
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 11, No 4(47), pp. 17–30

CSCSTI 05.11.27,27.43.51
UDC 519.217.2:314.74+314.85

Lawrence E. Blume, Aleksandra A. Lukina

A note on migration perturbation and convergence
rates to a steady state

Abstract. Using tools developed in the Markov chains literature, we study
convergence times in the Leslie population model in the short and middle run.
Assuming that the population is in a steady state and reproduces itself period
after period, we address the following question: how long will it take to get back
to the steady state if the population distribution vector was affected by some
shock as, for instance, the “brain drain”? We provide lower and upper bounds for
the time required to reach a given distance from the steady state.
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Introduction

Consider the Leslie population model, where yt is the vector of
population size by age, that is, yit is the size of the population who are of
age i at time t. The canonical Leslie matrix L is given by

L =


b1 · · · bn
s1 0 · · · 0

0
. . . . . . 0

0 0 sn−1 0.
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Here bi ≥ 0, 1 ≤ i ≤ n, are age-specific fertility rates and 0 < si ≤ 1,
1 ≤ i ≤ n− 1, are survival rates. Age-specific population growth from some
initial distribution y0 is described by the equation

yt+1 = Lyt.

If L is irreducible, the Perron-Frobenius theorem implies that a maximum-
modulus eigenvalue is real and positive. If in addition L is primitive, then
there is a unique (real, positive) eigenvalue of maximum modulus, the
Perron eigenvalue, whose eigenspace has dimension 1. The total population
will grow or shrink according to whether the Perron eigenvalue is greater
than or less than 1. These results may be found in any textbook on linear
algebra or Markov Chains (see, for example, [1],[2]). Their applications to
the Leslie population model may be found in [3], section 4.5, or in [4],
section 5.

Our goal is to study the evolution of the age structure of the population;
that is the evolution of the ratios yit/yjt. If L is irreducible and primitive
with Perron eigenvalue λ > 0, then taking x0 = y0, xt = λ−1Lxt−1

converges to a limit x∗, a strictly positive member of the Perron eigenspace.
Clearly xit/xjt = yit/yjt, and so the age structure converges to a limit
which is described by the vector x∗. (The limit frequency distribution of
ages is given by ||x∗||−1

1 x∗, that is, x∗ divided by its l1 norm.). In what
follows we shall work with a normalized Leslie matrix. We will divide
all the entries by the Perron eigenvalue in order to have a Leslie matrix
with Perron eigenvalue equal to 1. This normalization leaves the Perron
eigenspace unchanged, and forces the modulus of all eigenvalues other
than the Perron eigenvalue to be less than 1. (This is what guarantees
convergence of the xt to a nontrivial equilibrium.)

We assume that si > 0 for all i < n. If some sk = 0, no one lives past
age k, and the model can be truncated there. We also assume that bn > 0.
The Leslie model is a model of a population in its reproductive years.
Individuals may survive past age n, but they no longer contribute to
population growth, and so the model does not track their behavior. These
two assumptions guarantee that L is irreducible.

The Leslie matrix need not be primitive. For instance, if there are births
only in even periods, there will be two real eigenvalues of maximal modulus.
A positive age one birth rate is a sufficient condition for primitivity;
however, this is not a good model for human populations. Fortunately,
there is a sufficient condition for primitivity which is applicable to human
populations, that the birth rate at two successive ages is positive, see [4].
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We consider the following thought experiment. The stationary age
structure of a population is perturbed by an event: in- or out-migration,
or a significant disease, that effects different ages differently. The age
structure will be perturbed away from the stationary age structure. How
long will it take for the system to come back to the steady state? We
give answers to these questions, using tools developed to understand the
behavior of random walks on graphs (see, for example, [5]). Precisely, we
provide lower and upper bounds for the time required to reach a given
distance from the steady state.

This experiment has an important limitation. It assumes that the
age-specific birth and death rates remain in the post-event population the
same as they were in the pre-event population. We assume that emigrants
have fertility and mortality patterns no different than those who remain;
that with respect to fertility and mortality, immigrants behave just as does
the home population; that the incidence of the disease is not correlated
with fertility or with other co-morbidity factors. If the disease were to
become endemic, as is expected to be the case with COVID-19, this will no
longer be true.

Convergence times in the population models, when addressed at all, are
described with asymptotic convergence rates. More precisely, the eventual
rate of convergence to the stable age distribution is governed by the
eigenvalue(s) with the second largest absolute magnitude. See, for example,
[3], equation (4.91) on p. 96, which implies that convergence to the steady
state is asymptotically geometric, “at a rate at least as fast as log ρ”, where
ρ is the damping ratio (the ratio of the largest eigenvalue to the second
largest absolute eigenvalue). The damping ratio as the measure of “how
quickly transient dynamics dissipate over time” is also mentioned in [6]. To
the best of our knowledge, the tools we use in this paper have never been
applied to studies of the short run dynamics of the Leslie population model.

1. Convergence to a Steady State

Let L be the Leslie matrix (n× n) that is irreducible and primitive,
and assume that the maximal Perron eigenvalue of L is 1 (otherwise,
normalize). Denote a left Perron eigenvector of L by v 1. A right Perron
eigenvector of L consistently with what is above is denoted by x∗.

1Note that a left Perron eigenvector has some meaningful interpretation as well. In
population models literature v is called age-specific reproductive value (see [3]).
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First, the simplices Sv
α = {x : v · x = α, x ≥ 0} are invariant under L

for all α > 0.

Proposition 1. For any α > 0 the simplex Sv
α is invariant under L.

Proof. If v · x = α and y = Lx, then v · y = v · Lx = v · x. □

The implication of this is that all the dynamics live on Sv
α where

α = v ·x0. Instead of tracking population shares, it is easier to track motion
on an invariant hyperplane, and rescale to get a probability distribution
whenever we want.

We will assume for this section that v · x∗ = v · x0. The basic linear
algebra fact tells us

Proposition 2.

||xt − x∗|| → 0 for any norm || · || on Rn
+.(1)

The rest of the paper is devoted to estimating rates of this convergence
in some specifically chosen norm.

2. Measuring System Fragility

One approach to fragility is to ask how long it takes to approach the
steady state.

Define the l1v-norm such that ||x||1v =
∑︁

i vi|xi|. Treating v as a positive
measure, this could be thought of as a standard l1 norm on the measure
space ({1, . . . , n}, v). This compares easily enough to the l1 norm (with
respect to counting measure): mini vi ||x||1 ≤ ||x||1v ≤ maxi vi ||x||1. Note
that Sv

1 is the intersection of the non-negative orthant with the l1v-unit
sphere. An important fact about these norms is the following:

Lemma 1. If x, y ≥ 0 and ||x||1v = ||y||1v, then

||x− y||1v = 2
∑︂

i:vixi>viyi

vi(xi − yi).

Proof. Let I = {i : vixi > viyi}. Then ||x−y||1v =
∑︁

i∈I vi(xi−yi)+∑︁
i∈Ic vi(yi − xi). Also,

∑︁
i∈I vixi +

∑︁
i∈Ic vixi =

∑︁
i∈I viyi +

∑︁
i∈Ic viyi,

so
∑︁

i∈Ic vi(yi − xi) =
∑︁

i∈I vi(xi − yi). Substituting completes the
proof. □

Another fact we will need is that L does not increase v-distances.
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Lemma 2. ||Lx− Ly||1v ≤ ||x− y||1v.

Proof.

||Lx− Ly||1v = ||L(x− y)||1v
≤ ||L · (|x1 − y1|, . . . , |xn − yn|)||1v since L is non-negative

= vL · (|x1 − y1|, . . . , |xn − yn|)
= v · (|x1 − y1|, . . . , |xn − yn|) since v is a Perron eigenvector

= ||x− y||1v.

□

From here through the end of this section we will work on Sv
1 , and take

x∗ to be the Perron eigenvector in Sv
1 ; that is, ||x∗||1v = 1. For an arbitrary

initial condition x0, ||x0||−1
v x0 is in Sv

1 , so it is easy to rescale the results.
Here are the key definitions. Let evk = (1/vk)ek where ek is the kth

standard basis vector, i.e. evk are the vertices of the simplex Sv
1 . Two

measures of a distance from the limit distribution are

d(t) = sup
y∈Sv

1

||Lty − x∗||1v,(2)

and

d′(t) =
1

2
sup

y,z∈Sv
1

||Lty − Ltz||1v.(3)

All of the foregoing suprema are realized at the vertices of Sv
1 .

Lemma 3.

d(t) = max
k

||Ltevk − x∗||1v,

and

d′(t) =
1

2
max
k,l

||Ltevk − Ltevl ||1v.

Proof. The l1v norm is linear on Sv
1 . If z is not a vertex, it can be

written as a convex combination of vertices, z =
∑︁

k αke
v
k. Then, using

convexity of ||x− y||1v in x, we get

||Ltz − x∗||1v ≤
∑︂
k

αk||Ltevk − x∗||1v
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and so ||Ltz − x∗||1v ≤ max
{k:αk>0}

||Ltevk − x∗||1v.

Similarly, using convexity of ||x− y||1v in both arguments, one can
prove the second statement of the lemma. □

The object of interest, as we have phrased the fragility question, is the
following time:

Definition 1. The recovery time for the norm l1v is

τ(ε) = min{t : d(t) < ε},

It is the first time the distance from xt to x∗ is guaranteed to be less
than ε no matter the initial condition. The goal is to estimate τ(ε). One
can imagine a similar recovery time for the distance d′, but the next lemma
makes obvious the connection.

Lemma 4.
1

2
d(t) ≤ d′(t) ≤ d(t).

Proof. For the first inequality, note that x∗ = Ltx∗, so

d(t) = sup
y∈Sv

1

||Lty − Ltx∗||1v ≤ sup
y,z∈Sv

1

||Lty − Ltx∗||1v = 2d′(t).

The second inequality follows from the triangle inequality.

d′(t) =
1

2
max
k,l

||Ltevk − Ltevl ||1v ≤ 1

2
max
k,l

(︂
||Ltevk − x∗||1v

+ ||x∗ − Ltevl ||1v
)︂
= d(t).

□

The distance d′(t) is an operator norm on the subspace of Rn which is
orthogonal to v, with the l1v-norm:

Lemma 5.

d′(t) = sup
x:v·x=0

||Ltx||1v
||x||1v

.

Proof. For any k and l, v · (evk − evl ) = 0 and ||evk − evl ||1v = 2. So

d′(t) =
1

2
max
k,l

||Ltevk − Ltevl ||1v ≤ sup
x:v·x=0

||Ltx||1v
||x||1v

.
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In the other direction, there is no loss of generality in restricting the
right hand side optimization to vectors x ∈ Rn of l1v-length 2. For any such
vector x such that v · x = 0, let x+

i = max{0, xi} and x−
i = max{0,−xi},

so that x = x+ − x−. Then x+, x− ≥ 0 and v · x = 0 implies that
||x+||1v = ||x−||1v = 1; that is, x+, x− ∈ Sv

1 . Thus,

sup
x:v·x=0

||Ltx||1v
||x||1v

≤ 1

2
sup

y,z∈Sv
1

||Lt(y − z)||1v = d′(t).

□

A key property of d′(t) is that it is submultiplicative:

Lemma 6. d′(s+ t) ≤ d′(s)d′(t).

Proof.

d′(s+ t) =
1

2
max
k,l

||Ls+tevk − Ls+tevl ||1v

=
1

2
max
k,l

||Ls(Ltevk − Ltevl )||1v

≤ d′(s)
1

2
max
k,l

||Ltevk − Ltevl ||1v

= d′(s)d′(t).

The inequality follows from lemma 5 and from the fact that v·(Ltevk−Ltevl ) =
0. □

Here is an upper bound on τ(ε).

Theorem 1. For δ < 1 and ε < δ,

τ(ε) < τ(δ)
log(ε/2)

log(δ)
.

Proof. Fix δ and ε such that 0 < ε < δ < 1. Denote t∗ = τ(δ) so
that d(t∗) = d(τ(δ)) < δ. According to lemmas 4 and 6 for any natural
number k we get the following chain of inequalities:

d(kt∗) ≤ 2d′(kt∗) ≤ 2(d′(t∗))k ≤ 2(d(t∗))k.

Choose k = ⌊τ(ε)/τ(δ)⌋ = ⌊τ(ε)/t∗⌋. For such k we have kt∗ ≤ τ(ε), and
therefore, d(kt∗) > ε. Then

ε < d(kt∗) ≤ 2(d(t∗))k < 2δk ≤ 2δτ(ε)/t
∗
= 2δτ(ε)/τ(δ).
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Figure 1. d(t) for different Leslie matrices specified below.

Taking logarithms, we get log(ε/2) <
τ(ε)

τ(δ)
log δ, i.e. τ(ε) < τ(δ)

log(ε/2)

log δ
(recall that δ < 1). □

For example, if ε < 1/2, τx∗(ε) < (1− log2 ε)τx∗(1/2). The content of
the theorem is that, for ε < 1 the recovery time grows like log ε, i.e. once
we are within the unit distance from x∗ the convergence is geometric. The
l1v diameter of Sv

1 , however, is 2, so there is plenty of room for other types
of behavior.

Figure 1 plots d(t) for four Leslie matrices that differ from each
other only in the first row. n = 20 and si = 1 − 0.05i for 1 ≤ i ≤ 19,
b6 = b7 = b8 = b9 = 0.05, b10 = b11 = b12 = 0.1, b13 = b14 = 0.05,
b15 = b16 = 0.03, b17 = 0.02, b18 = b19 = b20 = 0.01 in all 4 cases. The first
matrix (corresponds to the black line in figure 1 is described by b1 = 0.02,
b2 = b3 = 0.03, b4 = b5 = 0.05; the second one (corresponds to the blue
line) – b1 = b2 = b3 = 0, b4 = b5 = 0.05; the third one (corresponds to
the green line) – b1 = b2 = b3 = b4 = 0, b5 = 0.05; the fourth matrix
(corresponds to the red line) – b1 = b2 = b3 = b4 = b5 = 0 2. The plots
demonstrate the intuitive idea that adding more zeros to the first row
(meaning that the youngest groups are not reproductive) makes convergence
to a steady state slower. Moreover, the distance from a steady state
measured as d(t) does not decrease for first several periods. The larger n is,
the more space for such kind of behavior we have.

2These matrices require normalization to get the maximal eigenvalue equals 1.
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Let us provide more intuition standing behind the figure 1 demonstration.
From the Markov chains literature (see, for example, [7], proposition 10.5),
it is known that if a matrix is positive, then convergence to the steady
state is geometric from the first period. A similar result might be proven
for any primitive positive matrix that is not necessarily stochastic.3 It is
also known that convergence might be, on the contrary, very slow if a
matrix under consideration contains a lot of zeros. As we show in figure 1,
the more zeros we have in the first row, the slower the system converges.
That seems to be relevant for real demographic models because the more
ages we consider, the more zeros we have in the first row (once we divide
the population into more age-specific groups, more of them turn out to be
non-reproductive).

Now let us lower-bound τ(ε).

Definition 2. The edge measure Q is defined on pairs of subsets of
{1, . . . , n} is defined to be

Q(A,B) =
∑︂

j∈A, i∈B

viLijx
∗
j .

Lemma 7. Let G be any set of indices, x∗ and v right and left Perron
eigenvectors, respectively, of L corresponding to an eigenvalue λ. Then
Q(G,Gc) =

∑︁
i∈Gc

∑︁
j∈G viLijx

∗
j =

∑︁
i∈G

∑︁
j∈Gc viLijx

∗
j = Q(Gc, G).

Proof.∑︂
i∈G

∑︂
j∈G

viLijx
∗
j +

∑︂
i∈G

∑︂
j∈Gc

viLijx
∗
j =

∑︂
i∈G

∑︂
j

viLijx
∗
j = λ

∑︂
i∈G

vix
∗
i∑︂

i∈G

∑︂
j∈G

viLijx
∗
j +

∑︂
i∈Gc

∑︂
j∈G

viLijx
∗
j =

∑︂
i

∑︂
j∈G

viLijx
∗
j = λ

∑︂
j∈G

vjx
∗
j .

Subtract to reach the conclusion. □

There are several measures of flows across states in a non-negative
linear system. One such is this:

Definition 3. For G ⊂ {1, . . . , N},

Φ(G) =
Q(G,Gc)∑︁

i∈G vix∗
i

.

3We do not discuss these results in further details because the Leslie matrix is not
positive.
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Also define
Φ∗ = min

G:
∑︁

i∈G vii≤ 1
2

Φ(G).

Theorem 2.

τ(ε) ≥ 1− ε

2Φ∗ .

Proof. For a given set G, define

x̄G =

{︄
x∗
i if i ∈ G,

0 otherwise,
and xG =

x̄G

||x̄G||1v
, where

||x̄G||1v =
∑︂
i∈G

vix
∗
i .

Lemma 8. ||Lx̄G − x̄G||1v = 2Q(G,Gc).

Proof. From lemma 1,

||Lx̄G − x̄G||1v = 2
∑︂
i∈I

∑︂
j∈G

vi
(︁
Lij x̄

G
j − x̄G

i

)︁
.

where I = {i :
∑︁

j∈G Lij x̄
G
j − x̄G

i > 0}.
For i ∈ G,

∑︁
j∈G Lij x̄

G
j ≤

∑︁
j Lijx

∗
j = x̄G

i , so i /∈ I. If i /∈ G,∑︁
j∈G Lij x̄

G
j ≥ 0 = x̄G

i . Thus I = Gc, and

||Lx̄G − x̄G||1v = 2
∑︂
i∈I

∑︂
j∈G

vi
(︁
Lij x̄

G
j − x̄G

i

)︁
= 2

∑︂
i∈Gc

∑︂
j∈G

vi
(︁
Lij x̄

G
j − x̄G

i

)︁
= 2

∑︂
i∈Gc

∑︂
j∈G

viLij x̄
G
j

= 2Q(G,Gc).

□

From this fact follows

||LxG − xG||1v = 2Φ(G).
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Per lemma 2, convoluting with L does not increase distance, so

||LtxG − xG||1v ≤
t∑︂

k=1

||LkxG − Lk−1xG||1v ≤ t||LxG − xG||1v = 2tΦ(G).

(4)

Choose a set G such that
∑︁

i∈G vix
∗
i ≤ 1/2. Then ||xG − x∗||1v ≥ 1.

Therefore, using (4), we get

1 ≤ ||xG − x∗||1v ≤ ||xG − LtxG||1v + ||LtxG − x∗||1v ≤
≤ 2tΦ(G) + ||LtxG − x∗||1v ≤ 2tΦ(G) + d(t).

The last inequality in this chain holds since ||xG||1v = 1.
Taking t = τ(ε) for which d(t) < ε, we get

1 ≤ 2τ(ε)Φ(G) + ε.

Minimizing over G gives the result. □

3. Recovery Times for the Leslie Matrix

The preceding results apply to any n× n nonnegative, irreducible and
primitive matrix. We have not yet taken advantage of the specific structure
of the Leslie matrix in the previous section (all the results are true for any
non-negative primitive matrix).

One can show that if the Perron eigenvalue of L is 1, then4

b1 + b2s1 + b3s1s2 + ...+ bns1s2...sn−1 = 1,

x̄ = (1, s1, s1s2, . . . , s1 · · · sn−1) is a right Perron eigenvector, and

v =

(︃
1,

1− b1
s1

,
1− b1 − b2s1

s1s2
, . . . ,

1− b1 − b2s1 − · · · − bn−1s1 · · · sn−2

s1 · · · sn−1

)︃
is a left Perron eigenvector. The last coefficient of v is equal to bn.

The right eigenvector must be normalized to Sv
1 . This requires dividing

the coefficients of x̄ by v · x̄. Denote the latter by π which is given by

π = n− (n− 1)b1 − (n− 2)b2s1 − (n− 3)b3s1s2 − ...− bn−1s1 · · · sn−2.

Define x∗ = π−1x̄.

4See [3], sections 4.5 and 4.6.
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Theorem 1 (that does not involve the Leslie structure explicitly) is
useful in the following sense: it allows to give a prior judgment whether
perturbation of the population distribution is significant or not. Suppose a
perturbed population distribution vector stays inside the simplex Sv

1 . In
that case, we know that convergence back to the steady state will be
geometric, so crucial changes in the population structure are impossible
even in the middle run.

However, as we saw in the figure 1, it might be the case that convergence
is not any close to geometric in the short run (more precisely, d(t) may not
decrease for several periods), and geometric convergence kicks off later. In
such cases, it might be necessary to lower-bound a recovery time. Knowing
entries of the Leslie matrix and shuffling different subsets G of {1, ..., n}
such that

∑︁
i∈G vix

∗
i ≤ 1/2 one may use theorem 2 to give a lower bound

for a recovery time for any given value of ε.
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Л. Э. Блум, А. А. Лукина. О миграционном возмущении возрастной структуры
населения и скорости сходимости к равновесию.

Аннотация. С использованием методов, предложенных в теории Марковских
цепей, в статье исследуется скорость сходимости к равновесию в дискретной
модели возрастной структуры популяции (модели Лесли) в краткосрочной
и среднесрочной перспективах. Предположим, что население находится
в равновесии, т.е. возрастная структура населения воспроизводится в
каждом периоде. Данная работа призвана ответить на следующий вопрос:
сколько времени может потребоваться популяции, чтобы приблизиться
обратно к равновесному распределению после того, как вектор возрастного
распределения был возмущен вследствие некоторого шока, такого как,
например, так называемая “утечка мозгов”? В работе приводятся нижняя и
верхняя оценки времени подобного восстановления.
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