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Abstract. The study focuses on a certain kind of discrete-continuous systems
(DCS): the linear hybrid DCS with state-dependent coefficients. The authors
proposed a problem similar to the analytical design of optimal controllers (ADOC).
For this study, we generalized the Krotov sufficient optimality conditions. The
paper includes several examples.
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Introduction

In some of the widely used control processes [1–7], the definitions
of controlled differential or discrete systems change over time. One class
of such processes is discrete-continuous systems [2]. For this study, we
generalized the Krotov sufficient optimality conditions [8,9]. The simulation
model of a discrete-continuous system is presented in [2,10–12]. It is
a two-level model. The upper level contains the definitions of individual
stages of uniform continuous processes. The lower (discrete) level combines
these definitions into a single process and controls the entire system
to minimize the functional.

This study focuses on a certain kind of discrete-continuous systems
(DCS) linearly dependent on the state and control variables. The coefficient
matrix elements of this DCS depend on the upper and lower level state
variables. Such systems are the closest to the so-called weakly nonlinear
systems [15–17].
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Below we describe a model of a linear discrete-continuous system
with state-dependent coefficients and formulate a problem similar to the
well-known analytical design of optimal controllers (ADOC) [14]. To solve
it, we generalized the Krotov sufficient optimality conditions [8,9]. The
Riccati equation containing a matrix of the Krotov function second-order
derivatives is conventionally used [8]. We should find the vector-matrix
system solution for both first- and second-order Krotov function derivatives
at both levels with similar reasoning. In such systems, the coefficient
matrices for the above-specified derivatives (just like in the original problem)
depend on the state variables at the same levels.

We proposed a possible approach to solving the problem. The resulting
algorithm and some examples are shown below.

1. Model of linear discrete-continuous system with state-dependent
coefficients

We consider a special case of discrete control system [9]:

x(k + 1) = A(k, x(k))x(k) +B(k, x(k))u(k),

x0(k + 1) = x0(k) +
1

2

(︁
(x)TS(k, x)x+ (u(k))TQ(k, x)u(k)

)︁
,

k ∈ K = {kI , kI + 1, ..., kF },

(1)

where k is the step (stage) number, time is not necessarily physical, x is
the state and u is the conrol; A and S are the m(k)×m(k) matrices; B is
the m(k)× p(k) matrics and Q is the p(k)× p(k) matrics; kI is the initial
step and kF is the final step;

x(k) ∈ Rm(k), u(k) ∈ Rp(k).

On some subset of the set of linearity segments K′ ⊂ K, kF /∈ K′,

there is a continuous system of the lower level

ẋc =
dxc

dt
= Ac(k, t, xc)xc +Bc(k, t, xc)uc, t ∈ T (k) = [tI(k), tF (k)],

(2)

where Ac is a n(k) × n(k) matrix and Bc is a n(k) × r(k) matrix,
xc(k, t) ∈ Rn(k), uc(k, t) ∈ Rr(k).
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Set an intermediate goal objective for the system (3) on the interval
[tI(k), tF (k)] in the form of a functional:

(3) ẋc =
dxc

dt
= Ac(k, t, xc)xc +Bc(k, t, xc)uc,

t ∈ T (k) = [tI(k), tF (k)],

Here Sc and Λc are a n(k)× n(k) matrices, Qc is a n(k)× n(k) matrix,
and λc is an n(k)-dimensional vector. For each k ∈ K′ the right-hand side
operator (1) is given by

x(k + 1) = θ(k)xcF ,

where θ(k) is an m(k)× n(k) matrix and xc(k, tI) = ξ(k)x. Here ξ(k) is
the given matrix. We suppose the matrices Q, Qc to be negative definite
for each k and each pair (k, t).

The solution of this two-level system is such the element m =

(x(k), u(k)), that for each k ∈ K′,

u(k) = mc(k), mc(k) ∈ Dc(k),

where mc(k) = (xc(k, t), uc(k, t)) is a continuous on t ∈ T(z) process.
Here Dc(k) is the set of permissible processes mc satisfying the specified
differential system (3).

Let us denote the set of elements m satisfying all the above conditions
by D and call it a set of permissible linear discrete-continuous processes
with state-dependent coefficients.

For the model (1), (3), we consider the problem of finding the minimum
on D of the functional

I = F (xF ) =
(︁
λ(xF )

)︁T
xF +

1

2
(xF )

TΛ(xF )xF

under fixed kI = 0, kF = K, x(kI). Here xF = x(kF ); λ and Λ are
m(k)× 1 and m(k)×m(k) matrices, respectively.

Note that a heuristic approach represents the researcher’s preferences for
constructing an upper-level discrete model that unites uniform continuous
systems operating over different time intervals. There can be more than one
model. The researcher selects information about completing a step to send
to the upper level and control values to send from the upper to the lower.
There are no available sources about selecting the only upper-level model.
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2. Sufficient optimality conditions

The considered optimal control problem is a modification of the
classical ADOC problem [14]. It is also a special case of the optimal control
problem for DCS with intermediate criteria [13]. Its peculiar feature is
that the elements of the A, B, θ, Λ, Ac, Bc, Λc, Sc, Qc and the λ vector
depend on the upper and lower level process states, and are not constant.

Subsequently, we use a modification of the Krotov sufficient optimality
conditions for the DCS with intermediate criteria. The conditions are
formulated as a theorem.

Theorem 1. [13]. Let there be a sequence of discrete-continuous
processes {ms} ⊂ D and functionals ϕ, ϕc such that
(1) µc (k, t) is piecewise continuous for each k;
(2) R (k, xs (k) , us (k)) → µ (k) , k ∈ K;

(3)
∫︁

T(k)

(Rc (k, t, xcs (t) , u
c
s (k, t))− µc (k, t)) dt→ 0, k ∈ K′, t ∈ T (k);

(4) Gc (k, xcFs, x
c
Is)− lc (k) → 0, k ∈ K′;

(5) G (xs (tF )) → l.

Then the sequence {ms} is a minimizing sequence for I on D.

Let us write down these conditions for the problem under consideration.
Below we define the upper and lower level Krotov functions as

ϕ (k) = ψT (k)x+
1

2
xTσ (k)x− x0,

ϕc (z, t, xc) = ψcT (k, t)xc +
1

2
xcTσc (k, t)xc,

where ψ(k) is a m-dimensional vector function, ψc(k, t) is a n-dimensional
vector function, σc(k, t) is a n× n-matrix, σ(k) is a m×m-matrix. We
have

R
(︁
k, x(k), u(k)

)︁
= ψT (k + 1)

(︂
A
(︁
k, x(k)

)︁
x(k) +B

(︁
k, x(k)

)︁
u(k)

)︂
+

1

2

(︂
A
(︁
k, x(k)

)︁
x(k) +B

(︁
k, x(k)

)︁
u(k)

)︂T

σ(k + 1)

×
(︂
A
(︁
k, x(k)

)︁
x(k) +B

(︁
k, x(k)

)︁
u(k)

)︂
+

1

2

(︁
xT (k)S(k, x)x(k) + uT (k)Q(k, x)u(k)

)︁
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− ψT (k)x− 1

2
xTσ(k)x, k ∈ K,

Rc
(︁
k, t, xc(k, t), uc(k, t)

)︁
=

(︁
ψc(k, t) + σc(k, t)xc

)︁T (︁
Ac(k, t, xc)xc +Bc(k, t, xc)uc

)︁
− 1

2

(︂
(xc)TSc(t, k, xc)xc +

(︁
uc(k, t)

)︁T
Qc(k, t, xc)uc(k, t)

)︂
+ ψ̇c(k, t)xc +

1

2
xcT σ̇c(k, t)xc, k ∈ K′,

Gc
(︁
k, x, xcF , x

c
I

)︁
= −ψT (k + 1)θ(k)xcF +

1

2

(︁
θ(k)xcF

)︁T
σ(k + 1)θ(k)xcF

+ ψT (k)x+
1

2
xTσ(k)x+ ψcT (k, tF )x

c
F +

1

2
xcTF σc(k, tF )x

c
F

− ψcT (k, tI)x
c
I −

1

2
xcTI σc(k, tI)x

c
I , k ∈ K′,

G(x) = (λ)TxF +
1

2
(xF )

TΛxF + ψT (kF )xF +
1

2
xTFσ(kF )xF

− ψT (kI)xI −
1

2
xTI σ(kI)xI ,

µc(z, t) = sup {Rc(z, t, xc, uc) : xc, uc},

lc(z) = inf {Gc(k, x, xcF , x
c
I) : xcF , x

c
I},

µ(k) =

{︄
sup{R(k, x, u) : x, u}, k ∈ K\K′,

− inf{lc(z) : x}, k ∈ K′,

l = inf{G(x) : x}.

3. Solution algorithm

For brevity, we will suppress the arguments of functions whenever
needed and the context is clear. Suppose that the elements of the
matrices A, B, Q, S for all k ∈ K and Ac, Bc, Qc, Sc, θ for all k ∈ K′,
t ∈ [tI(k), tF (k)] are constant and xc(k, tI) = ξ(k)x where ξ(k) is a given
n×m matrix. Note that the interval [tI(k), tF (k)] can be divided into
partial intervals, and for each of them the elements of the matrices are
constant. In this case, the number of lower-level continuous subsystems and
the number of the K set elements are increased.
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According to the sufficient optimality conditions formulated above, we
can find the control values providing a maximum of R and Rc functions.
We get

Ru = (xTAσ + ψT )B + (BTσB +Q)u = 0,

Rc
uc = BcT(ψc + σcxc)−Qcuc = 0.

Then

ũ = −(BTσB +Q)−1BT (ψ +ATσx),

ũc = (Qc)−1BcT(ψc + σcxc).

Let us substitute the expressions for ũ and ũc into the expressions for R,
Rc and rearrange them:

P (k, x) = R (k, x (k) , ũ (k))

=
(︂
ψT (k + 1)A− ψ(k)

− ψT (k + 1)B
(︁
BTσ(k + 1)B +Q

)︁−1
BTATσ(k + 1)

)︂
x

+
1

2
xT

(︂
ATσ(k + 1) + S − σ(k)

−ATσ(k + 1)B
(︁
BTσ(k + 1)B +Q

)︁−1
BTAσ(k + 1)

)︂
x

− 1

2
ψTB(BTσ(k + 1)B +Q)−1BTψ,

P c(k, t, xc) = Rc (k, t, xcũc(k, t))

= (ψcT)Ac + σcBc(Qc)−1BcTσc + ψ̇c)xc

+
1

2
xcT(σcAc +AcTσc + σcBc(Qc)−1BcTσc − S + σ̇c)xc

+ ψcTBc(Qc)−1BcTψc.

We apply the Bellman sufficient optimality conditions [13] and specify
the functions ϕ and ϕc in such a way that the constructions P (k, x) and
P c(k, t, xc) do not depend on the x and xc, respectively. Then we obtain

ψ(k) =
(︂
AT − σ(k + 1)AB

(︁
BTσ(k + 1)B +Q

)︁−1
BT

)︂
ψ(k + 1),

σ(k) = ATσ(k + 1)A+ S −ATσ(k + 1)B
(︁
BTσ(k + 1)B +Q

)︁−1
BTA
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for k ∈ K\K′, and for k ∈ K′

ψ̇c = −
(︁
AcT + σcBc(Qc)−1BcT

)︁
ψc,

σ̇c = S − σcAc −AcTσc − σcBc(Qc)−1BcTσc.

Let us now require that the functions G, Gc are independent of the
upper and lower level process states taking into account the expression
for xcI . These requirements define the initial conditions for the system
of vector-matrix equations with respect to ψ, ψc, σ, σc and the equations
for ψ(k), σ(k) on the set K′. We get

ψ(k) =
(︂
AT − σ(k + 1)AB

(︁
BTσ(k + 1)B +Q

)︁−1
BT

)︂
ψ(k + 1),

k ∈ K\K′,

σ(k) = ATσ(k + 1)A+ S −ATσ(k + 1)B
(︁
BTσ(k + 1)B +Q

)︁−1
BTA,

k ∈ K\K′,

ψ̇c = −
(︁
AcT + σcBc(Qc)−1BcT

)︁
ψc, k ∈ K′,

σ̇c = S − σcAc −AcTσc − σcBc(Qc)−1BcTσc, k ∈ K′.

Finally, we obtain a DCS concerning ψ, ψc, σ, σc with its initial conditions
at the right endpoints of the discrete and continuous arguments. The
matrices of this DCS also depend on the upper and lower level state
variables. With the relations we obtained, it is possible to build a solution
algorithm as follows
1. We solve the initial DCS system “from left to right" for the given
us(k), ucs(k, t) and constant matrices A, B, Ac, Bc. In this way, we
obtain the corresponding states xs(k), xcs(k, t).

2. We solve the DCS “from right to left” with respect to ψ, ψc, σ, σc

with constant matrices A, B, Ac, Bc, S, Sc, Q, Qc.
3. We find new controls ũs, ũcs, go to step 1.
4. The iteration process ends when |Is+1 − Is| < ε, where ε is the

required solution accuracy.

Note 1. The elements of the Ac, Bc matrices can be found for
xc = xc(k, tI) while the elements of the Sc, Qc matrices can be found for
xc = xc(k, tF ) and do not change within the interval [tI(k), tF (k)].

Note 2. For better accuracy, the intervals [tI(k), tF (k)] can be divided
into subintervals resulting in more DCS stages.
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Note 3. The resulting DCS for the ψ, ψc vectors and the σ, σc

matrices contains matrix Riccati equations that may have no solutions.
In this case, the proposed algorithm should be further developed.

Note 4. The problem of algorithm convergence is out of the scope
of this paper but the examples given below prove its validity.

Let us show the algorithm performance with some examples.

4. Computational experiments

Example 1. Let us consider an optimal control problem for a nonlinear
controlled system

ẋ1 =
1

x2
x1 + x1x2u, x1(0) = 2,

ẋ2 = x31x2 −
√
x1u, x2(0) = 1,

I =

2∫︂
0

(x21x2) + exp(−x1)u2)dt+ x22(2).

By dividing the interval where the system is defined (the number of sub-
divisions K is variable) we can transform it into a linear DCS with
state-dependent coefficients. We get where n = 2, r = 1 and the interval
to be divided is [0, 2]. Here the matrices used in the problem statement are
as follows:

Ac =

(︃
1
x2

0

0 x31

)︃
, Bc =

(︁
x1x2 −√

x1
)︁
,

Sc =

(︃
x2 0

0 0

)︃
, Qc(x1, x2) = exp(−x1).

Since only the coefficients of these matrices are modified at each partial
interval, then K = {0, 1, 2, . . . , kF }, K = K′, and the upper-level process
becomes uncontrollable. After each step, the information about the
lower-level system state is sent to the upper level, and the initial conditions
for the next step are defined. Thus x = (x1, x2), x(k + 1) = xc(k, tF (k)),
xcI(k + 1, tI(k + 1)) = x(k + 1), λ = 0, θ = E, ξ = 1, A = E, B = 0, S = 0,
Q = 0, ψc = (ψc

1, ψ
c
2) and
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Λ =

(︃
0 0

0 1

)︃
, σc =

(︃
σc
11 σc

12

σc
21 σc

22

)︃
.

We analyzed cases for kF = 2, 4, 8, 10, 15, 25. The results are given
by Figures 1, 2. Table 1 shows the functional value vs. the number
of the interval subdivisions. In each case, the problem was solved after
approximately 3 iterations. The optimal control problem for a conventional
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Table 1. Functional value vs. number of the interval subdivisions

Subdivision Functional

2 11.14453381
4 9.62277632
8 8.95104176

10 8.84198513
15 8.72682692
25 8.67417221

controlled system was first solved by the gradient method after 5 iterations.
For comparison, the figures also show the found states and the control
variables. The smallest value of the functional obtained by the gradient
method is I = 8.67458, and with the DCS algorithm it is I = 8.67417.

Example 2. Consider the following linear two-stage DCS with
state-dependent coefficients

First stage

ẋc1 = (xc1)
2(xc2 − uc1), ẋc2 =

√︁
xc1x

c
2 + xc1u

c
2,

xc1(0) = 1, xc2(0) = −1,

I0 =

2∫︂
0

((xc1u
c
2)

2 − xc2(u
c
1)

2)dt.

Second stage

ẋc1 = xc1 exp(−xc1)− 2xc1u
c
1, I1 =

3∫︂
2

(uc1)
2

xc1
dt,

I = (xc1(3))
3 − 3xc1(3).

Let us transform it into the standard form. Obviously, K = {0, 1, 2}.
For k = 0 n = r = 2, and the lower level matrices are:

Ac(0) =

(︃
0 (xc1)

2

0
√︁
xc1

)︃
, Bc(0) =

(︃
−(xc1)

2 0

0 xc1

)︃
,

Qc(0) =

(︃
−xc2 0

0 (xc1)
2

)︃
, Sc(0) = 0.
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Table 2. Functional value vs. number of the interval subdivisions

Subdivision Functional

2 -1.0673
4 -1.0825

10 -1.1068

At the next stage for k = 1 n = r = 1, while the lower level matrices
are:

Ac(1) = exp(−xc1), Bc(1) = −2xc1, Qc(1) =
1

xc1
, Sc(1) = 0.

It is obvious that at the top level it would be feasible to assume x as
xc1, since the variable passes through both stages and also defined the
common functional. We have I = (x(2))3 − 3x(2), λ = −3, Λ = (x(2))2,
x(1) = xc1(0, 2), xc1(1, 2) = x(1), θ = 1, θ0 = 0, ξ = 1.

We analyzed the problem for kF = 2, 4, 10. The results are displayed
in Figures 3, 4 and Table 2. Just like in Example 1, we first found the
solution with the gradient method. It took 5 iterations. With the proposed
algorithm, the functional value is I = −1.1068. In each case, it took around
2 iterations to solve the problem. The achieved value is identical to the
smallest functional value obtained with the gradient method.

The results indicate the validity of the proposed algorithm.

Conclusion

This paper presents a model of a linear discrete-continuous system with
state-dependent coefficients and defines a problem similar to the well-known
analytical design of optimal controllers (ADOC). By generalizing the Krotov
sufficient optimality conditions, we proposed a solution algorithm that finds
the first- and second-order Krotov function derivatives at both upper and
lower levels. To determine the derivatives, we obtained a DCS containing
the Riccati equations at both levels with respect to the second-order
derivatives with their initial conditions at the right endpoints of the discrete
and continuous arguments. The matrices of this DCS also depend on the
upper and lower level state variables.
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Figure 3. Control

The paper also includes the estimations performed with the proposed
algorithm. They prove its validity. Previously, each example for comparative
analysis was solved by the gradient method, while the gradient method
required a larger number of iterations (in the Example 2, by one). Therefore,
the complexity of the proposed algorithm does not exceed the gradient
method, but it can provide a smaller value of the functional (Example 1).
The explanation is the presence in conjugate systems of the upper and
lower levels of equations for both the first and second derivatives of the
Krotov functions. At the same time, the gradient method uses only the
first derivatives of these functions.
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