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The use of an adaptive mesh based on a quadtree for
modeling the final state of a quantum field system

under pulsed external action

Abstract.
The success of using mathematical models that determine the behavior of

quantum field systems in parametric spaces critically depends on the level of
optimization of the procedure of finding the solution. The paper considers the
problem of calculating the density of carriers arising in graphene as a result of the
action of a pulsed electric field. The basis of the model is a system of kinetic
equations that provide the calculation of the residual distribution function. Its
integration over momentum space gives the desired carrier density.

The problem lies in the high computational complexity of covering the
momentum space with a uniform mesh, which provides an accurate calculation
of the density for various parameters of the field momentum. Moreover, the
model does not contain criteria for determining satisfactory mesh parameters.
The article proposes and implements a procedure for constructing an adaptive
mesh in the form of a quadtree having a variable size of covering squares. The
procedure is iterative and combined with the process of calculating the values of
the distribution function.
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Introduction

Modeling the response processes of graphene to the action of an
external electric field makes it possible to evaluate the characteristics of
promising solutions based on this material for a wide range of frequencies,
intensities, and pulse durations [1–4]. The inclusion of an external field
starts the process of the creation of free carriers and their subsequent
evolution. Their momentum determines the properties of carriers. Due to
the two-dimensionality of the system under consideration, the momentum
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space (the space of wave vectors) is also two-dimensional. In the simplest
case, we can assume that before the external field is turned on, this
space is empty, and the states in it begin to populate as a result of
the electric field. Since, in the case under consideration, the carriers
obey Fermi statistics, any of the states can be occupied by only one
quasiparticle. The process of the population of states is probabilistic by
nature, and it is convenient to describe it by the distribution function
0 ≤ f(p1, p2, t) ≤ 1, which represents the probability of detecting the
state {p1, p2} populated at time t. The process model used determines
the procedure for calculating f(p1, p2, t) for the selected point of the
momentum space −π ≤ p1 ≤ π,−π ≤ p2 ≤ π (first Brillouin zone) [5–7].
The procedure implements a numerical solution of the quantum kinetic
equation formulated as a system of ordinary differential equations. It is
universal for any point in the momentum space and parameters of the
external field.1

The observed characteristics of the simulated process are determined
by averaging over the calculated f(p1, p2, t). For example, to determine the
surface density of carriers, it is necessary to calculate an integral of the
form: n(t) = g

∫︁
f(p1, p2, t)dp1dp2, where g is a constant normalization

coefficient. To calculate integrals of this kind, we need a fairly detailed
knowledge of the behavior of the distribution function in the entire domain.
The regular meshes with a constant step do not provide an optimal solution
in this case [8]. The article demonstrates the capabilities of the procedure
for constructing a regular mesh with a variable step, chosen taking into
account the nature of the behavior of the distribution function. We consider
only the final state of the distribution function when, after switching off
the external field, the evolution in the system became frozen, and the
distribution function ceases to depend on time.

1. Carrier distribution function behavior in momentum space

The space of states considered in this formalism, although limited
by the first Brillouin zone, is very large from a physical point of view.
Its complete occupation would ensure the carrier density at the level
of nmax = 1.32 × 1016 1/cm2 which is unattainable for many reasons
(primarily, due to the presence of dissipative processes). The values
obtained by modeling realistic situations are several orders of magnitude less
than n ≪ nmax. In general, it does not follow from this that (∀{p1, p2})
(f(p1, p2) ≪ 1), i.e. the distribution function can take on sufficiently large
values of f(p1, p2) ≈ 1 in some areas of the state space. If so, then in most
of the state space f(p1, p2) ≈ 0 and they do not contribute to the integral
characteristics.
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Figure 1. Distribution function f(p1, p2) after the action of
the pulse field with parameters: duration 2× 10−12 s, carrier
frequency 2× 1012 Hz, amplitude 3× 104 V/cm

As an example, consider the procedure for simulating the action of
a short electric field pulse with parameters corresponding to those used
in [2]. Figure 1 shows the results of calculating the residual distribution
function formed during the pulse.1

The figure is built on a regular mesh with a constant step of 222× 46
for the region −0.1105 ≤ p1 ≤ 0.1105,−0.0225 ≤ p2 ≤ 0.0225 [9]. All
non-zero values of the distribution function are localized in this region,
although it occupies only 2.519× 10−4 part of the first Brillouin zone.
The figure shows a very complex behavior of the distribution function
with a large number of local peaks with values of f(p1, p2) ≈ 1, which are
adjacent to the regions of small values of f(p1, p2) ≈ 0.

More detailed information on the features of the forms of the distribution
function is collected in [7]. Based on the data presented there, we can
conclude that when changing the parameters of the external acting
field (amplitude, duration, nature of the dependence on time), both the
localization region and the form of the dependence f(p1, p2) vary within
a vast range. In each case, it is necessary to solve two partially independent
tasks to determine them. The first is to remove from consideration areas
with near-zero values that do not make a significant contribution to the
observed values with minimal resources. The second is to restore f(p1, p2)
in the localization region with the given accuracy.

When using regular meshes with a constant step, specialists usually
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implement this procedure by a sequence of meshes of various sizes and
densities with an analysis of the results of each iteration. To automate this
procedure, we propose a mechanism for constructing an adaptive regular
mesh with a variable step.

2. Adaptive mesh algorithm

Step bisection is usual when solving the problem of optimizing the
numerical integration procedure. For example, when using the Runge rule
to estimate the error of quadrature formulas and in adaptive algorithms.
This procedure is generalized to two-dimensional and three-dimensional
cases by using quad - and octo - trees. For the two-dimensional space
(p1, p2) under consideration, the quadtree allows us to determine its
complete coverage by squares whose aspect ratio belongs to a series of
values 2N , where N = 1, 2, 3... is a series of natural numbers. The value of
the function within each such square is taken equal to its value at the
central point.

To ensure universality when working with arbitrary parameters of the
simulated process, the adaptive mesh construction area should be the entire
first Brillouin zone −π ≤ p1 ≤ π,−π ≤ p2 ≤ π. It acts as the root of the
quadtree. Strictly speaking, the value of the distribution function for
the root must be estimated at point p1 = 0, p2 = 0. However, there is
a singularity at this point in the method of determining the coefficients
of the system of equations used. The problem can be circumvented by
introducing a very small offset δ ≪ 2π from the center of the Brillouin zone.
In the case of constructing a quadtree with the number of generations
N , the offset should be dangerously small δ ≪ 2π/2N . In the version of
the algorithm adopted for implementation, we abandon this method of
circumventing the singularity and simply exclude the root node from
consideration, placing it exactly at the point p1 = 0, p2 = 0. An additional
advantage is a guarantee that the nodes of the older generations will never
find themselves at this problem point.

We construct the adaptive mesh by phasing up (squaring) its selected
elements. Non-split elements are leaves of a quadtree. Elements on which
the partitioning procedure was performed are intermediate nodes. The
selection criteria for the elements to be further partitioned will play
a key role in the success of the algorithm. Each step of the algorithm
will translate part of the leaves of the last generation into the status of
intermediate nodes, building on them the leaves of the new generation and
complete with the calculation of the distribution function values in the
fresh leaves.
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Figure 2. Versions of the clusters of five non-zero values on
a regular mesh with a constant step

At the initial stage of tree construction, the probability is rather high
that in all existing nodes and leaves, the value of the distribution function
is zero. In this case, there is no need for a point-by-point analysis of the
values of the function, and you can immediately generate a new generation
for all points of the previous generation. This means a transition at each
such step to a new regular uniform square mesh with a half-reduced step
h → h/2. At the same time, the nodes of the old mesh are not included
in the new one. There is some inefficiency in this, but, on the other hand,
we more efficiently and quickly examine the behavior of a function in the
parameter space.

At some point i, non-zero values will be detected. Each such non-zero
value indicates a hit in the area, information about which will need
to be detailed. But if areas of non-zero values are scattered over the
momentum space and are small, some of them can be skipped on meshes
with a relatively large step. It is necessary to be sure that the achieved
mesh step hi is less than the characteristic scale of the Ld domains in which
the distribution function takes non-zero values. If there is an estimate of
Ld, then the implemented procedure starts immediately with a square
mesh with some step hN = 2π/2N ≲ Ld.

Unfortunately, at present, there are no reliable theoretical estimates
of the relationship of the parameters of the simulated process with the
dimensions of these domains. Criteria can be defined that allow, based on
the results of calculating the distribution function on some uniform mesh,
to consider that all (or almost all) regions have been found that make
a significant contribution to the integral characteristics. For example, they
can base on the formation of clusters of non-zero points in such areas. As
the softest option, one can consider the appearance of at least one cluster
of at least 5 points, the distance between which does not exceed 2

√
2hi

(figure 2). More stringent will be the requirement that there are no single
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mesh points with non-zero values. The selection of the optimal variant of
this type of criterion requires additional research.

After the uniform mesh reaches sufficient density, a transition to
its adaptation by a local change in step is performed. The purpose of
adaptation is to provide a fairly accurate approximation of the distribution
function. As the simplest option, an adaptation procedure was implemented,
based on the estimation of accuracy using a linear approximation. The
procedure is implemented locally in the sense that the estimates are
performed within the same branch and use points of only the last two
generations.

Globality is provided at the initial iteration when the data for two
complete lattices of the last generations are analyzed. Then, at each
iteration with the number i, all the nodal points of the generation i− 1
are considered (we conditionally identify the iteration number with the
last generation number of leaves in the quadtree). The fact that these
points are nodal (not leaves) means that at the previous iteration, the
quality of the approximation of the distribution function for this point was
unsatisfactory and its leaves were added to the mesh. For each of these
points, the distribution function of each of the 4 leaves is considered. For
each of these points, consider the distribution function of each of the four
leaves. The reason for further splitting of each leaf is:
(1) Zero value for the sheet with a non-zero value of the parent node;
(2) A non-zero value for the sheet with zero value of the parent node;
(3) Poor approximation of the value of the opposite sheet by the non-zero

values of the considered sheet and the parent node.
The mesh adaptation continues until the nodes in which the above

conditions are satisfied are exhausted or until some specified minimum
mesh step hmin is reached.

3. Demonstration on the example of modeling the action of
a single pulse

As an example of a demonstration of the proposed approach, we
consider modeling the results of the action of a pulsed electric field of the
form

E1(t) = E01 cos(2πνt) exp
(︂
− t2

2( σ
2πν )

2

)︂
, E2(t) = 0.(1)

In this case, the field has a constant direction of action with which the
direction of the first coordinate axis is associated. The amplitude value of
the field E01 is taken to be 300 V/cm, the frequency is ν = 2 THz, and the
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Figure 3. Distribution function f(p1, p2) after the termination
of the action of a field pulse with parameters: duration
2×10−12 s, carrier frequency 2×1012 Hz, amplitude 3×102 V/cm.

parameter σ, which determines the characteristic pulse duration of σ/2πν,
is 6.

The distribution function obtained by modeling with such parameters
in the range −0.00402 ≤ p1 ≤ 0.00402, −0.00402 ≤ p2 ≤ 0.00402 on
a regular square mesh with a constant step of 202× 202 is shown in figure 3.
The main difference between these parameters and the case shown above
in figure 1 is the field amplitude that is two orders of magnitude smaller.
Nevertheless, this leads to a very radical change in the shape of the
distribution function and the area of localization. On the one hand, this is
an additional demonstration of the thesis about the variability of the shape
of the distribution function; on the other hand, its simplification, in this
case, allows us to more clearly illustrate the construction of a mesh with
a variable step.

The procedure begins by considering the entire domain of definition of
f(p1, p2). A quadtree containing seven generations of nodes was built
for her. For each generation, a complete uniform mesh was constructed,
since at all iterations including the last seventh generation, there were
only zero values in the nodes (hereinafter, non-zero values are considered
f(p1, p2) > 1.0× 10−5). In total, the distribution function values were
calculated for 21844 points. The seventh-generation mesh step was 0.049024.
From the preliminary data on the behavior of the distribution function
(figure 3) it is clear that this is the expected result since the localization
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Figure 4. Non-zero values of the distribution function
in generations 5, 6 and 7

region is more than an order of magnitude smaller than the achieved
minimum mesh step. Therefore, it is necessary to continue squaring the
mesh until non-zero values are detected.

But with the achieved size of the quadtree, the procedure for analyzing
the results of each iteration and formatting the data in a sequential
implementation becomes more and more time-consuming. The transition to
parallel implementation of such a search is natural. Due to the independence
of the search procedure for any branch of the quadtree, such parallelization
can be implemented at any stage if the corresponding computing resources
are available.

The parallelization is further assumed to be performed when the
last current generation reaches the quadtree of size 32× 32 = 1024. As
a result, it becomes possible to search in each of the 1024 areas of size
2π/32× 2π/32 independently. However, it should be borne in mind that
such a search is not completely independent. The results of each iteration
for all areas should be compared. If at least in one region non-zero values
are found that satisfy the criteria discussed above, the global search is
terminated.

At the next stage, only one region 2π/32× 2π/32 in the center of the
Brillouin zone was considered. For her, a new quadtree is being built,
which is a continuation of part of the original. The first four non-zero
values appear in it in the fifth generation. Figure 4 for the central region
−0.006128 ≤ p1 ≤ 0.006128,−0.006128 ≤ p2 ≤ 0.006128 shows these
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Figure 5. Non-zero values of the distribution function
(f(p1, p2) > 1.0× 10−5) on a mesh with cell size 0.000766×
0.000766. The sizes of the points are proportional to the value of
the distribution function.

points and points with non-zero values of the sixth and seventh generations
(there are 8 and 20 respectively).

The solid-mesh work is completed on the next generation with a covering
square of 0.000766× 0.000766. The result of calculating the distribution
function values on this mesh is shown in figure 5. The number of not zero
points is 132, and the maximum value of the distribution function reaches
0.7425. In contrast to the previous one, in this figure, the points have five
sizes in accordance with the function falling into the intervals of values
with the boundaries 1.0, 10−1, 10−2, 10−3, 10−4, 10−5.

At this stage, it was assumed that the distribution function is localized
in the region shown in figures 4 and 5. In total, values for 341 points were
determined in this area (of which 176 are not zero).

Further adaptation of the mesh was carried out in five stages, i.e., five
more generations of nodes were built according to the procedure described
above, but now they were completed only in the areas of transition to zero
values and high gradients of the distribution function. Figures 6 and 7
show the results of the first (+288 points) and second (+384 points) stages
(only points with non-zero values). The sizes of the points are also ranked
in accordance with the values of the distribution function in them, but with
a smaller scale. At the next three stages, 272, 176 and 176 points were
completed and counted, respectively. At the last stage, the step of the
completed mesh became smaller than the step of a homogeneous mesh, the
results of which are shown in figure 3.

The target parameter for evaluating the quality of the mesh was
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Figure 6. The first stage of mesh adaptation
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Figure 7. The second stage of mesh adaptation

the carrier density calculated at each stage. The reference value was
1.01278 × 109 1/cm2, obtained on a homogeneous mesh. The results
presented in Table 1 show that the target integral value converges quickly
and stably. Already on meshes of the order of a thousand nodes, the test
value obtained on a uniform mesh of 40804 nodes is well reproduced. It
seems interesting to study in detail the behavior of integral characteristics
calculated on adaptive meshes of the type presented.

Conclusion

A similar problem appears in modeling the processes of production of
electron-positron pairs in quantum electrodynamics (QED), [10–12]. In the
general statement in the case of QED, the problem is three-dimensional. In
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Table 1. The results of calculating the density of carriers on
different meshs

Used mesh Carrier density
1/cm2

Uniform mesh 202× 202 = 40804 nodes 1.012780× 109

Quadro tree in the area of localization 341 nodes 0.967066× 109

First step of adaptation 341 + 288 = 629 nodes 1.002584× 109

Second step of adaptation 629 + 384 = 1013 nodes 1.013377× 109

Third step of adaptation 1013 + 272 = 1285 nodes 1.014233× 109

Fourth step of adaptation 1285 + 176 = 1461 nodes 1.014268× 109

Fifth step of adaptation 1461 + 176 = 1637 nodes 1.014269× 109

this case, the construction of an adaptive mesh is possible by a similar
algorithm in the octree format. But there is a large class of problems
in which, due to various types of symmetries of the external field, it is
possible to limit oneself to two dimensions, for example, [13,14]. In these
cases, the solution proposed in this paper is applicable with minimal
modifications.

The presented results make it possible to accelerate and automate
the procedure for constructing computational meshes for numerical
simulation of carrier generation processes in two-dimensional media (or for
two-dimensional problems in three-dimensional media). The proposed
approach has great potential for developing the procedures used and
improving methods for evaluating the results obtained. The paper contains
results of testing and evaluation on the example of the problem of modeling
the reaction of graphene to the action of an external electric field with
realistic parameters.
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