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Abstract. This article is devoted to applying mathematical models in the
differential diagnosis of venous diseases based on microwave radiometry data.
A modified approach for transforming feature space in thermometric data is
described. After constructing features, a multiclass classification problem is solved
in several ways: by reducing to binary classification problems using “one versus
rest” and “one versus one” methods and building a multivariate logistic regression
model. The best classification model achieved an average balanced accuracy
score of 0.574. A key feature of the approach is that classification result can be
explained and justified in terms understandable to a diagnostician. This article
presents the most significant patterns in thermometric data and the accuracy with
which they can identify different classes of diseases.
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Introduction

Nowadays, it is incredibly relevant to develop intelligent systems based
on applying various methods of artificial intelligence [1]. Such systems can
help to interpret and analyze examination data and support decision
making in medical diagnosis. Systems of the greatest interest are advisory
systems that apply artificial intelligence methods and algorithms and
contain mechanisms to explain the proposed solutions. The development of
advisory systems requires using mathematical modeling, machine learning,
and data analysis methods.
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Microwave radiometry is a promising diagnostic method based on the
examination of intrinsic electromagnetic radiation of human tissues in the
microwave and infrared wavelength ranges. Its vital feature is absolute
harmlessness to the patient. The method is successfully applied in various
fields of medicine [2–4], in particular, in the early diagnosis and dynamic
control of varicose diseases of the lower extremities [5] classified as “diseases
of civilization,” since the number of people suffering from them is estimated
in billions.

Examination technique consists of consecutive measurement of internal
and surface (skin) temperatures, registration of temperatures in numerical
data, and subsequent examination data analysis. A specialist search for
anomalies in thermometric data is a highly complex intellectual task
requiring long training and many years of experience. Future development of
intelligent systems will both improve the quality of diagnosis in general and
also solve the problem of lack of narrow specialists, which will make possible
the mass application of this method. Interpretation and formalization of
expert knowledge and knowledge extraction from the data are critical
stages in developing models for solving such problems.

During the last decade, the first studies have appeared on applying
mathematical modeling, machine learning, and data analysis to diagnose
varicose diseases of the lower extremities based on microwave radiometry
data. The first models were based on Bayesian classifier [6]. Feature
space consisted of temperature values, and the criteria used in making
the diagnosis were incomprehensible to a diagnostician. All this created
significant difficulties in justifying and explaining a diagnostic decision.

Statistical models have become prerequisites for the creation of effective
models and algorithms that allow interpretation and justification of
result [7,8]. Those models were applied to solve the binary classification
problem Healthy/Sick.

In a related field, in the diagnosis of breast cancer based on microwave
radiometry data, as a result of data mining, a significant number of
patterns describing anomalies in the behavior of temperature fields have
been revealed [9]. They are the basis for a model that allows to justify and
explain a result not only in the diagnosis of breast cancer but also in the
diagnosis of venous diseases [10,11].

The purpose of this study is to apply the model for dynamically
describing a patient condition in the problem of differential diagnosis of
venous diseases based on microwave radiometry data.

Of course, the problem of differential diagnosis is not considered for
the first time. Previously, D.A. Vedenyapin and A.G. Losev applied neural
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Figure 1. Temperature fields of a patient whose left leg is
affected by venous disease. MW is internal, IR is surface
temperatures and G is internal temperature gradients. The data
is interpolated using cubic splines.

networks [12] to solve it. There is a comparative review of that approach
in the conclusion.

1. Data and methods

1.1. Microwave radiometry

Microwave radiometry is a biophysical non-invasive examination
method consisting of the consecutive measurement of internal and surface
temperatures at specific points and registration of temperatures in numerical
data. A specialist analyzes examination data in thermograms or maps of
temperature fields to detect temperature anomalies and conclude the state
of health or the need for further examinations. A method is based on the
fact that temperature anomalies precede structural changes.

As an example, Figure 1 shows maps of the internal and surface
temperature fields of a patient whose left leg is affected by venous disease.

During the examination of the lower extremities, a specialist measures
the internal and surface temperatures at 12 symmetrical points located
along the back surface of both lower legs, according to Figure 2. Several
measurements are being taken for a patient in different positions: lying on
the stomach and standing up.
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Figure 2. Sampling points on each leg (1–12).

1.2. Dataset

Dataset containing measurement data of the lower extremities of 146
patients (292 lower legs) is being analyzed. Each lower leg is labeled
depending on the presence of a particular disease:

0 (Healthy) is measurement data of the legs without diseases, 36 lower
legs (12.3%);

1 (Norm 2 ) is healthy lower legs of patients with venous disease on the
other lower leg, 67 lower legs (22.9%);

2 (CVI ) is lower legs with chronic venous insufficiency, 100 (34.2%);
3 (PTS ) is post-thrombotic syndrome, 69 lower legs (23.6%);
4 (ADVT ) is acute deep vein thrombosis, 20 (6.8%).

Formally, the dataset can be represented as a matrix

X =


t11 t12 . . . t1n
t21 t22 . . . t2n
. . . . . . . . . . . . . . . . .
tm1 tm2 . . . tmn

 , y =


y1
y2
. . .
ym

 , Y = {1, 2, . . . , C} ,(1)

where m is the number of objects in the dataset, n is the number of
features, xi = (ti1, . . . , t

i
n) is the feature vector of object i, Y is the set of

class labels and yi ∈ Y is a class label.
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1.3. Feature construction

The process of feature constructing and building a model for dynamically
describing condition of each lower leg consists of several steps.

Feature vector contains 48 values of internal and surface temperatures
measured at certain points of the lower legs in the lying and standing
positions. Measurement points are shown in Figure 2. At the first step,
temperature data is being split into the following groups:
1. Internal temperatures, standing position

T i,mw,st = (T i,mw,st
1 , . . . , T i,mw,st

12 )

2. Internal temperatures, lying position

T i,mw,ly = (T i,mw,ly
1 , . . . , T i,mw,ly

12 )

3. Surface temperatures, standing position

T i,ir,st = (T i,ir,st
1 , . . . , T i,ir,st

12 )

4. Surface temperatures, lying position

T i,ir,ly = (T i,ir,ly
1 , . . . , T i,ir,ly

12 )

Here, superscript mw or ir indicates the range of temperatures (internal or
surface), and superscript st or ly (standing or lying) indicates the patient
position during the measurement. Subscript is a point number.

There is an additional special group called internal gradients. That
group contains differences between internal and surface temperatures at the
corresponding points. For example, gradients of internal temperatures
measured in the lying position are represented as

T i,g,ly = (T i,g,ly
1 , . . . , T i,g,ly

12 ).

Further, for every group of points and separately for pairs of groups,
several valuable characteristics are calculated. These characteristics are
presented in the form of hypotheses about the behavior of temperature
fields and the corresponding generalized mathematical descriptions [9,10]:
1. Hypothesis about an insignificant temperature difference, according

to which healthy lower legs are characterized by low values of the
following functionals:

1.1. Temperature oscillation

F1(T ) = max
t∈T

t−min
t∈T

t(2)

where T is a set of temperatures.



42 Vladislav V. Levshinskii

1.2. Temperature deviation

F2(T ) = STdev(T ) =

⌜⃓⃓⎷ ∑︁
t∈T

(t− T )2

|T | − 1
,(3)

where T is the average value of temperatures in T , |T | is the
number of temperatures in T .

1.3. Deviation of temperature values relative to the average

F3(T ) = max
t∈T

⃓⃓⃓
T − t

⃓⃓⃓
(4)

1.4. Deviation of internal gradients. The maximum and minimum
values, (2), (3), (4), and the following Lp norms are used as
measures of the spread of internal gradients:

F4(T ) = ∥T∥1 ,
F5(T ) = ∥T∥2 ,
F6(T ) = ∥T∥∞ ,

(5)

where
∥T∥p = (

∑︂
t∈T

|t|p)
1
p ,

∥T∥∞ = max
t∈T

|t| .

More specific:
1.4.1. Maximum difference between the internal temperatures of

the lower leg and the average temperature, standing position

f1(x
i) = F3(T

i,mw,st) = max
t∈T i,mw,st

⃓⃓⃓
T i,mw,st − t

⃓⃓⃓
1.4.2. The spread of internal temperatures of the lower leg measured

in the lying position

f2(x
i) = F2(T

i,mw,ly) =

⌜⃓⃓⃓
⎷ ∑︁

t∈T i,mw,ly

(t− T i,mw,ly)2⃓⃓
T i,mw,ly

⃓⃓
− 1

1.4.3. Oscillation of the surface temperatures of the lower leg
measured in the standing position

f3(x
i) = F1(T

i,ir,st) = max
t∈T i,ir,st

t− min
t∈T i,ir,st

t

2. Hypothesis about the symmetry of temperature fields, according to
which healthy lower legs are characterized by slight deviations of
temperatures at the corresponding points (subregions), as well as
slight differences in the values of the corresponding characteristics.
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The following characteristics are used as symmetry measures:

F (Tc, Tp) =
⃦⃦
Tc − Tp

⃦⃦
,

F (Tc, Tp) = ∥Tc∥ −
⃦⃦
Tp

⃦⃦
,

(6)

where ∥z∥ is a functional, Tc − Tp is an element-wise difference, Tc is
current, and Tp is paired group of temperatures. These characteristics
require an additional step of data preprocessing, as well as the
presence of a pair for every lower leg in the dataset. For example,
during the preprocessing of lower legs data, if the left lower leg is
being viewed at the moment, then current temperature group is
internal or surface temperatures of the left lower leg, and paired
group is internal or surface temperatures of the right lower leg.

For paired temperature groups, the calculated characteristics are
basically defined under the previous hypothesis, e.g:

2.1. Maximum absolute value of temperature difference of the corre-
sponding points

F7(Tc, Tp) = F6(Tc − Tp)

2.2. Difference between the minimum and maximum temperatures of
the lower legs

F8(Tc, Tp) = max
t∈Tc

t− min
t∈Tp

t

2.3. Difference of standard deviations of lower leg temperatures

F9(Tc, Tp) = F2(Tc)− F2(Tp)(7)

2.4. Difference of average values, etc.

F10(Tc, Tp) = Tc − Tp

3. Hypothesis about the stability of temperature fields, according to
which healthy lower legs are characterized by slight differences in
temperatures measured in different positions.

Features of this group characterize the degree of similarity
between temperature fields in different positions and are practically
similar to features defined within the symmetry hypothesis. For
example:

3.1. Difference of average values of surface temperatures of the lower
leg, measured in standing and lying positions

f4(x
i) = F10(T

i,ir,st, T i,ir,ly) = T i,ir,st − T i,ir,ly

3.2. Maximum absolute value of the difference between the internal
temperature gradients of the lower leg, measured in standing and
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lying positions

f5(x
i) = F7(T

i,g,st, T i,g,ly) =
⃦⃦⃦
T i,g,st − T i,g,ly

⃦⃦⃦
∞

4. Hypotheses related to the physiological structure of the lower legs
[7,8]. The values of lateral-medial and axial gradients for different
groups of temperatures are considered, as well as their differences for
the corresponding groups of the right and left lower legs:

4.1. lateral-medial gradient

F11(T ) = LMG(T ) = Text − Tint,

where Text is a subgroup of temperatures of the external part
of the lower leg (points 1, 4, 7, 10) and Tint is a subgroup of
temperatures of the internal part of the lower leg (points 3, 6, 9,
12).

4.2. axial gradient

F12(T ) = AG(T ) = Ttop − Tbot,(8)

where Ttop is a subgroup of temperatures of the top part of the
lower leg (points 1, 2, 3) and Tbot is a subgroup of temperatures
of the bottom part of the lower leg (points 10, 11, 12).

Going back to the example in Figure 1, the following is observed:
1. Similarity of the internal and surface temperature fields of the right

lower leg when measured standing or lying. Features of the form (6)
can be applied for detection and description;

2. Similarity of the internal temperature fields of the right lower leg
when measured standing and lying. Similar for surface temperatures.
The same features of the form (6);

3. Asymmetry of the temperature fields of the right and left lower leg.
Features of the form (6) are applied, including all other features, e.g.
(7).

4. Differences in the internal and surface temperature fields of the left
lower leg when measured standing or lying. Similar to item 2;

5. Bell-shaped contours are observed in the left lower leg. Such data
can be detected by using, for example, deviation measures, features
of the form (5), and the axial gradient (8), etc.

1.4. Thermometric features

For every object in the dataset, the values of functions f are calculated
and 128 new features are constructed. Further, by binarizing [13] the
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obtained values, a set of thermometric features is constructed

S = (ϕ1, ϕ2, . . . , ϕs),(9)

where s is the number of features.
A thermometric feature is a triplet ϕ = (f, I,W ), where I is an interval

and W is a weight (informativeness of f on I), or a quantitative measure
that determines how well a feature separates objects of one class from other
classes. Thermometric feature is considered fulfilled (observed for the
object xi) if f(xi) ∈ I.

Statistical informativeness [13] was applied for calculating weights. In
the case of several classes, it is defined as

I(ϕ,X) = − ln
Cp1

P1
. . . CpK

PK

Cp
m

,(10)

where Ck
n is a binomial coefficient, Pi is the number of class i objects in

sample X, pi is the number of class i objects, for which the feature ϕ is
observed, p = p1 + · · ·+ pK . This measure is fair enough and works well
for small unbalanced datasets.

A key feature of thermometric features is interpretability, which makes
it possible to form a conclusion about the state of an object based on
the values of thermometric features. Vector (ϕ1, ϕ2, . . . , ϕs) dynamically
describes the condition of the object in the sample. Element of a vector
with index j equals 1 if feature j is observed for the object xi, and 0
otherwise.

After all transformations, the matrix (1) takes the form of a binary
matrix

X ′ =


ϕ1(x

1) ϕ2(x
1) . . . ϕs(x

1)
ϕ1(x

2) ϕ2(x
2) . . . ϕs(x

2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕ1(x

m) ϕ2(x
m) . . . ϕs(x

m)

(11)

and further the classification algorithms are constructed. Moreover, every
feature from (11) can be described in a language understandable to a
diagnostician.

As binarization result, a large number of thermometric features can
be obtained, while many features do not provide new information in
combination with each other, so here arises the problem of feature selection.
To solve this problem, logistic regression with L1-regularization [14] is
applied. The process of transforming the feature space is illustrated in
Figure 3.
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Figure 3. Illustration of the process of transforming the feature space.

1.5. Modeling exercise

To evaluate the efficiency of thermometric features in solving the
problem of differential diagnosis, several classification models are built.
The traditional method of logistic regression is applied as the basis for all
models.
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Classification algorithm is defined as

a(xi) =

{︄
1, if hW (xi) ≥ 0.5,

0, otherwise

where

hW (xi) = g(W0 +

s∑︂
j=1

Wjϕj(x
i))

is the sum of weights of thermometric features, Wj is a weight of feature
ϕj , and

g(z) =
1

1 + e−z

is a sigmoid.
Together with thermometric features, logistic regression is a weighted

feature voting algorithm. To justify and explain the classification result, it
is sufficient to combine the descriptions of the object’s features.

The following approaches for solving the multiclass classification
problem are considered:

1. Logistic regression (LR), one versus rest (OvR). For every class in
the dataset, a model that determines whether an object belongs to
the selected class is built. The most confident model determines the
result. In total, C classifiers are trained, C is the number of classes.

2. LR, one versus one (OvO). For every pair of classes in the dataset, a
separate classification model is built. A majority vote determines the
result. In total, C(C−1)

2 classifiers are trained.
3. Multinomial logistic regression (MLR), which is a generalization of

logistic regression for the case of several classes.

In addition to multiclass classification, a hierarchical approach is also
considered. The first model is applied for solving binary classification
problem: for separating Healthy class from others, which can be done quite
effectively. And the second model is applied to clarify the class of disease.

Stratified nested cross-validation [15] is used to evaluate the efficiency
of classification and to compare models with each other. The dataset
is split into 9 blocks at the outer level and 8 blocks at the inner level.
Balanced precision [16] is used as a performance metric. It is defined as the
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Table 1. Classification performance

Metric LR, OvR LR, OvO MLR
w/o H w/o H w/o H

Accb
Avg 0.557 0.548 0.574 0.537 0.56 0.541

Std Dev 0.102 0.074 0.065 0.05 0.073 0.078

Recall0
Avg 0.844 — 0.781 — 0.838 —

Std Dev 0.136 — 0.162 — 0.096 —

Recall1
Avg 0.609 0.641 0.583 0.684 0.597 0.608

Std Dev 0.138 0.176 0.13 0.092 0.12 0.151

Recall2
Avg 0.614 0.579 0.617 0.549 0.595 0.641

Std Dev 0.197 0.142 0.09 0.11 0.163 0.167

Recall3
Avg 0.45 0.576 0.535 0.561 0.519 0.519

Std Dev 0.18 0.136 0.104 0.189 0.143 0.177

Recall4
Avg 0.271 0.396 0.354 0.354 0.25 0.396

Std Dev 0.333 0.249 0.227 0.227 0.204 0.249

average value of recall for every class:

Accb =

C∑︂
i=1

Recalli
C

,

Recalli =
correcti
totali

,

where correcti is the number of class i objects, which are classified as i,
totali is the total number of class i objects, C is the number of classes.

2. Results and discussion

Results are presented in Table 1. There the mark “w/o H” belongs to
algorithms that are trained on the dataset without class Healthy, Avg is the
average score, Std Dev is standard deviation. The highest balanced accuracy
scores are achieved using LR, OvO in the dataset containing all classes,
and using LR, OvR in the dataset without class 0 (Healthy).

LR, OvR is the best model for identifying class Healthy. It has an
average accuracy of 0.844.

Variance of LR, OvO scores is less than that of other models. This
model, on average, performs better than other models in identifying class 2,
which characterizes venous diseases. However, other models have better
performance in identifying the rest of classes.

Models built for the dataset without class 0 have higher classification
accuracy for various diseases than the same algorithms for the full dataset.
In that case, LR, OvR model is leading and more efficiently identifies
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Table 2. Thermometric features

Feature W R0 R1 R2 R3 R4

T i,ir,st
c − T i,ir,st

p ∈ (−∞,−0.288) 48.32 0.0 0.7 0.18 0.16 0.2⃦⃦
T i,ir,st
c − T i,ir,st

p

⃦⃦
2
∈ (1.967, 7.72) 44.91 0.0 0.75 0.64 0.62 0.85⃦⃦

T i,mw,ly
c − T i,mw,ly

p

⃦⃦
1
∈ (4.25,∞) 44.65 0.0 0.69 0.57 0.55 0.95

T i,ir,st
c − T i,ir,st

p ∈ (−0.288, 0.279) 44.44 1.0 0.25 0.48 0.39 0.15⃦⃦
T i,mw,ly
c − T i,mw,ly

p

⃦⃦
1
∈ (1.45, 3.85) 42.81 0.94 0.22 0.34 0.32 0.05⃦⃦

T i,ir,ly
c − T i,ir,ly

p

⃦⃦
1
∈ (4.45,∞) 42.61 0.17 0.85 0.64 0.9 0.85⃦⃦

T i,ir,st
c − T i,ir,st

p

⃦⃦
∞ ∈ (1.25,∞) 41.62 0.0 0.73 0.64 0.54 0.7

T i,ir,ly
c − T i,ir,ly

p ∈ (0.221,∞) 40.39 0.11 0.04 0.38 0.54 0.7

T i,mw,ly
c − T i,mw,ly

p ∈ (−∞,−0.096) 39.98 0.14 0.75 0.31 0.16 0.25⃦⃦
T i,mw,st
c − T i,mw,st

p

⃦⃦
1
∈ [0, 5.55) 39.93 1.0 0.49 0.67 0.62 0.05

class 3. In comparison with MLR, this model distinguishes class 1 better,
class 2 worse, and class 3 with the same accuracy. In comparison with
LR, OvO, this model identifies class 1 worse and better identifies all
other classes. Class 4 is characterized by a significant variance of average
accuracy estimates.

Table 2 shows examples of the most informative thermometric features,
which are the basis for classification models. There W is informativeness,
Ri is a proportion of class i objects that have a feature. All these features
describe the symmetry of temperature fields of the lower legs.

Three features with the highest informativeness are not observed in
Healthy class. They allow effective detection of the lower legs with diseases.
Such features are the difference in means and the deviation of surface
temperatures of the legs measured in standing position, as well as the
deviation of internal temperatures measured in the lying position.

Almost all healthy lower legs are characterized by a small difference
between average values of skin temperatures measured in the standing
position and a small deviation of internal temperatures measured in both
standing and lying positions.

In class 1, there is practically no high difference in average values of
internal or surface temperatures measured both standing and lying. At the
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same time, the difference between average values of surface temperatures in
standing position is usually higher for them than for class 0.

Class 4 does not exhibit low deviance of internal temperature gradients
measured in the lying position. A low deviation of internal temperatures,
measured both standing and lying, is practically not observed.

These and other features are used in weighted voting classifiers. And
the given features signal that different classes of diseases are characterized
by high deviation of internal and surface temperatures of the lower legs.

Conclusion

The most effective universal algorithm for solving the task is LR, OvO.
It has an average balanced accuracy of 0.574. However, when applying a
hierarchy of classifiers and reducing the problem to a binary classification
Healthy/Sick with subsequent clarification of the disease, the best result
can be achieved with LR, OvR. It has an average estimate of clarification
of the disease class of 0.548.

Earlier, Vedenyapin and Losev [12] applied three two-layer neural
networks in sequential order to solve the differential diagnosis problem.
Every network separated one of the classes from all the others, and the rest
were classified as Healthy. That approach has an accuracy of 0.59. A
detailed comparison of results is not possible because evaluation methods
and datasets are a bit different. Nevertheless, the presented approach has
the following advantages over neural networks:
1. A possibility to justify and explain the classification result. Every

thermometric feature can be interpreted;
2. Anamnesis data (indicators of edema, pain, skin changes) is not used.

It is possible that adding anamnesis data to features space can
significantly improve the performance of classification. However, this
is of interest for further research.
Results show the applicability of the model for dynamically describing

the patient’s condition in differential diagnosis of venous diseases. The key
feature of constructed algorithms is the possibility to justify and explain
the diagnostic decision.
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