUB(_mm512_mask_pow_ps(z, cond, pratio, g1), one));
18 *fd = _mm512_mask_div_ps(*fd, cond,
19 _mm512_mask_pow_ps(z, cond, pratio, SUB(z, g2)),
20 MUL(dk, ck));
21 }
22
23 // The second branch.
24 if (ncond != 0x0)
25 {
26 ak = _mm512_mask_div_ps(z, ncond, g5, dk);
27 bkp = FMADD(g6, pk, p);
28 ppk = SUB(p, pk);
29 qrt = _mm512_mask_sqrt_ps(z, ncond,
30 _mm512_mask_div_ps(z, ncond, ak, bkp));
31 *f = _mm512_mask_mul_ps(*f, ncond, ppk, qrt);
32 *fd = _mm512_mask_mul_ps(*fd, ncond, qrt,
33 FNMADD(_mm512_mask_div_ps(z, ncond, ppk, bkp),
34 SET1(0.5), one));
35 }
36 }

Figure 3. Vectorized version of the function prefun

extraction, exponentiation and comparison. For all these actions, vector
equivalents are provided in the AVX-512 command set. The function code is
vectorized by replacing arithmetic operations with vector analogs. The
calculation of values under the condition (if-else) is vectorized by using
vector predicates obtained using vector comparison (see Figure 3). Three
points are worth noting in the vectorization of the prefun function.

Since the vector division operation is slow, the following identities were
used to reduce the number of divisions:

a
b
c

=
ac

b
,

a
b

c
=

a

bc
.(3)

Since the prefun function is called inside the loop in the starpu
function, an additional mask argument must be added to its implementation,
by which the elements processed in this call are selected (Figure 3 line 03).
This will be described in more detail below, when the vectorization of the
starpu function will be discussed.

One more important point of vectorization is optimization of work with
conditions. In the process of performing vectorization, we have formed two
groups of vector instructions executed under the predicates cond (Figure 3,
lines 15-20) and ncond (Figure 3, lines 26-34). Since physical tasks are
characterized by continuous changes in physical quantities, it can be argued
that the data sets processed in a vectorized call are similar. In other words,

48 A. A. Rybakov, S. S. Shumilin

001 void sample(float dl, float ul, float pl, float cl,
002 float dr, float ur, float pr, float cr,
003 const float pm, const float um,
004 float &d, float &u, float &p)
005 {
006 float c, cml, cmr, pml, pmr, shl, shr, sl, sr, stl, str;
007
008 if (0.0 <= um)
009 {
010 if (pm <= pl)
011 {
012 shl = ul - cl;
013
014 if (0.0 <= shl)
015 {
 < d, u, p = dl, ul, pl >
019 }
020 else
021 {
022 cml = cl * pow(pm / pl, G1);
023 stl = um - cml;
024
025 if (0.0 > stl)
026 {
027 d = dl * pow(pm / pl, 1.0 / GAMA);
028 u = um;
029 p = pm;
030 }
031 else
032 {
 < high-density code, low prob >
037 }
038 }
039 }
040 else
041 {
042 pml = pm / pl;
043 sl = ul - cl * sqrt(G2 * pml + G1);
044
045 if (0.0 <= sl)
046 {
 < d, u, p = dl, ul, pl >
050 }
051 else
052 {
053 d = dl * (pml + G6) / (pml * G6 + 1.0);
054 u = um;
055 p = pm;
056 }
057 }
058 }
059 else
060 {
 < symmetrical branch >
109 }
110 }

Figure 4. Original version of the function sample

all the vectors involved in the calculations contain similar values. The same
statement applies to predicate vectors. Indeed, the execution statistics
shows that for physical tasks the most frequent values of the predicate
vectors (in this case, cond an ncond) are the values 0x0 and 0xFFFF. Thus,
checks of predicate vector registers for emptiness (Figure 3, lines 13 and 24)
immediately cut off entire blocks of unnecessary operations performed with
a zero mask.

4. Vectorization of highly branched conditions

The sample function contains a highly branched control with a nesting
level of 4 (see Figure 4). The condition tree built for this function contains 10
leaf nodes, in each the value of the gas-dynamic values d, u, p is determined.
Direct computation of the vector predicates of all leaf nodes and the

vectorization of the Riemann solver 49

execution of their code under these predicates slows down the resulting code,
so the following actions were performed when vectoring this function.

First, it was noted that the 4 linear sections contain the definition of the
gas-dynamic parameters d, u and p, which could be changed to initialization
by removing the assignment operations upward through the function code.
Thus, 4 linear sections were deleted. This initialization of the parameters d,
u, p does not contain arithmetic operations (the parameters are initialized by
the arguments of the function dl, ul, pl or dr, ur, pr), which means it can
be performed using vector merge operations blend.

It was further noted that the sample function handles the right and left
profiles of the breakup decay in the same way with minor changes. Using
a simple replacement of variables, which consists in changing the sign of the
velocity value, we managed to merge the code for two subtrees, based on the
condition pm ≤ pl, which reduced the amount of the calculation code by half
and expectedly reduced the time execution by 45%.

After the reduction of the code, the number of leaf nodes in the
conditions tree was reduced to three. However, even in this case, direct
merging of the code using vector predicates turned out to be ineffective.
This was caused by the unlikely part of the code, heavy operations, among
which there are calls to the function of raising to a power (Figure 4, lines
033-036). The vector predicate of this code segment in more than 95 percent
of cases has the value 0x0, therefore, before executing this code segment,
it is advisable to check this predicate for emptiness (which corresponds
to the removal of the unlikely branch of execution from the function body).
The removal of an unlikely branch of execution from the main program
context can significantly speed up the executable code, since the presence
of a large number of such rare computations can serve as a reason for
refusing vectorization [15].

For the rest of the code, the merge can be done with the remarks
described in the previous section. As a result, the vectorized sample function
was accelerated more than 10 times. The final vector code is presented
in Figure 5. In this code, lines 11–14 correspond to initialization, lines 16,
17, and 50 are responsible for replacing the variables for merging symmetric
sections of the code, and the unlikely branch is separated in the block
located in lines 41–47.

5. Loop nests vectorization

The most complex context for code vectorization is the starpu function,
which contains a loop with an unknown number of iterations (Figure 6). The
loop located in this function in lines 15-33, in addition to an unknown
number of iterations, also contains conditional transitions (if, break) and
calls of prefun functions, which also complicates its vectorization. Before

50 A. A. Rybakov, S. S. Shumilin

01 void sample_16(__m512 dl, __m512 ul, __m512 pl, __m512 cl,
02 __m512 dr, __m512 ur, __m512 pr, __m512 cr,
03 __m512 pm, __m512 um,
04 __m512 *d, __m512 *u, __m512 *p)
05 {
06 __m512 c, ums, pms, sh, st, s, uc;
07 __mmask16 cond_um, cond_pm, cond_sh, cond_st, cond_s, cond_sh_st;
08
09 // d/u/p/c/ums
10 cond_um = _mm512_cmp_ps_mask(um, z, _MM_CMPINT_LT);
11 *d = _mm512_mask_blend_ps(cond_um, dl, dr);
12 *u = _mm512_mask_blend_ps(cond_um, ul, ur);
13 *p = _mm512_mask_blend_ps(cond_um, pl, pr);
14 c = _mm512_mask_blend_ps(cond_um, cl, cr);
15 ums = um;
16 *u = _mm512_mask_sub_ps(*u, cond_um, z, *u);
17 ums = _mm512_mask_sub_ps(ums, cond_um, z, ums);
18
19 // Calculate main values.
20 pms = DIV(pm, *p);
21 sh = SUB(*u, c);
22 st = FNMADD(POW(pms, g1), c, ums);
23 s = FNMADD(c, SQRT(FMADD(g2, pms, g1)), *u);
24
25 // Conditions.
26 cond_pm = _mm512_cmp_ps_mask(pm, *p, _MM_CMPINT_LE);
27 cond_sh = _mm512_mask_cmp_ps_mask(cond_pm, sh, z, _MM_CMPINT_LT);
28 cond_st = _mm512_mask_cmp_ps_mask(cond_sh, st, z, _MM_CMPINT_LT);
29 cond_s = _mm512_mask_cmp_ps_mask(~cond_pm, s, z, _MM_CMPINT_LT);
30
31 // Store.
32 *d = _mm512_mask_mov_ps(*d, cond_st,
33 MUL(*d, POW(pms, SET1(1.0 / GAMA))));
34 *d = _mm512_mask_mov_ps(*d, cond_s MUL(*d, DIV(ADD(pms, g6),
35 FMADD(pms, g6, one))));
36 *u = _mm512_mask_mov_ps(*u, cond_st | cond_s, ums);
37 *p = _mm512_mask_mov_ps(*p, cond_st | cond_s, pm);
38
39 // Low prob - ignore it.
40 cond_sh_st = cond_sh & ~cond_st;
41 if (cond_sh_st != 0x0)
42 {
43 *u = _mm512_mask_mov_ps(*u, cond_sh_st, MUL(g5, FMADD(g7, *u, c)));
44 uc = DIV(*u, c);
45 *d = _mm512_mask_mov_ps(*d, cond_sh_st, MUL(*d, POW(uc, g4)));
46 *p = _mm512_mask_mov_ps(*p, cond_sh_st, MUL(*p, POW(uc, g3)));
47 }
48
49 // Final store.
50 *u = _mm512_mask_sub_ps(*u, cond_um, z, *u);
51 }

Figure 5. Vectorized version of the function sample

performing vectorization, this cycle must be transformed into a predicate
form, in which the body should not contain transition operations. All cycle
instructions are executed under their predicates, and the execution of the
cycle is interrupted if all predicates are zeroed. This mechanism is described
in [16] in relation to the vectoring of Shell sort and in [17] in relation to the
Mandelbrot set construction. At the same time, it is worth noting that calls
to prefun functions must also have corresponding predicates. After the body
of the cycle is transformed into a predicate form, it can be vectorized,
after which the predicates of the instructions are replaced by vector mask
registers (this is where the additional parameter of the vectorized function
prefun appears in the form of a mask). The result of the starpu function
vectorization is presented in Figure 7. Line 18 shows the initial initialization
of the full mask for performing vectorized loop iterations. As the cycle works,
the mask is exhausted (line 32), and when it is fully zeroed, the cycle ends.

It should be noted that the vectorization of a loop with an unknown

vectorization of the Riemann solver 51

01 void starpu(float dl, float ul, float pl, float cl,
02 float dr, float ur, float pr, float cr,
03 float &p, float &u)
04 {
05 const int nriter = 20;
06 const float tolpre = 1.0e-6;
07 float change, fl, fld, fr, frd, pold, pstart, udiff;
08
09 guessp(dl, ul, pl, cl, dr, ur, pr, cr, pstart);
10 pold = pstart;
11 udiff = ur - ul;
12
13 int i = 1;
14
15 for (; i <= nriter; i++)
16 {
17 prefun(fl, fld, pold, dl, pl, cl);
18 prefun(fr, frd, pold, dr, pr, cr);
19 p = pold - (fl + fr + udiff) / (fld + frd);
20 change = 2.0 * abs((p - pold) / (p + pold));
21
22 if (change <= tolpre)
23 {
24 break;
25 }
26
27 if (p < 0.0)
28 {
29 p = tolpre;
30 }
31
32 pold = p;
33 }
34
35 if (i > nriter)
36 {
37 cout << "divergence in Newton-Raphson iteration" << endl;
38 exit(1);
39 }
40
41 u = 0.5 * (ul + ur + fr - fl);
42 }

Figure 6. Original version of the function starpu

number of iterations can be quite dangerous, since the number of iterations
of a vectorized cycle is equal to the maximum of the iterations number
of the cycles with 16 combined calls of the original non-vectorized function.
If there is a big difference in the number of iterations of the original code,
there is a drop in efficiency due to the low density of the masks of the
executable instructions, as shown in [16].

6. Results analysis

Before starting the optimization of the program code of the Riemann
solver, an execution profile was collected, which showed that the execution
time was distributed between individual functions according to the diagram
presented in Figure 8.

To collect the execution profile, the source program was compiled with
the prohibition of optimizing the substitution of the function body into
the call point (inline). Thus, the diagram shows the net execution time
of functions without taking into account nested calls. It can be seen from

52 A. A. Rybakov, S. S. Shumilin

01 void starpu_16(__m512 dl, __m512 ul, __m512 pl, __m512 cl,
02 __m512 dr, __m512 ur, __m512 pr, __m512 cr,
03 __m512 *p, __m512 *u)
04 {
05 __m512 two, tolpre, tolpre2, udiff, pold, fl, fld, fr, frd, change;
06 __mmask16 cond_break, cond_neg, m;
07 const int nriter = 20;
08 int iter = 1;
09
10 two = SET1(2.0);
11 tolpre = SET1(1.0e-6);
12 tolpre2 = SET1(5.0e-7);
13 udiff = SUB(ur, ul);
14
15 guessp_16(dl, ul, pl, cl, dr, ur, pr, cr, &pold);
16
17 // Start with full mask.
18 m = 0xFFFF;
19
20 for (; (iter <= nriter) && (m != 0x0); iter++)
21 {
22 prefun_16(&fl, &fld, pold, dl, pl, cl, m);
23 prefun_16(&fr, &frd, pold, dr, pr, cr, m);
24 *p = _mm512_mask_sub_ps(*p, m, pold,
25 _mm512_mask_div_ps(z, m,
26 ADD(ADD(fl, fr), udiff),
27 ADD(fld, frd)));
28 change = ABS(_mm512_mask_div_ps(z, m, SUB(*p, pold),
29 ADD(*p, pold)));
30 cond_break = _mm512_mask_cmp_ps_mask(m, change,
31 tolpre2, _MM_CMPINT_LE);
32 m &= ~cond_break;
33 cond_neg = _mm512_mask_cmp_ps_mask(m, *p, z, _MM_CMPINT_LT);
34 *p = _mm512_mask_mov_ps(*p, cond_neg, tolpre);
35 pold = _mm512_mask_mov_ps(pold, m, *p);
36 }
37
38 // Check for divergence.
39 if (iter > nriter)
40 {
41 cout << "divergence in Newton-Raphson iteration" << endl;
42 exit(1);
43 }
44
45 *u = MUL(SET1(0.5), ADD(ADD(ul, ur), SUB(fr, fl)));
46 }

Figure 7. Vectorized version of the function starpu

the diagram that the largest share of the execution time falls on the prefun
function (36%), which contains a simple program context with one condition.
Also, a significant part of the execution time falls on the starpu function
(29%), which contains a loop nest with an unknown number of iterations.
The remaining time is divided between the three other functions guessp
(18%), sample (11%), riemann (6%).

The approaches to the vectorization of the Riemann solver functions
described in the article were implemented in the C programming language
using the intrinsics functions and tested on the Intel Xeon Phi 7290
microprocessors that are part of the computing segment knl of the MVS-10P
supercomputer located in JSCC RAS.

Performance testing was carried out on the input data arrays collected
in solving standard test problems: the Soda problem, the Lax problem, the
weak shock wave problem, the Einfeldt problem, the Woodward-Colella
problem, the Schu-Osher problem and others [18].

The diagram Figure 9 shows the effect of applying various optimizations
to each of the functions in question, as well as the total acceleration obtained

vectorization of the Riemann solver 53

prefun
36%

starpu
29%

guessp
18%

sample
11%

riemann
6%

Figure 8. The distribution of the execution time of the
Riemann solver between individual functions

prefun
36%

starpu
29%

guessp
18%

sample
11%

riemann
6%

x4.4

loops nest vectorization

total x4.4

x5.8

simple context vectorization

x1.7

conditions optimization

total x9.9

total x8.2

total x10.6

total x5.4

x5.1

simple context

vectorization

x1.6

conditions

optimization x1.4

conditions

opt.

x4.2

control

optimi-

zation

x1.8

duplicated

linear

blocks

elimi-

nation

x7.0

final speedup

Figure 9. The acceleration diagram of individual functions
and the total acceleration of the Riemann solver

as a result of vectorization.
It can be noted that the effect of the vectorization of a simple context

varies from 5.1 to 5.8 times (for the functions guessp and prefun). It should
also be noted a significant effect of the optimization of conditions (check
on the emptiness of the mask of predicates, under which the execution of the
block of operations is located). This is a fairly simple conversion, which
accelerates the code from 1.4 to 1.7 times (for the functions sample and
prefun) depending on how close the conditions are from adjacent iterations
of the vectorized loop.

Separately, the diagram emphasizes the effect of applying variable
optimization, which allowed the sample function to be accelerated 1.8 times
by merging two subtrees of the control flow graph (that is, duplicate linear
sections were removed).

54 A. A. Rybakov, S. S. Shumilin

As a result of applying all the described optimizations, it was possible
to achieve acceleration of individual sections of the program execution 10 or
more times, and the total acceleration of the entire Riemann solver was 7
times (marked with a red line in Figure 9).

7. Related works

Here is a brief comparison of the results obtained in this article with the
results of other works aimed at improving the efficiency of the Riemann
solvers on parallel architectures. At the same time, we note that although
the work did not consider the parallelization of numerical methods based
on the Riemann solver using MPI, OpenMP, as well as using graphics
accelerators, it would be wrong not to mention the works concerning these
aspects of parallelization.

The work [4] considers an algorithm for numerically solving the equations
of magnetohydrodynamics based on the approximate Riemann solver,
developed by Roe. In this case, the calculations are carried out on a block-
structured computational grid, and for parallelization using MPI, the blocks
of the grid are decomposed (cutting along one or several directions). The
results of measuring the indicator of weak scalability when using up to 16
processors are presented. This indicator is close to unity and even in some
cases exceeds it. Such a phenomenon, called superlinear scalability, can also
be found in other works devoted to the parallelization of numerical methods
of gas dynamics, for example, in [19].

The work [5] is devoted to parallelizing numerical methods based
on various approximate Riemann solvers for execution on NVIDIA Tesla
C2050 graphics accelerators. In addition to the Roe solver, the HLLE and
HLLC [20] solvers are also used. Methods are demonstrated that allow
achieving acceleration on a graphics accelerator compared to the Intel Xeon
E5530 processor by 101 times using a uniform grid. The indicators of weak
and strong scalability of a parallelized application using 32 GPUs are also
given, they amounted to 98.8% and 85.0%, respectively.

The work [6] presents the results of using the PetClaw tool (a Python
shell integrating the Clawpack computing core written in Fortran and
the PETSc library into a single parallel application) for parallelizing
hydrodynamic calculations using MPI to a large number of cores, up to 16
thousand. At the same time, a parallelization efficiency indicator close
to unity was demonstrated.

The works [7], [8] describe approaches to parallelizing computations
for modeling astrophysical flows on hybrid supercomputers equipped
with Intel Xeon Phi accelerators. In particular, 134-fold acceleration
of computational codes on one accelerator was demonstrated using multi-
threaded parallelization, as well as 75% scalability when using up to 224

vectorization of the Riemann solver 55

accelerators. The article notes that to further accelerate the application,
a vectorization of the computing core is needed and a forecast is given
to achieve 80% peak performance provided that vectorization is applied.

Closest to this work are [9], [10], in which special attention is paid to the
vectorization of the Riemann solver for the numerical solution of shallow
water equations. The work [9] presents results on acceleration of 6-7 times
when vectorizing a Riemann solver for a given single precision on Intel Xeon
Phi KNC accelerators. In [10], the vectorization method was improved
and the effect was already 2.4-6.5 in double-precision operations on Intel
Xeon Phi KNL microprocessors. However, these works use a specially
developed approximate Riemann solver for shallow water equations [21].
The implementation of this solver contains a simpler computational context
compared to the exact solver, whose vectorization is considered in the
current work. The approximate solver from [21] contains only arithmetic
operations and can be automatically vectorized after special preparation
of input parameters (grouping several solver calls into one call with vector
parameters).

Based on a comparison of current work with related work in this area, it
can be noted that the acceleration rate of the exact Riemann solver, equal
to 7 and achieved by vectorizing the program code using the AVX-512
instruction set, can be considered acceptable.

Conclusion

The paper examined approaches to vectorizing complex program contexts
using the AVX-512 instruction set. This instruction set appeared in Intel
microprocessors starting with Intel Xeon Phi KNC accelerators, and then
entered Intel Xeon Phi KNL microprocessors, Intel Xeon Skylake and beyond.
The AVX-512 instructions support predicate processing of data elements,
which allows you vectorize complex, branched program code with them.

The exact Riemann solver was used as the target task, since it has
a compact implementation but at the same time contains features that
prevent automatic vectorization by means of the compiler (function calls,
complex control, nested loops). For vectorization, an approach was used
in which several consecutive calls to the solver function were replaced with
one call with vector parameters (and with corresponding changes to the
function body). This allowed several instances of the task to be performed
simultaneously on the same processor core (the number of instances equals
the width of the vector, in this case 16).

The components of the Riemann solver were analyzed, their features
were highlighted, and a method of effective vectorization was proposed for
each of them. As a result of vectorization, acceleration was achieved more

56 A. A. Rybakov, S. S. Shumilin

than 10 times in individual sections of the solver, and the final acceleration
was 7 times on the data with single precision.

The developed methods of vectorization of a complex program context
can be used to optimize other computational problems. In particular,
at present, a team of authors of this article is developing a library aimed
at vectorization of arbitrary flat cycles, that is, cycles in which there are no
inter-iteration dependencies. In this case, the body of the loop can include
elements such as complex control, loop sockets, calls to pure functions, goto
statements, and others. The implementation of such a tool will significantly
improve the performance of calculation codes, the automatic vectorization
of which by the compiler is impossible.

The work was done at the JSCC RAS as part of the state assignment
on the topic 0065-2019-0016 (registration number AAAA-A19-119011590098-
8).

References
[1] A. G. Kulikovskiy , N. V. Pogorelov, A. Y. Semenov. Mathematical aspects

of numerical solution of hyperbolic systems, Fizmatlit, M., 2001 (in Russian),
608 pp. ↑41

[2] V. E. Borisov, Yu. G. Rykov. “An exact Riemann solver in the algorithms
for multicomponent gas dynamics”, Keldysh Institute preprints, 2018, 096
(in Russian), 28 pp. http://library.keldysh.ru/preprint.asp?id=2018-96URL: https://doi.org/10.20948/prepr-2018-96↑41

[3] S. K. Godunov, A. V. Zabrodin, M. Y. Ivanov, A. N. Krayko, G. P. Prokopov.
Numerical solution of multidimensional problems of gas dynamics, Nauka,
M., 1976 (in Russian), 400 pp. ↑41

[4] U. Shumlak, B. Udrea. An approximate Riemann solver for MHD computa-
tions on parallel architectures, AIAA-2001-2591, 15th AIAA Computational
Fluid Dynamics Conference (11 June 2001–14 June 2001, Anaheim, CA,
USA), 2001, 8 pp. https://doi.org/10.2514/6.2001-2591↑42,54

[5] H.-Y. Schive, U.-H. Zhang, T. Chiueh. “Directionally unsplit hydrodynamic
schemes with hybrid MPI/OpenMP/GPU parallelization in AMR”, Interna-
tional Journal of High Performance Computing Applications, 26:4 (2011),
pp. 367–377. https://doi.org/10.1177/1094342011428146↑42,54

[6] K. T. Mandly, A. Alghamdi, A. Ahmadia, D. I. Ketcheson, W. Scullin.
“Using Python to construct a scalable parallel nonlinear wave solver”,
Proceedings of the 10th Python in Science Conference, SCIPY 2011 (11–16
Jule 2011, Austin, Texas, USA), 2011, pp. 61–66. http://hdl.handle.net/10754/333644URL: ↑42,54

[7] I.M. Kulikov, I.G. Chernykh, E.I. Vorobyev, A.V. Snytnikov, D.V. Vins and
others. “Numerical hydrodynamics simulation of astrophysical flows at Intel
Xeon Phi supercomputers”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:4
(2016), pp. 77–97 (in Russian). https://doi.org/10.14529/cmse160406↑42,54

[8] I. Kulikov, I. Chernykh, V. Vshivkov, V. Prigarin, V. Mironov, A. Tatukov.
“The parallel hydrodynamic code for astrophysical flow with stellar equation

http://library.keldysh.ru/preprint.asp?id=2018-96
https://doi.org/10.20948/prepr-2018-96
https://doi.org/10.2514/6.2001-2591
https://doi.org/10.1177/1094342011428146
http://hdl.handle.net/10754/333644
https://doi.org/10.14529/cmse160406

vectorization of the Riemann solver 57

of state”, RuSCDays 2018: Supercomputing, Communications in Computer
and Information Science, vol. 965, Springer, Cham, 2018, pp. 414–426. https://doi.org/10.1007/978-3-030-05807-4_35

↑42,54

[9] M. Bader, A. Breuer, W. Höltz, S. Rettenberger. “Vectorization of an
augmented Riemann solver for the shallow water equations”, Proceedings
of the 2014 International Conference on High Performance Computing and
Simulation, HPCS 2014 (21–25 July 2014, Bologna, Italy), 2014, pp. 193–201.
https://doi.org/10.1109/HPCSim.2014.6903686↑42,55

[10] C. R. Ferreira, K. T. Mandli, M. Bader. “Vectorization of Riemann solvers for
the single- ans multi-layer shallow water equations”, Proceedings of the 2018
International Conference on High Performance Computing and Simulation,
HPCS 2018 (16–20 July 2018, Orleans, France), 2018, pp. 415-422. https://doi.org/10.1109/hpcs.2018.00073↑42,55

[11] V. Y. Volkonskiy, S. K. Okunev. “Predicate representation as the basis
of program optimization for architectures with pronounced parallelism”,
Informatsionnyye tekhnologii, 2003, no.4, pp. 36–45 (in Russian). ↑43

[12] A. K. Kim, V. I. Perekatov, S. G. Yermakov. Microprocessors and computing
complexes of the «Elbrus» family, Piter, Saint Petersburg, 2013 (in Russian),
273 pp. ↑43

[13] Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/
IntrinsicsGuide/. ↑44

[14] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics:
A Practical Introduction, 2nd Edition, Springer, Berlin–Heidelberg, 1999,
645 pp. ↑44

[15] A. A. Rybakov. “Optimization of the problem of conflict detection
with dangerous aircraft movement areas to execute on Intel Xeon Phi”,
Programmnyye produkty i sistemy, 30:3 (2017), pp. 524–528 (in Russian).
https://doi.org/10.15827/0236-235X.119.524-528↑49

[16] A. A. Rybakov, P. N. Telegin, B. M. Shabanov. “Cycle socket vectoring
issues using AVX-512iInstructions”, Programmnyye produkty, sistemy i
algoritmy, 2018, no.3 (in Russian), 11 pp. https://doi.org/10.15827/2311-6749.28.314↑50,51

[17] O. Krzikalla, F. Wende, M. Hohnerbach. “Dynamic SIMD vector lane
scheduling”, ISC High Performance 2016: High Performance Computing,
Lect. Notes Comput. Sci., vol. 9945, Springer, Cham, 2016, pp. 354–365. https://doi.org/10.1007/978-3-319-46079-6_25

↑50

[18] P. V. Bulat, K. N. Volkov. “One-dimensional gas dynamics problems
and their solution based on high-resolutinon finite difference schemes”,
Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i
optiki, 15:4 (2015), pp. 731–740 (in Russian). https://doi.org/10.17586/2226-1494-2015-15-4-731-740↑52

[19] L.A. Benderskiy, D.A. Lyubimov, A.A. Rybakov. “Scaling of fluid dynamic
calculations using the RANS/ILES method on supercomputer”, Trudy NIISI
RAN, 7:4 (2017), pp. 32–40 (in Russian). https://www.niisi.ru/tr/2017_T7_N4.pdfURL: https://doi.org/10.25682/NIISI.2018.4.9975↑54

[20] C. Kong. Comparison of Approximate Riemann Solvers, A dissertation
of the degree of Master of Science in Mathematical and Numerical Modeling
of the Atmoshere and Oceans, Department of Mathematics, University
of Reading, 2011. ↑54

https://doi.org/10.1007/978-3-030-05807-4_35
https://doi.org/10.1109/HPCSim.2014.6903686
https://doi.org/10.1109/hpcs.2018.00073
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.15827/0236-235X.119.524-528
https://doi.org/10.15827/2311-6749.28.314
https://doi.org/10.1007/978-3-319-46079-6_25
https://doi.org/10.17586/2226-1494-2015-15-4-731-740
https://www.niisi.ru/tr/2017_T7_N4.pdf
https://doi.org/10.25682/NIISI.2018.4.9975

58 A. A. Rybakov, S. S. Shumilin

[21] D. L. George. “Augmented Riemann solvers for the shallow water equations
over variable topography with steady states and inundation”, Journal
of Computational Physics, 227:6 (2008), pp. 3089–3113. https://doi.org/10.1016/j.jcp.2007.10.027↑55

Received 19.02.2019
Revised 10.09.2019
Published 30.09.2019

Recommended by prof. S.M. Abramov

Sample citation of this publication:
Alexey A. Rybakov, Sergey S. Shumilin. “Vectorization of the Riemann

solver using the AVX-512 instruction set”. Program Systems: Theory and
Applications, 2019, 10:3(42), pp. 41–58.
DOI: 10.25209/2079-3316-2019-10-3-41-58
URL: http://psta.psiras.ru/read/psta2019_3_41-58.pdf

The same article in Russian: DOI: 10.25209/2079-3316-2019-10-3-59-80

About the authors:

Alexey Anatoljevich Rybakov
Rybakov Alexey Anatolyevich - candidate of Physico-Mathe-
matical Sciences, leader researcher of JSCC RAS - Branch
of the Federal State Institution NIISI RAS. Research interests
include mathematical modelling of gas dynamics problems
using supercomputers, methods for constructing and managing
computational grids, discrete mathematics, graph theory,
random graph models, parallel programming, and functional
programming.

iD: 0000-0002-9755-8830
e-mail: rybakov@jscc.ru

Sergey Sergeevich Shumilin
Shumilin Sergey Sergeevich - senior engineer of JSCC RAS -
Branch of the Federal State Institution NIISI RAS. Areas
of scientific interest are machine learning, data analysis,
algorithms, parallel programming.

iD: 0000-0002-3953-7054
e-mail: shumilin@jscc.ru

Эта же статья по-русски: DOI: 10.25209/2079-3316-2019-10-3-59-80

https://doi.org/10.1016/j.jcp.2007.10.027
http://psta.psiras.ru/index_en.htm
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2019-10-3-41-58
http://psta.psiras.ru/read/psta2019_3_41-58.pdf
http://psta.psiras.ru/read/psta2019_3_59-80.pdf
http://doi.org/10.25209/2079-3316-2019-10-3-59-80
https://orcid.org/0000-0002-9755-8830
mailto:rybakov@jscc.ru
https://orcid.org/0000-0002-3953-7054
mailto:shumilin@jscc.ru
http://psta.psiras.ru/read/psta2019_3_59-80.pdf
http://doi.org/10.25209/2079-3316-2019-10-3-59-80

	Introduction
	1. Features of the AVX-512 instruction set
	2. Description of the Riemann Solver
	3. Simple context vectorization
	4. Vectorization of highly branched conditions
	5. Loop nests vectorization
	6. Results analysis
	7. Related works
	Conclusion
	References

