
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 11, No 3(46), pp. 61–84

CSCSTI 50.09.31, 50.33.04
UDC 004.222+004.272.25

Konstantin Isupov, Vladimir Knyazkov

Multiple-precision matrix-vector multiplication on
graphics processing units

Abstract. We are considering a parallel implementation of matrix-vector
multiplication (GEMV, Level 2 of the BLAS) for graphics processing units (GPUs)
using multiple-precision arithmetic based on the residue number system. In our
GEMV implementation, element-wise operations with multiple-precision vectors
and matrices consist of several parts, each of which is calculated by a separate
CUDA kernel. This feature eliminates branch divergence when performing
sequential parts of multiple-precision operations and allows the full utilization
of the GPU’s resources. An efficient data structure for storing arrays with
multiple-precision entries provides a coalesced access pattern to the GPU global
memory. We have performed a rounding error analysis and derived error bounds
for the proposed GEMV implementation. Experimental results show the high
efficiency of the proposed solution compared to existing high-precision packages
deployed on GPU.

Key words and phrases: multiple-precision computations, BLAS, GEMV, parallel algorithms,
CUDA, GPU, residue number system.

2020 Mathematics Subject Classification: 68W10; 65F30, 68Q85

Introduction

Floating-point operations have rounding errors that occur directly
during calculations. Such errors are natural due to the limited length
of the significand in the single-precision (binary32) and double-precision
(binary64) IEEE 754 formats. For many applications, these errors do
not prevent obtaining the correct calculation result. Moreover, for some
applications such as deep learning, the best option is to use lower precision
formats, e.g., the half-precision format [1]. At the same time, there

This work was supported by the Russian Science Foundation, grant number 18-71-00063.

© K. Isupov(1), V. Knyazkov(2), 2020
© Vyatka State University(1), 2020
© Penza State University(2), 2020

© Program Systems: Theory and Applications (design), 2020 CC-BY-4.0

http://psta.psiras.ru/index_en.htm
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2020-11-3-61-84&domain=pdf&date_stamp=2020-08-20
http://scs.viniti.ru/rubtree/main.aspx?tree=RGNTI
http://scs.viniti.ru/udc/
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W10
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=65F30
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68Q85
http://www.vyatsu.ru
http://international.pnzgu.ru/
http://psta.psiras.ru/index_en.htm
https://creativecommons.org/licenses/by/4.0/

62 Konstantin Isupov, Vladimir Knyazkov

are currently many applications sensitive to rounding errors, and the
accuracy of the standard formats is not enough for these applications [2–7].
Such applications use multiple-precision arithmetic libraries that provide
operations with numbers whose digits of precision exceed the standard
formats and in the general case are limited only by the available system
memory.

Well-known multiple-precision libraries include GMP, MPFR, MPIR,
and MPDECIMAL. These and many other libraries assume systems
with central processing units (CPUs). However, applications requiring
multiple-precision computations are often extremely resource-intensive
and can be accelerated using massively parallel processing units such as
graphics processing units (GPUs).

A modern graphics processing unit is actually an array of streaming
multiprocessors (SMs), each of which contains many streaming processors.
Massive parallelism of the GPU is achieved by replication of a common SM
architecture, and each streaming processor can simultaneously execute the
same instruction on different data. In 2007, NVIDIA released the Compute
Unified Device Architecture (CUDA). Programmers have achieved parallel
algorithms through C-like language without the need for any complex
graphics programming [8]. Recent versions of GPUs, such as NVIDIA Tesla
V100, offer up to 100 CPUs in a single GPU, making them an efficient tool
for resource-intensive computing.

In this article, we consider a parallel implementation of matrix-vector
multiplication (GEMV) with multiple precision for CUDA-compatible
GPUs. GEMV is part of Level 2 of the Basic Linear Algebra Subprogram
(BLAS) library [9] and performs one of the following operations:

y ← αAx+ βy or y ← αATx+ βy.(1)

where A is a dense M by N matrix, x and y are vectors, and α and β
are scalars. Along with other BLAS functions, GEMV is an important
building block for many linear algebra algorithms, such as linear system
and eigenvalue solvers.

One common strategy for optimizing GPU-based linear algebra
calculations is blocking, according to which the matrix (or vector) divides
into small parts that are loaded once into the GPU’s shared memory and
then reused in arithmetic operations [10]. The goal is to reduce global
memory accesses. However, when working with multiple-precision numbers,
intensive use of shared memory (as well as registers) is often not efficient.
The reason is that if the size of each multiple-precision number is too large,

Multiple-precision matrix-vector multiplication on GPUs 63

Figure 1. Parallel arithmetic properties of the RNS.

then the scalability and performance of CUDA kernels drops significantly.
Our implementation follows the approach proposed in [11], according
to which each multiple-precision arithmetic operation divide into several
parts. A separate CUDA kernel performs each piece with its configuration;
all digits of multiple-precision numbers are calculated in parallel. This
approach leads to an increase in the number of global memory accesses. It
provides high performance and good scalability of computations with high
precision on GPUs compared to the traditional paradigm where each
multiple-precision arithmetic operation is performed as a single thread.
To implement this approach, we use the residue number system (RNS) [12].

In RNS, a number is represented by its residues modulo a set of moduli
called the base. The base bit width denotes the sum of the bit sizes
of all moduli [13]. The residues are mutually independent. For addition,
subtraction, and multiplication, the calculations with each residue are
performed in the ring of integers modulo the corresponding modulus (see
Figure 1), so that carry chains between the residues are eliminated. This
approach allows one to compute all residues in a parallel manner.

The rest of the paper is structured as follows. Section 1 gives a brief
overview of related work. Section 2 describes a format for representing
multiple-precision numbers. Section 3 provides a data structure and
layout for storing multiple-precision arrays in the GPU memory. Section 4
discusses algorithms and details of the proposed GEMV implementation,
and Section 5 evaluates its accuracy. Experimental results are presented
in Section 6. Conclusions and further research are presented in the last
section of the paper.

1. High-Precision Computations and BLAS for GPU

Multiplication of a dense matrix by a vector (BLAS routines GEMV,
SYMV, and TRMV) often occurs in scientific computing applications. The

64 Konstantin Isupov, Vladimir Knyazkov

literature discusses the implementation of these operations for GPUs in
IEEE 754 floating-point arithmetic [10,14–16]. On the other hand, there are
studies on the implementation of high-precision BLAS operations for GPUs.
There are also studies that consider accurate BLAS implementations for
GPUs [11,17–19].

One approach to get higher precision and accuracy is to use floating-
point expansions when an extended-precision number is represented
as an unevaluated sum of several ordinary floating-point numbers. An
example of such an extension is the well-known double-double format. Here
each extended-precision number comes as an unevaluated sum of two
double-precision (binary64) numbers. This presentation corresponds
to quadruple precision (at least 106 bits of significand). In turn, the
quad-double format is capable of representing 212 bits of significand
(octuple precision) by using four binary64 numbers to represent each
extended precision number [20]. Algorithms for computing floating-point
expansions are called error-free transformations [21,22]. Double-double
arithmetic is used in several packages, including the QPBLAS-GPU
package [17].

In [18], Iakymchuk et al. introduced ExBLAS, a package of optimized
linear algebra operations that provides reproducible results. Reproducibility
is defined as the ability to obtain a bit-wise identical result from multiple
runs of the code on the same input data. To ensure reproducibility,
ExBLAS uses error-free transformations and long fixed-point accumulators
that can represent every bit of information of the input floating-point
format (binary64). The use of long accumulators provides the replacement
of non-associative floating-point operations with fixed-point operations that
are associative. ExBLAS contains a number of accurate and reproducible
linear algebra operations for CPUs, Intel Xeon Phi coprocessors, as well as
NVIDIA and AMD GPUs.

A recent study [19] presents optimized CUDA implementations of the
DOT, GEMV, GEMM, and SpMV operations, which are included in the
BLAS-DOT2 package. In these implementations, internal floating-point
operations are performed with at least 2-fold the precision of the input and
output data precision, namely, for binary32 data, the computation is
performed using the binary64 format. In contrast, for binary64 data, the
calculation is performed using the Dot2 algorithm [23], which is based
on error-free transformations.

There are also several arithmetic libraries supporting extended
or multiple precision on GPUs. In particular, the double-double and

Multiple-precision matrix-vector multiplication on GPUs 65

quad-double formats are supported in GQD [24], which allows one to
perform basic arithmetic operations and several mathematical functions
with extended precision, such as square root, logarithm, exponent, and
trigonometric functions. GQD mainly uses the same algorithms as the QD
library for CPUs1. To represent extended precision numbers, GQD uses the
vector types double2 and double4 available in CUDA.

CAMPARY [25] uses n-term floating-point expansions and provides
flexible CPU and GPU implementations of multiple-precision arithmetic
operations. Both the binary64 and the binary32 formats can be used as
basic blocks for the floating-point expansion, and the precision (expansion
size) is specified as a template parameter. In CAMPARY, each addition
and multiplication of n-term expansions generally requires 3n2 + 10n− 4
and 2n3 + 2n2 + 6n− 4 standard floating-point operations, respectively,
and optimized algorithms are used for double-double arithmetic, i.e., in the
case of two-term expansions.

GARPREC [24] and CUMP [26] support arbitrary precision on
GPUs using the so-called “multi-digit” format. This format stores
a multiple-precision number with a sequence of digits coupled with a single
exponent. The digits are themselves machine integers. The GARPREC
algorithms are similar to those implemented in the ARPREC package1 for
CPUs, whereas CUMP is based on GMP (GNU MP Bignum Library)2.
Most functions from CUMP have a GMP-like regular interface. In both
GARPREC and CUMP, each multiple-precision operation is implemented
as a single thread; an interval memory layout is used to exploit the GPU’s
coalesced access feature.

In [11], the present authors have proposed new algorithms for multiple-
precision arithmetic based on RNS, and also algorithms for parallel
computations with multiple-precision vectors using GPU. Subsequently, the
later ones were adapted for dense matrices. All these algorithms are used
in MPRES-BLAS, a new library of basic linear algebra operations with
multiple precision for GPUs. Our experiments have shown that, in many
cases, MPRES-BLAS has better performance than implementations based
on existing high-precision packages for CPU and GPU. The GEMV
implementation presented in this paper is part of MPRES-BLAS.

Table 1 summarizes the software packages considered and provides
links to the source code.

1https://www.davidhbailey.com/dhbsoftware
2https://gmplib.org

https://www.davidhbailey.com/dhbsoftware
https://gmplib.org

66 Konstantin Isupov, Vladimir Knyazkov

Table 1. Software for accurate and/or higher precision
computations using GPUs

Package Reference Source code

QPBLAS-GPU [17] https://ccse.jaea.go.jp/software/QPBLAS-GPU

ExBLAS [18] https://github.com/riakymch/exblas

BLAS-DOT2 [19] http://www.math.twcu.ac.jp/ogita/post-k/results.html

GQD [24] https://code.google.com/archive/p/gpuprec

CAMPARY [25] http://homepages.laas.fr/mmjoldes/campary

GARPREC [24] https://code.google.com/archive/p/gpuprec

CUMP [26] https://github.com/skystar0227/CUMP

MPRES-BLAS [11] https://github.com/kisupov/mpres-blas

2. Representation of arbitrary length floating-point numbers using
RNS

A residue number system is defined by a set of n coprime integers
(moduli) {m1,m2, . . . ,mn}. The dynamic range of the RNS is specified by
the moduli product 3

M = m1 ·m2 · · · · ·mn.(2)

An integer X ∈ [0,M− 1] is uniquely represented in RNS by the residues
(x1, x2, . . . , xn), where xi = |X|mi denotes the operation X mod mi. The
conversion from the RNS representation to binary is usually performed
using the Chinese Remainder Theorem (CRT) [12]:

X =

⃓⃓⃓⃓
⃓

n∑︂
i=1

Mi |xiwi|mi

⃓⃓⃓⃓
⃓
M

,(3)

where Mi and wi are the constants such that Mi =M/mi and wi is the
modulo mi multiplicative inverse4 ofMi.

Unlike the addition, subtraction and multiplication operations that are
performed in RNS in parallel on all residues, the operations of comparison
(unless both numbers that need to be compared are equal), overflow
detection, sign detection, scaling, and division are time-consuming in RNS.

3The symbol M is usually used to denote the product of RNS moduli. We refer to
this product as M in this paper to avoid confusion with the number of matrix rows.

4If x is a non-zero integer, then y is said to be the modulo m multiplicative inverse
of x if |x× y|m = 1.

https://ccse.jaea.go.jp/software/QPBLAS-GPU
https://github.com/riakymch/exblas
http://www.math.twcu.ac.jp/ogita/post-k/results.html
https://code.google.com/archive/p/gpuprec
http://homepages.laas.fr/mmjoldes/campary
https://code.google.com/archive/p/gpuprec
https://github.com/skystar0227/CUMP
https://github.com/kisupov/mpres-blas

Multiple-precision matrix-vector multiplication on GPUs 67

These operations are often referred to as “non-modular” operations. When
the dynamic range of an RNS consists of hundreds or thousands of bits,
the classical CRT-based method of performing non-modular operations
becomes inefficient. For this reason, we use an alternative method for
implementing non-modular operations, which is based on computing the
interval evaluation of the fractional representation of an RNS number [27].
For X given by the residues (x1, x2, . . . , xn), the fractional representation
(relative value) is calculated as follows:

X

M
=

⃓⃓⃓⃓
⃓

n∑︂
i=1

|xiwi|mi

mi

⃓⃓⃓⃓
⃓
1

.(4)

The interval evaluation for X/M is denoted by I(X/M) = [X/M, X/M]

and represents an interval such that X/M≤ X/M≤ X/M. The bounds
of this interval, X/M and X/M, are working precision floating-point
numbers. No matter what the size of the RNS moduli set and dynamic
range, only standard arithmetic operations are required to compute X/M
and X/M. Using interval evaluations, efficient algorithms have been
developed for implementing a number of non-modular operations in the
RNS, such as number comparison and division [27].

In our multiple-precision format, a number is represented as follows:

x = (−1)s ×

⃓⃓⃓⃓
⃓

n∑︂
i=1

Mi |xiwi|mi

⃓⃓⃓⃓
⃓
M

× 2e,(5)

where s ∈ {0, 1} is the sign, e is the integer exponent, and x1, x2, . . . , xn

are the digits (residues) of the significand X. The significand represented in
the RNS and can take values from 0 toM− 1. Each digit xi = X mod mi

is a signed integer.
As additional information, the interval evaluation of the significand

(I(X/M)) is included in the number format. It allows one to implement
efficient comparison, calculation of the sign, exponent alignment, and check
of the need for rounding.

In previous papers of the authors, various methods of performing
arithmetic operations with numbers of the form (5) were considered.
In [11], improved algorithms are proposed for multiple-precision addition
and multiplication, and the following relative error bound is derived. If
fl(x ◦ y) is the rounded result of an operation ◦ ∈ {+,−,×} with numbers

68 Konstantin Isupov, Vladimir Knyazkov

Table 2. Specification of the mp_array_t structure for storing
an array of multiple-precision numbers. Symbols n and L

denote the size of the RNS moduli set and the length of the
array, respectively.

Structure
member Description

digits
Anintegerarrayof sizen×L thatstores thedigitsofmultiple-precision
significands. All the digits belonging to the same multiple-precision
number are arranged consecutively in the memory.

sign An integer array of size L that stores the signs of numbers.
exp An integer array of size L that stores the exponents of numbers.

eval

An array of floating-point numbers with extended exponents that
stores the interval evaluations of significands. The size of the array
is 2L, and the first L elements represent the lower bounds of the
interval evaluations, while the second L elements represent the
upper ones.

buf

An array (buffer) of length L whose elements are numbers of the
int4 type from the standard CUDA C/C++ headers. This buffer is
used in addition and subtraction to transfer auxiliary variables
between CUDA kernels.

len

The number of items that the multiple-precision array holds,
i.e. L. For a vector of length N , the array must contain at least
(1 + (N − 1)× |incx|) items, where incx specifies the stride for the
items. For a matrix of size M ×N , the array must contain at least
LDA×N items, where LDA specifies the leading dimension of the
matrix; the value of LDA must be at least max (1,M).

of the form (5), then

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| < u, u < 4/
√
M.(6)

In Section 5, we use (6) to evaluate the accuracy of the implemented
matrix-vector multiplication function.

3. Data layout

Our GEMV supports the column major format for storing matrices,
which is standard for the BLAS and LAPACK libraries [14]. In order to
ensure the coalesced global memory access, an array of multiple-precision
numbers (vector or matrix) is stored as an instance of the mp_array_t
structure, which is described in Table 2.

Multiple-precision matrix-vector multiplication on GPUs 69

Figure 2. Storage layout of a 3× 4 multiple-precision matrix
(LDA = 4) in the GPU memory.

Figure 2 illustrates the column major layout of a 3×4 multiple-precision
matrix. In this example, n = 4, i.e. the significand of each element aij
consists of four digits: X = (x1, x2, x3, x4). We use the dot symbol (.) to
access the parts of a multiple-precision number. The symbols lo and up

denote the lower and upper bounds of the interval evaluation so that
lo := X/M and up := X/M.

70 Konstantin Isupov, Vladimir Knyazkov

Figure 3. Performing entrywise operations with multiple-
precision arrays using GPU.

4. Algorithms for implementing GEMV on GPUs

In [11], the present authors have proposed algorithms for computations
with multiple-precision vectors specially designed for GPUs. In these
algorithms, arithmetic operations are split into three parts, each of which is
executed as a separate CUDA kernel. The parts are as follows:

• computing the signs, exponents, and interval evaluations;
• computing the significands in the RNS;
• rounding the results.

Such a decomposition (see Figure 3) allows one to eliminate branch
divergence when performing sequential parts of arithmetic operations with
multiple-precision numbers. Furthermore, each CUDA kernel has its own
execution configuration (the number of thread blocks and the size of each
block) which makes it possible to use all available GPU resources. This
approach underlies our GEMV implementation, which is described in
Algorithm 1.

As shown in Figure 3, each step in Algorithm 1, except for step 4,
consists of running three CUDA kernels. Step 4 is executed by a single
kernel, since each multiple-precision addition at this step is computed
serially, not in parallel across different RNS moduli.

Thus, performing our multiple-precision GEMV on a GPU involves
launching a total of ten CUDA kernels. It is worth noting that the
overheads associated with these launches do not significantly contribute to

Multiple-precision matrix-vector multiplication on GPUs 71

Algorithm 1. Multiple-precision GEMV

1: The vector x is multiplied by the scalar α: d← αx. To store the result vector
d, a buffer in the global GPU memory is used.

2: The vector y is multiplied by the scalar β: y ← βy.
3: The vector d is considered as the main diagonal of the matrix D:

d = (d1, d2, d3 . . . , dL) → D =


d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dL

 ,(7)

where L = N for the non-transposed matrix and L = M for the transposed
one. At this step, the matrix A is scaled on the left side or the right side
(depending on the operation to be performed) by the diagonal matrix D.
Right-side scaling (B ← AD) consists in multiplying each ith column of the
matrix A by the corresponding diagonal element di. In turn, left-side scaling
(B ← DA) consists in multiplying each ith row of the matrix A by di. As
a result, an intermediate matrix B of size M ×N is computed, which is stored
in a buffer in the global GPU memory.

4: The elements of matrix B are summed by rows or by columns (depending on the
operation to be performed), and βy is added to the calculated vector of sums.

the total computation time, even with small matrices. This is because the
multiple-precision operations are themselves quite expensive.

In steps 1 and 2 of Algorithm 1, the multiplication of vectors by scalars
can be performed using the SCAL function (Level 1 BLAS). A parallel
CUDA implementation of SCAL with numbers of the form (5) is given
in [11], so in this section we consider in details only steps 3 and 4. Since
different computational schemes are used for the non-transposed and
transposed matrix, these cases are considered separately.

4.1. The case of non-transposed matrix

The calculation of y ← αAx+ βy is illustrated in Figure 4. Each
column of the matrix B is obtained by multiplying the corresponding
column of the matrix A by one element of the vector d = αx, i.e., the
right-side scaling is performed by the diagonal matrix D. Then the sum
of the elements of the matrix B in each row is computed, and the ith
element of the vector βy is added to the ith computed sum.

72 Konstantin Isupov, Vladimir Knyazkov

Figure 4. Performing GEMV for non-transposed matrix A

Construction of matrix B

As indicated above, the construction of the matrix B is performed
by three CUDA kernels: Kernel 1 (computing the signs, exponents, and
interval evaluations), Kernel 2 (computing the digits of multiple-precision
significands), and Kernel 3 (rounding the elements of the computed matrix).
We now describe how these kernels work.

Kernel 1. The computation is performed with a two-dimensional
grid of thread blocks. The grid size is gridDim1× gridDim1, and the
size of each block is blockDim1, where gridDim1 and blockDim1 are
tunable parameters. The coordinate blockIdx.y defines the offset for
the matrix columns. That is, all blocks with blockIdx.y = i (assuming
zero-based indexing) participate in the computation of the ith column
of the matrix B, performing the multiplication of the ith column of A
and the ith element of d = αx, i.e. di. Note that di is loaded into
registers or local memory. If gridDim1 < N , then the thread blocks for
which blockIdx.y = i calculate the columns of the matrix B with indices
i, (i+ gridDim1), (i+ 2× gridDim1), etc. In this kernel, one thread

Multiple-precision matrix-vector multiplication on GPUs 73

is used to calculate the sign, exponent and interval evaluation of one
multiple-precision number. Using the mp_array_t structure provides
grouping of thread accesses to the global GPU memory into transactions.

Kernel 2. The computation is performed on a two-dimensional
gridDim2× gridDim2 grid of thread blocks, where gridDim2 is a tunable
parameter. The assignment of blocks to the columns of the matrix is
similar to that described above for Kernel 1, however, in this case, each
thread is associated with its own RNS modulus. Thus, all n digits of the
multiple-precision significand are calculated simultaneously by n threads
within a single block. Each block can simultaneously compute several
multiple-precision significands, depending on the size of the RNS moduli
set n and the minimum block size required to maximize the occupancy
of a streaming multiprocessor. The size of each thread block is calculated
automatically. The minimum block size depends on the Compute Capability
of the GPU and is defined as follows [11]:

MinBS = MaxThreads/MaxBlocks,(8)

where MaxThreads is the maximum number of resident threads per
multiprocessor, and MaxBlocks is the maximum number of resident blocks
per multiprocessor. For example, if MinBS = 64 and n = 4, then 16
multiple-precision significands will be calculated simultaneously in each
thread block.

Kernel 3. This CUDA kernel is executed with a one-dimensional
grid of one-dimensional thread blocks, and the matrix B is considered
as a vector of length M ×N . The rounding algorithm used and its CUDA
implementation are described in [11]. When rounding a number of the form
(5), it is necessary to recalculate the interval evaluation of the significand.
The employed algorithm for calculating the interval evaluation is given
in [27].

Reduction of matrix B

The elements of each row of the matrix B are summed up in accordance
with Algorithm 6 from [11]. For this purpose, M thread blocks are used,
and in each ith block, the elements of the ith row of the matrix are loaded
into shared memory, after which the reduction by shared memory is
performed. The maximum size of each block depends on the precision (the
size of the RNS moduli set) and is limited by the available shared memory.

Each multiple-precision addition is performed as a single thread. The
array of structures mp_float_t is used to store multiple-precision numbers

74 Konstantin Isupov, Vladimir Knyazkov

Figure 5. Performing GEMV for transposed matrix A

in shared memory. Unlike the mp_array_t structure, which represents
a vector of multiple-precision numbers and can only be initialized on the
host side, the mp_float_t structure represents a single multiple-precision
number and can be initialized on the device side. The conversion between
mp_array_t and mp_float_t is done directly during the addition operation
and does not incur any overhead.

As a result of the main reduction cycle, the calculated sum of the
elements of the ith row of matrix B is stored in the shared memory of the
ith block, and the corresponding element of the vector y multiplied by the
scalar β is added to this sum. Since each thread block is associated with its
own element of y, synchronization between thread blocks is not required.

4.2. The case of transposed matrix

The calculation of y ← αATx+βy is illustrated in Figure 5. In this case,
each column of the matrix B is obtained by multiplying the corresponding
column of the matrix A by the entire vector d = αx, i.e., the left-side

Multiple-precision matrix-vector multiplication on GPUs 75

scaling is performed by the diagonal matrix D. Then the sum of the
elements of the matrix B in each column is computed, and the ith element
of the vector βy is added to the ith computed sum.

Just as in the non-transposed case, three CUDA kernels (Kernel 1,
Kernel 2, and Kernel 3) are launched to compute the matrix B. Kernels
1 and 2 are executed on two-dimensional grids, and all thread blocks
with blockIdx.y = i participate in the computation of the ith column of
B. Memory access scheme remains the same, and the difference is that
each thread operates with its own element of d. After the matrix B is
computed, the calculation of the ith element of the result vector is reduced
to summing the elements of the ith column of B, followed by adding the
ith element of the vector y multiplied by the scalar β.

5. Accuracy evaluation

In this section, we obtain accuracy estimates for the presented GEMV
implementation. Let M = N and let y ← αAx+ βy be the operation
being performed. Let us denote the exact result by y∗ = (y∗1 , y

∗
2 , . . . , y

∗
N)

and the result of applying the GEMV operation by ŷ = (ŷ1, ŷ2, . . . , ŷN).
Our goal is to obtain the absolute forward error bound and the relative
forward error bound, ∥y∗ − ŷ∥ and ∥y∗ − ŷ∥/∥y∗∥, respectively, where ∥ ∥
is the ℓ1-norm. In our analysis, we use the standard model of floating-point
arithmetic [28, p. 40].

For numbers of the form (5), the identity (6) corresponds (with some
restrictions) to the standard model. For the sake of simplicity, we will use
the θn notation, which is defined as follows [28, p. 63]:

n∏︂
i=1

(1 + δi)
±1 = 1 + θn, |θn| ≤

nu

1− nu
.(9)

Here δi is the relative error introduced by the ith floating-point operation
from the computation, and |δi| ≤ u. The purpose of our analysis is to
obtain the final error bounds of the GEMV routine, so there is no need to
distinguish between the contributions of individual arithmetic operations.
Therefore, we further assume δi ≡ δ, |δ| ≤ u. According to (6), we have
u < 4/

√
M .

First, the vector d = αx is computed. According to the standard
model, the elements of d are expressed as follows:

di = fl(αxi) = αxi(1 + δ) = αxi(1 + θ1), 1 ≤ i ≤ N.(10)

Hence, the elements of the matrix B can be expressed as follows:

bij = fl(aijdj) = aijdj(1 + δ) = αaijxj(1 + θ2), 1 ≤ i, j ≤ N.(11)

76 Konstantin Isupov, Vladimir Knyazkov

Then the sum of the elements of the matrix B in each row is computed.
For the ith row, we denote this sum by si. It is well known that the
accuracy of summation depends on the chosen algorithm.

As noted above, si is computed on the GPU using a single thread
block (one thread block per one row). The used summation algorithm
(Algorithm 6 from [11]) implements pairwise summation. However, the
maximum number of parallel threads performing summation (i.e., the size
of each block) depends on the size of the RNS moduli set, i.e. on the
computation precision. When the block size is equal to one, si is evaluated
sequentially, resulting in the classic recursive summation algorithm:
si ← bi1
for j = 2 to N do

si ← fl(si + bij)
end for

For this algorithm, the computed value of si can be represented in the
following form [29]:

(12) si = (bi1 + bi2)(1 + θN−1) + bi3(1 + θN−2) + bi4(1 + θN−3) + · · ·
+ biN (1 + θ1).

This is the same as

si = (αai1x1 + αai2x2)(1 + θN+1) + αai3x3(1 + θN)

+ αai4x4(1 + θN−1) + · · ·+ αaiNxN (1 + θ3)

Adding si and βyi(1 + θ1) gives

ŷi = fl(si + βyi(1 + θ1)) = si(1 + θ1) + βyi(1 + θ2),(13)

and after substitution we obtain the final expression for the ith element
of the computed vector:

ŷi = βyi +

N∑︂
j=1

αaijxj + βyiθ2 + αai1x1θN+2 + αai2x2θN+2

+ αai3x3θN+1 + αai4x4θN + · · ·+ αaiNxNθ4.

To obtain the upper error bound, it should be assumed that the
individual error components (θi) are not compensated for each other. Thus,
assuming θi > 0, the above expression takes the form

ŷi = βyi +

N∑︂
j=1

αaijxj + θ2|βyi|+ θN+2|αai1x1|+ θN+2|αai2x2|

Multiple-precision matrix-vector multiplication on GPUs 77

+ θN+1|αai3x3|+ θN |αai4x4|+ · · ·+ θ4|αaiNxN |.

For further simplification, we will use the notation γn [28, p. 63],
which is defined as follows:

γn :=
nu

1− nu
for nu < 1.(14)

One of the properties of this notation is γn ≤ γn+1 (see [28, p. 67]).
Considering this property, the above expression for ŷi can be rewritten as
follows

ŷi = βyi +

N∑︂
j=1

αaijxj + EN ,(15)

where En ≤ γN+2

(︁
|βyi|+

∑︁N
j=1 |αaijxj |

)︁
.

Since the ith element of the exact result vector y∗ is expressed in the
form y∗i = βyi +

∑︁N
j=1 αaijxj , we have the following absolute error bound

for our GEMV implementation:

∥y∗ − ŷ∥ ≤ (N + 2)u

1− (N + 2)u
·

N∑︂
i=1

(︄
|βyi|+

N∑︂
j=1

|αaijxj |

)︄
,(16)

and the following relative error bound:

∥y∗ − ŷ∥
∥y∗∥

≤ (N + 2)u

1− (N + 2)u
·
∑︁N

i=1

(︁
|βyi|+

∑︁N
j=1 |αaijxj |

)︁∑︁N
i=1 |βyi +

∑︁N
j=1 αaijxj |

,(17)

where u < 4/
√
M and M is the product of the RNS moduli.

The same error bounds in a more concise form:

∥y∗ − ŷ∥ ≤ (N + 2)u

1− (N + 2)u
· ∥|αA| · |x|+ |βy|∥,(18)

∥y∗ − ŷ∥
∥y∗∥

≤ (N + 2)u

1− (N + 2)u
· ∥|αA| · |x|+ |βy|∥
∥αAx+ βy∥

.(19)

For M = N , the bounds obtained are also hold for the operation with
the transposed matrix, y ← αATx+ βy.

6. Performance results

In this section, we report the results of performance experiments. The
experiments were performed on an NVIDIA GeForce GTX 1080 GPU (8
GB GDDR5X, 2560 CUDA cores, Compute Capability 6.1). The host

78 Konstantin Isupov, Vladimir Knyazkov

Table 3. Contribution of individual CUDA kernels to the total
execution time of our multiple-precision GEMV.

Kernel Comment %

mp_vec2scal_mul_esi Multiplying x by α and y by β: comput-
ing the sings, exponents, and interval
evaluations

0.2

mp_vec2scal_mul_digits Multiplying x by α and y by β: computing
the digits of multiple-precision significands

0.1

mp_mat2vec_right_scal_esi Building the matrix B: computing the
sings, exponents, and interval evaluations

5.6

mp_mat2vec_right_scal_digits Building the matrix B: computing the
digits of multiple-precision significands

20.8

mp_vector_round Rounding the intermediate results 1.7
mp_matrix_row_sum Summing the elements in each row of the

matrix B and adding the vector βy to the
result

71.5

system has the following configuration: Intel Core i5 7500 (3.40 GHz) / 16
GB DDR4 RAM / Ubuntu 18.04.4 LTS / CUDA 10.2 / NVIDIA Driver
440.33.01. The source code was compiled using the nvcc compiler with the
options -O3 -use_fast_math -Xcompiler=-O3,-fopenmp,-ffast-math.

6.1. Performance of individual CUDA kernels

In this experiment, we use the NVIDIA Visual Profiler to evaluate
the performance of individual CUDA kernels running in our GEMV
implementation. The experiment was carried out with a non-transposed
matrix of size M = N = LDA = 1000 at 424-bit precision. To achieve this
precision, a set of 32 RNS moduli was used, each of 32 bits, with a dynamic
range of M = 850 bits. The precision of computations with numbers
of the form (5) is ⌊log2

√
M⌋− 1 bits. It should be noted that multiple

roundings can have a significant impact on the overall performance of our
GEMV implementation. However, we can always reduce the number
of roundings by using a larger set of moduli. In this regard, the input data
for the experiment were such that too many roundings were not required.

Table 3 shows the contribution of individual CUDA kernels to the total
operation time. We see that the summation of the elements of the matrix
B is the most expensive process. It takes 71.5% of the total computation
time. Also, a significant contribution is made by the calculation of the
digits of multiple-precision significands when computing B.

Multiple-precision matrix-vector multiplication on GPUs 79

Table 4. Performance metrics for the most expensive kernels

Kernel Occupancy, % Divergence, % Bandwidth, GB/s

mp_mat2vec_right_scal_digits 95.5 0 163.3
mp_matrix_row_sum 26.8 66.8 49.9

Table 4 shows the actual occupancy, effective global memory bandwidth
and branch divergence for the two most expensive kernels. We see that
splitting multiple-precision operations into parts leads to significantly more
efficient implementations compared to the traditional approach, where each
operation with multiple-precision is performed by a single thread, as
implemented in the mp_matrix_row_sum kernel.

We note that the NVIDIA 1080 GPU uses GDDR5X RAM with
a memory clock rate of 1251 MHz and a 256-bit wide memory interface, so
the peak theoretical memory bandwidth of the NVIDIA 1080 GPU is

1251× 106 × (256/8)× 8/109 = 320.3 GB/s.(20)

For the mp_mat2vec_right_scal_digits kernel, the effective bandwidth is
51% of the peak bandwidth. This is because calculating each digit of the
significand requires finding the remainder of the intermediate result divided
by the corresponding modulus (the mod operation). However, it is well
known that the mod operation is one of the most time consuming arithmetic
operations. We can speed up the computation with multiple-precision
significands in RNS by speeding up the mod operation. One way to achieve
this is using the Barrett reduction. For the mp_matrix_row_sum kernel, the
effective bandwidth is 16% of the peak bandwidth. This is because for each
thread block, all intermediate results are stored in the shared memory, and
only the final result is loaded into the global memory. However, for this
core, shared memory is the limiting factor for fully utilizing the available
GPU resources.

6.2. Comparison with other implementations

In this experiment, the performance of the presented GEMV implemen-
tation was compared with implementations based on the existing CUDA
libraries that support multiple precision, namely GARPREC, CAMPARY,
and CUMP (see Section 1). All of these libraries are based on the positional
number system. To evaluate the practical effect of using the mp_array_t
structure and splitting operations with multiple precision into several

80 Konstantin Isupov, Vladimir Knyazkov

Table 5. Execution time (in milliseconds) of GEMV with
multiple precision on the GeForce GTX 1080 GPU.

Precision in bits
106 212 424 848 1696

Proposed implementation 3.1 5.6 8.5 12.9 24.6
Proposed implementation (transposed) 2.9 4.6 7.1 11.2 19.4
Basic implementation 12.1 22.8 42.4 75.5 150.6
CUMP 20.1 20.8 26.8 56.8 154.0
CAMPARY 0.7 6.0 26.3 124.4 2499.9
GARPREC 26.5 37.4 70.2 206.0 689.1

CUDA kernels, we also implemented the classical GEMV algorithm. In this
algorithm, each arithmetic operation with multiple-precision numbers of
the form (5) is performed by a single thread, and the array of mp_float_t
instances is used to store an array of multiple-precision numbers. Starting
now, this version of GEMV is referred to as “basic implementation”.

The experiments were carried out at a fixed matrix size of M = N =

LDA = 1000. We considered various levels of arithmetic precision, from
106 to 1696 bits. The input datasets were composed of randomly generated
floating-point numbers in the range [−1, 1]. To reduce the impact of noise,
the GEMV functions under evaluation were repeated several times. The
total execution time of all iterations was measured in milliseconds, and
then the average execution time of one iteration was calculated.

The experimental results presented in Table 5 show that in many cases,
the performance of the proposed implementation is significantly higher
than that of existing multiple-precision libraries, and is always higher than
that of the basic implementation. As the precision increases, the time
of the proposed implementation increases linearly. The operation with the
transposed matrix turned out to be slightly faster than the operation with
the non-transposed matrix, which is due to the better memory read pattern
when accessing the matrix B.

At 106-bit precision (quadruple precision), the CAMPARY library is
faster than our implementation; however, as the precision increases, the
execution time of CAMPARY also increases significantly. This effect is
consistent with the estimates for the complexity of arithmetic operations
in CAMPARY given in Section 1.

Multiple-precision matrix-vector multiplication on GPUs 81

7. Conclusion

In this paper, we have presented a parallel implementation of the
multiple-precision GEMV operation for systems with CUDA-compatible
GPUs. Our implementation uses the original two-level scheme of parallel
computations. In this scheme, both all elements of the vector/matrix
and all digits of the multiple-precision significand for each element are
computed in parallel. This became possible due to the use of the residue
number system (RNS) instead of positional number systems.

However, straightforward use of RNS does not have a significant effect,
since multiple-precision operations contain sequential and parallel sections,
which results in divergent execution paths. To eliminate the drawback,
multiple precision arithmetic operations in the proposed GEMV are split
into several parts, and each part is performed as a separate CUDA kernel.
This splitting increases in the total number of global memory accesses since
all intermediate results should be stored in the global memory. However,
this overhead is offset by the elimination of branch divergence in the
kernels and more efficient utilization of the GPU’s resources. Experiments
have been carried out that confirm the efficiency of the used computation
scheme.

The developed GEMV implementation is part of MPRES-BLAS,
a new multiple-precision library for GPUs (available on GitHub). We
note that the functionality of MPRES-BLAS is not limited to the basic
linear algebra routines. The library provides basic arithmetic operations
with multiple precision for CPU and CUDA, so it can even be thought of
as a general-purpose multiple-precision arithmetic library. In addition,
MPRES-BLAS implements several optimized RNS algorithms, such
as magnitude comparison and power-of-two scaling, and also supports
extended-range floating-point arithmetic with working precision, which
prevents underflow and overflow in a computation involving extremely large
or small quantities.

We plan to implement automatic tuning of the kernels execution
parameters, taking into account the level of arithmetic precision and the
size of the problem. We also plan to adapt the approaches discussed in
this paper to implement GPU-based sparse matrix-vector multiplication
(SpMV) with multiple precision.

82 Konstantin Isupov, Vladimir Knyazkov

References
[1] M. Courbariaux, Y. Bengio, J. David. Training deep neural networks with

low precision multiplications, 2014. arXivarXiv:1412.7024 ↑61
[2] D.H. Bailey, J.M. Borwein. “High-precision arithmetic in mathematical

physics”, Mathematics, 3:2 (2015), pp. 337–367. https://doi.org/10.3390/math3020337↑62
[3] J. Daněk, J. Pospíšil. “Numerical aspects of integration in semi-closed

option pricing formulas for stochastic volatility jump diffusion models”,
International Journal of Computer Mathematics, 97:6 (2020), pp. 1268-1292.
https://doi.org/10.1080/00207160.2019.1614174↑62

[4] Y. Feng, J. Chen, W. Wu. “The PSLQ algorithm for empirical data”, Math.
Comp., 88:317 (2019), pp. 1479–1501. https://doi.org/10.1090/mcom/3356↑62

[5] S. Leweke, E. von Lieres. “Fast arbitrary order moments and arbitrary
precision solution of the general rate model of column liquid chromatography
with linear isotherm”, Comput. Chem. Eng., 84 (2016), pp. 350–362. https://doi.org/10.1016/j.compchemeng.2015.09.009↑62

[6] M. Kyung, E. Sacks, V. Milenkovic. “Robust polyhedral Minkowski sums
with GPU implementation”, Comput. Aided Des., 67–68 (2015), pp. 48–57.
https://doi.org/10.1016/j.cad.2015.04.012↑62

[7] B. Pan, Y. Wang, S. Tian. “A high-precision single shooting method for
solving hypersensitive optimal control problems”, Mathematical Problems in
Engineering, 2018 (2018), 7908378, 11 pp. https://doi.org/10.1155/2018/7908378↑62

[8] Y. Xuan, D. Li, W. Han. “Efficient optimization approach for fast GPU
computation of Zernike moments”, Journal of Parallel and Distributed
Computing, 111 (2018), pp. 104–114. https://doi.org/10.1016/j.jpdc.2017.07.008↑62

[9] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh. “Basic linear algebra
subprograms for Fortran usage”, ACM Trans. Math. Softw., 5:3 (1979),
pp. 308—323. https://doi.org/10.1145/355841.355847↑62

[10] R. Nath, S. Tomov, T. Tim Dong, J. Dongarra. “Optimizing symmetric
dense matrix-vector multiplication on GPUs”, SC ’11: Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, New York, NY, USA, 2011, pp. 1–10. https://doi.org/10.1145/2063384.2063392↑62,64

[11] K. Isupov, V. Knyazkov, A. Kuvaev. “Design and implementation of
multiple-precision BLAS Level 1 functions for graphics processing units”,
Journal of Parallel and Distributed Computing, 140 (2020), pp. 25–36. https://doi.org/10.1016/j.jpdc.2020.02.006

↑63,64,65,66,67,70,71,73,76
[12] A. Omondi, B. Premkumar. Residue number systems: theory and implemen-

tation, Imperial College Press, London, UK, 2007. ↑63,66
[13] K. Bigou, A. Tisserand. “Single base modular multiplication for efficient

hardware RNS implementations of ECC”, Cryptographic hardware and
embedded systems – CHES 2015, eds. T. Güneysu, H. Handschuh, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 123–140. ↑63

[14] A. Abdelfattah, D. Keyes, H. Ltaief. “KBLAS: an optimized library for
dense matrix-vector multiplication on GPU accelerators”, ACM Trans. Math.
Softw., 42:3 (2016), 18. https://doi.org/10.1145/2818311↑64,68

[15] G. He, J. Gao, J. Wang. “Efficient dense matrix-vector multiplication on

https://arxiv.org/abs/1412.7024
https://doi.org/10.3390/math3020337
https://doi.org/10.1080/00207160.2019.1614174
https://doi.org/10.1090/mcom/3356
https://doi.org/10.1016/j.compchemeng.2015.09.009
https://doi.org/10.1016/j.cad.2015.04.012
https://doi.org/10.1155/2018/7908378
https://doi.org/10.1016/j.jpdc.2017.07.008
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/2063384.2063392
https://doi.org/10.1016/j.jpdc.2020.02.006
https://doi.org/10.1145/2818311

Multiple-precision matrix-vector multiplication on GPUs 83

GPU”, Concurrency and Computation: Practice and Experience, 30:19
(2018), e4705. https://doi.org/10.1002/cpe.4705↑64

[16] T. Inoue, H. Tokura, K. Nakano, Y. Ito. “Efficient triangular matrix
vector multiplication on the GPU”, PPAM 2019: Parallel Processing and
Applied Mathematics, Lecture Notes in Computer Science, vol. 12043,
eds. R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski, Springer
International Publishing, Cham, 2020, pp. 493–504. https://doi.org/10.1007/978-3-030-43229-4_42↑64

[17] Quadruple precision BLAS routines for GPU: QPBLAS-GPU ver.1.0. User’s
manual, 2013 (accessed 19 May 2019), 58 pp. https://ccse.jaea.go.jp/software/QPBLAS-GPU/1.0/manual/qpblas-gpu_manual_en-1.0.pdfURL: ↑64,66

[18] R. Iakymchuk, S. Collange, D. Defour, S. Graillat. “ExBLAS: reproducible
and accurate BLAS library”, Numerical Reproducibility at Exascale
(NRE2015) workshop held as part of the Supercomputing Conference (SC15)
(November 20, 2015, Austin, TX, USA). https://hal.archives-ouvertes.fr/hal-01202396/file/exblas.pdfURL: ↑64,66

[19] D. Mukunoki, T. Ogita. “Performance and energy consumption of accurate and
mixed-precision linear algebra kernels on GPUs”, Journal of Computational
and Applied Mathematics, 372 (2020), 112701. https://doi.org/10.1016/j.cam.2019.112701↑64,66

[20] Y. Hida, X. S. Li, D.H. Bailey. “Algorithms for quad-double precision
floating point arithmetic”, Proceedings 15th IEEE Symposium on Computer
Arithmetic, ARITH-15 (11–13 June 2001, Vail, CO, USA), pp. 155–162. https://doi.org/10.1109/ARITH.2001.930115

↑64
[21] D.E. Knuth. The art of computer programming. V. 2: Seminumerical

algorithms, 3rd ed., Addison-Wesley Longman Publishing Co., Inc., USA,
1997, ISBN 978-0201896848. ↑64

[22] J. R. Shewchuk. “Adaptive precision floating-point arithmetic and fast robust
geometric predicates”, Discrete & Computational Geometry, 18:3 (1997),
pp. 305–363. https://doi.org/10.1007/PL00009321↑64

[23] T. Ogita, S. M. Rump, S. Oishi. “Accurate sum and dot product”, SIAM J.
Sci. Comput., 26:6 (2005), pp. 1955-–1988. https://doi.org/10.1137/030601818↑64

[24] M. Lu, B. He, Q. Luo. “Supporting extended precision on graphics processors”,
DaMoN’10: Proceedings of the Sixth International Workshop on Data
Management on New Hardware (2010, Indianapolis, Indiana, USA),
pp. 19–26. https://doi.org/10.1145/1869389.1869392↑65,66

[25] M. Joldes, J. Muller, V. Popescu. “Implementation and performance
evaluation of an extended precision floating-point arithmetic library for
high-accuracy semidefinite programming”, 2017 IEEE 24th Symposium on
Computer Arithmetic (ARITH) (24–26 July 2017, London, UK), pp. 27–34.
https://doi.org/10.1109/ARITH.2017.18↑65,66

[26] T. Nakayama, D. Takahashi. “Implementation of multiple-precision floating-
point arithmetic library for GPU computing”, The 23rd IASTED International
Conference on Parallel and Distributed Computing and Systems PDCS 2011
(December 14–16 2011, Dallas, USA), pp. 343–349. https://doi.org/10.2316/P.2011.757-041↑65,66

[27] K. Isupov. “Using floating-point intervals for non-modular computations in
residue number system”, IEEE Access, 8 (2020), pp. 58603–58619. https://doi.org/10.1109/ACCESS.2020.2982365↑67,73

[28] N. J. Higham. Accuracy and stability of numerical algorithms, 2nd, SIAM,

https://doi.org/10.1002/cpe.4705
https://doi.org/10.1007/978-3-030-43229-4_42
https://ccse.jaea.go.jp/software/QPBLAS-GPU/1.0/manual/qpblas-gpu_manual_en-1.0.pdf
https://hal.archives-ouvertes.fr/hal-01202396/file/exblas.pdf
https://doi.org/10.1016/j.cam.2019.112701
https://doi.org/10.1109/ARITH.2001.930115
https://isbnsearch.org/search?s=978-0201896848
https://doi.org/10.1007/PL00009321
https://doi.org/10.1137/030601818
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1109/ARITH.2017.18
https://doi.org/10.2316/P.2011.757-041
https://doi.org/10.1109/ACCESS.2020.2982365

84 Konstantin Isupov, Vladimir Knyazkov

Philadelphia, PA, USA, 2002, ISBN 978-0-89871-521-7, xxvii+663 pp. https://doi.org/10.1137/1.9780898718027

↑75,77
[29] J. Muller, N. Brunie, F. de Dinechin, C. Jeannerod, M. Joldes, V. Lefèvre,

G. Melquiond, N. Revol, S. Torres. Handbook of floating-Point arithmetic, 2,
Birkhäuser, Basel, 2018, ISBN 978-3-319-76525-9. https://doi.org/10.1007/978-3-319-76526-6↑76

Received 29.04.2020
Revised 24.07.2020
Published 20.08.2020

Recommended by ph.d. S.A. Romanenko

Sample citation of this publication:
Konstantin Isupov, Vladimir Knyazkov. “Multiple-precision matrix-

vector multiplication on graphics processing units”. Program Systems: Theory
and Applications, 2020, 11:3(46), pp. 61–84.
DOI: 10.25209/2079-3316-2020-11-3-61-84
URL: http://psta.psiras.ru/read/psta2020_3_61-84.pdf

The same article in Russian: DOI: 10.25209/2079-3316-2020-11-3-33-59

About the authors:

Konstantin Isupov
PhD in Computer Science. Assistant professor at the De-
partment of Electronic Computing Machines, Vyatka State
University. Area of scientific interests: high-precision compu-
tations, residue number system, computer arithmetic, parallel
algorithms, and GPU computing.

iD: 0000-0003-0239-0404
e-mail: ks_isupov@vyatsu.ru

Vladimir Knyazkov
Dr. Sci. in Computer Sciences and Engineering. Principal
research scientist at the Research Institute of Fundamental
and Applied Studies, Penza State University. Area of scientific
interests: parallel architectures, high-performance computing,
and reconfigurable computing systems.

iD: 0000-0003-3820-6541
e-mail: kniazkov@pnzgu.ru

Эта же статья по-русски: DOI: 10.25209/2079-3316-2020-11-3-33-59

https://isbnsearch.org/search?s=978-0-89871-521-7
https://doi.org/10.1137/1.9780898718027
https://isbnsearch.org/search?s=978-3-319-76525-9
https://doi.org/10.1007/978-3-319-76526-6
http://psta.psiras.ru/index_en.htm
http://psta.psiras.ru/index_en.htm
http://doi.org/10.25209/2079-3316-2020-11-3-61-84
http://psta.psiras.ru/read/psta2020_3_61-84.pdf
http://psta.psiras.ru/read/psta2020_3_33-59.pdf
http://doi.org/10.25209/2079-3316-2020-11-3-33-59
https://orcid.org/0000-0003-0239-0404
mailto:ks_isupov@vyatsu.ru
https://orcid.org/0000-0003-3820-6541
http://psta.psiras.ru/read/psta2020_3_33-59.pdf
http://doi.org/10.25209/2079-3316-2020-11-3-33-59

	Introduction
	1. High-Precision Computations and BLAS for GPU
	2. Representation of arbitrary length floating-point numbers using RNS
	3. Data layout
	4. Algorithms for implementing GEMV on GPUs
	4.1. The case of non-transposed matrix
	4.2. The case of transposed matrix

	5. Accuracy evaluation
	6. Performance results
	6.1. Performance of individual CUDA kernels
	6.2. Comparison with other implementations

	7. Conclusion
	References

