
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 13, No 1(52), pp. 131–194

© Kuzminsky M. B. 2022CC-BY-4.0

Эта статья по-русски: http://psta.psiras.ru/read/psta2022_1_63-129.pdf

Review Article hardware, software and distributed supercomputer systems

UDC 004.272+004.382.2+004.42+004.4‘2
DOI 10.25209/2079-3316-2022-13-1-131-194

Modern server ARM processors for supercomputers:
A64FX and others

Initial data of benchmarks

Mikhail Borisovich Kuzminsky
Zelinsky Institute of Organic Chemistry of RAS, Moscow, Russia,
kus@free.net (learn more about the author on p. 194)

Abstract. A comparative analysis of the performance of ARM server processors
used on supercomputers or also aimed at high-performance computing (HPC)
is given. Fujitsu A64FX, Marvell ThunderX2 and Huawei Kunpeng 920
were selected for the initial performance analysis. The HPC performance
review focuses primarily on benchmarks and applications for the A64FX,
which supports longer vectors than other ARM processors and has higher
peak performance. The performance of the A64FX is compared against
corresponding data for Intel Xeon Skylake and Cascade Lake, and AMD EPYC
with Zen 2 and 3 (Roma and Milan), as well as Nvidia V100 and A100 GPUs.
A short set of potential pros and cons of the A64FX microarchitecture has
been formulated. Comparison of performance data obtained using different
compilers for A64FX. Features have been formed when A64FX usually gives
advantages in performance over x86-64, and when it concedes to x86-64.

It is clear that the use of A64FX in supercomputers can grow further. There
is an assumption that x86-64 hegemony in HPC will decrease, in particular,
due to the increased use of server ARM processors. But the analysis of A64FX
and new AArch64 processors expected in the near future showed that A64FX
will not necessarily lead in this process.
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Introduction

The direction of work indicated in the title of this article becomes very
actual. It is associated not only with the growth in the market share
of HPC systems occupied by ARM processors [1], but with the recent
cardinal changes in the market of corresponding hardware in general,
much more radical than, for example, the growth in the market share
of server x86-64 processors occupied by AMD [1] with certain delays in the
development of semiconductor technology at Intel [2] (although there are
statements that 10 nm from Intel is practically equivalent in size to 7 nm
from TSMC [1]).

Publications claim that Moore’s law is slowing down (see, for example,
[1,3–7]) , and HPC began to pay special attention to power supply (see,
for example, [4–7]). The actuality of energy efficiency (performance per
Watt) has been taken into account in various HPC applications for a long
time. For example, in quantum chemistry — with special attention to ARM
processors [8], including a comparison of 64-bit ARM and x86-64 [9]. For
supercomputers, energy efficiency is especially important [1].

The area of HPC and supercomputers naturally became the leaders
of the expected changes. Accordingly, the relevance of reviews on all
computer technology used in HPC also increases. Due to a certain lag
in Europe in this area, new initiatives have appeared for the development and
production of new ARM processors EPI (European Processor Initiative)
and a new PRACE infrastructure (Pan-European High Performance
Computing Infrastructure and Services) has been created, where, among
other things, various latest HPC hardware and performance tests data
[1,2,10]. There is also a similar Russian review, which also considers
Russian hardware [11].

In general, server ARM processors or computing systems based on them
began to be developed and produced in different regions of the world,
including China [12], and the corresponding supercomputers are offered by
Cray/HPE and Fujitsu [13].

However, the rate of development of the corresponding computer
facilities is very high, and new information on the performance of the
software used there quickly appears, which is very relevant for HPC and the
optimal hardware selection, including the building of new supercomputers.
And the HPC area itself now often includes AI, where it is relevant to work
with data types other than the traditional HPC type (double precision,
DP) [13]. And information about the performance of the new AArch64
server processors, which began to push x86-64 from their leading position

https://www.european-processor-initiative.eu/
https://prace-ri.eu/
https://prace-ri.eu/
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for HPC, and, in particular, supercomputers, seems to be very relevant,
including due to the high energy efficiency of the corresponding ARM
processors [11,14]. Considering also the active promotion of RISC-V [15],
the high peak performance of IBM Power10 (which claims to be the leader
in DP performance and was expected to be released in 2021) [16], the use
of the SW26010 RISC processor in the still top ten TOP500 of the Chinese
supercomputer Sunway TaihuLight (see, for example, [17,18]) we can
generally talk about some revival of RISC.

Therefore, the review of performance data in HPC (and, in particular,
on supercomputers) of server ARM processors (primarily the most high-
performance Fujitsu A64FX) carried out in this work seems to be very
relevant.

1. Hardware features (important for HPC) of AArch64 processors

1.1. AArch64 server processors with support of 128-bit
vectorization

The first widely known AArch64 processor which began to be used
in supercomputers from the TOP500, became, apparently, Marvell
ThunderX2 [19], which supports work with 128-bit vectors (Advanced
SIMD, NEON). Although other ARM processors were used earlier
in supercomputers [20]. Various ThunderX2 performance data is already
well known. It combines not very high cost with competitiveness with
mass server x86-64 processors in terms of performance for HPC [21].
Even unconfirmed data appeared about higher ThunderX2 performance
indicators, for example, relative to Xeon Skylake 6148 — including
SPECrate2017_int_peak. However, Xeon Skylake is usually ahead
in the performance of ThunderX2, including on the SPEC OMP2012
benchmarks or, for example, in various applications of computational
chemistry [21], or UoB-HPC/benchmarks . According to [7], ThunderX2
can outperform Xeon Skylake on memory-intensive HPC applications,
while giving greater power efficiency, and more computationally intensive
applications can read faster on skylake. Computational fluid dynamics
(CFD) is a classic area of HPC applications where memory bandwidth is so
important [20], while computational chemistry includes, for example,
molecular dynamics, which is a computationally intensive area of HPC.

Table 1 compares the main specifications of the ThunderX2 processor
that affect performance with other more modern AArch64 processors. With
the exception of Fujitsu A64FX, which supports SVE [22], the other of the
above in Table 1 ARM processors support the same 128-bit vectorization as

https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/
https://www.spec.org/omp2012/results/omp2012.html
https://github.com/UoB-HPC/benchmarks
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ThunderX2. The number of floating point operations per clock per core
of Xeon Scalable of all generations is higher than all these processors;
accordingly (in proportion to the clock frequency), the Xeon cores also
have higher peak performance (FLOPS). And other AArch64 processors
have higher peak performance compared to ThunderX2 (by default, we are
talking about working with DP, which is standard for traditional HPC
applications). New publications about the performance of ThunderX2
continue to appear (see, for example, [23]). The corresponding results are
more important for using ThunderX2-based computing systems, since
the performance of the newer available AArch64 processors is usually
higher, and they are more relevant to purchase. Therefore, given the many
published articles on ThunderX2 performance, it is considered in this
review only when compared with other newer ARM server processors.

The subsequent ThunderX3 [24] and [25] processor models that
were supposed to be released could surpass ThunderX2 in all the most
important parameters, including the number and frequency of cores (see
above Table 1). Although ThunderX3 was not supposed to use SVE,
because the developers were afraid of its still insufficient maturity for
software tools, the number of NEON vector devices was doubled relative to
ThunderX2, and the sharply increased peak performance would have
surpassed the A64FX. And in ThunderX4 it was planned to switch to work
with SVE. However, in mid-2020, Marvell made a statement that could be
interpreted as abandoning the release of ThunderX3 and moving to work
in other directions than HPC.

Another example of an available 7nm ARM server processor would be
the 64-core Huawei Kunpeng 920 [12], which was originally intended to be
used for HPC, and is now referred to as such processors [2,10,11]. It
uses a more modern ARM v8.2-A architecture than ThunderX2 (same
as in A64FX, but without the SVE extension). It supports NEON
SIMD blocks, just like ThunderX2. The Kunpeng 920 outperforms it
in core count and other metrics (see above), including peak performance.
Of the hardware features of the Kunpeng 920, we should point out an
unusual memory hierarchy compared to Xeon processors, including NUMA
in two superclusters of cores (SCCL) inside the Kunpeng chip (see, for
example, [14,26]), as well as the ability to support ccNUMA on a scale
chiplets based on them [12]. Kunpeng’s core grouping is somewhat similar
to the A64FX and Zen, and this is probably due to the significant growth
in the number of cores common to server processors. However, there are
still few publications on the HPC benchmarks of Kunpeng 920.



M
o
d
er

n
serv

er
A

R
M

pro
cesso

r
s

fo
r

su
perco

m
pu

ter
s:

A
6
4
F
X

a
n
d

o
th

er
s

1
3
5

Table 1. Main spedcifications of ARM processors for HPC

Specifications A64FX Kunpeng
920-6426

Thunder
X2CN9980 Thunder X3 Altra (Q80) Graviton2

Peak
performance(DP),
TFLOPS

2,8-3,4 1,33 ⩽ 0, 64 ⩽ 4, 75 2,12

Technology TSMC 7 nm TSMC 7 nm TSMC 14 nm TSMC 7 nm TSMC 7 nm TSMC 7 nm
Number of cores 48+4 64 32 ⩽ 96 80 64
SMP 1(ccNUMA) ⩽ 4 (NUMA) 2/4(NUMA) 1–2 (NUMA) 1–2 (NUMA) 1
Clock, Ghz 1,8–2,2 GGz1 2,6 GGz 2,1–2,5 GGz1 ⩽ 3, 1 GGz 2,6–3,3 GGz 2,5 GGz
Simultaneous
multithreading no no SMT0/2/4 SMT4 no no

Vectorization, bit SVE,512 NEON,128 NEON,128
(2xFMA)

NEON,128
(4xFMA)

NEON,128 (2
devices) NEON,128

Architecture ARM v8.2-A
+SVE

ARM v8.2-A
(Neoverse N1)

ARM v8.1
Vulcan

ARM v8.3+
Triton

ARM v8.2+
(Neoverse N1) Neoverse N1

L1 cache I+D 3 MB (64
KBx48)

64KB+64KB
per core

32+32 KB per
core

64+32 KB per
core

64+64 KB per
core 4+4 MB

L2 cache 32 MB (4x8MB) 32 MB (512 KB
per core) 256 KB per core 512 KB per

core 1 MB per core 64 MB

L3 cache no 64 MB (1 MB
per core)

32 MB (1MB
per core) 90 MB ⩽ 32 MB 32 MB

Memory interface HBM2 8xDDR4-2933 8xDDR4-2666 8xDDR4-3200 8xDDR4-3200 8xDDR4-3200
bandwidth 1 TB/c 188 GB/c 171 GB/c 205 GB/c 205 GB/c 205 GB/c
Memory size 32 GB ⩽ 2 TB ⩽ 2 TB x22 no data ⩽ 1TB ⩽ 1 TB

Interface I/O PCIe-v3 x16
+TofuD

PCIe-v4 40x (up
to x16)

PCIe-v3 48x,
56x

16 x PCIe-v4
x4 PCIe-v4 128× PCIe-v4 64×

TDP, W No data 180 180/2,2 GGz 100-240 2503 80-110

1maximum in boost mode; 2for dual processor server; 3for 3.3 Ghz.
Table data taken from manufacturer’s websites.
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Table 2. SPECrate 2017 base benchmark data for servers
with Kunpeng 920 and x86-64 processors

Integer Floating point
dual processor

Kunpeng 920-7260 318 263
Xeon Skylake 8180 297 276
Xeon Cascade Lake 8280 303 308
EPYC Rome, 7742 701 524
EPYC Milan, 7763 839 651

Four-processor
Kunpeng 920-7260 628 516
Xeon Skylake 8180 564 523
Xeon Cascade Lake 8280 670 566

The data from the SPECcpu 2017 benchmarks [27] should now be
considered the most massive. The relevant data and comparison with
servers based on modern x86-64 processors are given in Table 2. According
to these data, it can be seen that the 64-core Kunpeng 920 7260 with
a frequency of 2.6 GHz, winning a little on integer performance, is inferior
to the major Xeon Skylake models in floating point calculations.

The maximum data as of 09/18/2021 with the indicated processors is
given. More recent Xeon Ice Lake data is not shown here as it is even
faster than the Kunpeng 920.

Since floating point is important for traditional HPC applications, we
will talk about it by default in the following. The more modern Cascade
Lake extends the performance lead over the Kunpeng 920, and the third
generation Xeon Scalable is even faster.

SPECcpu 2017 is not often used for performance evaluations for HPC,
especially for supercomputers. For the Kunpeng 920, memory bandwidth
benchmarks (stream) [10] are available in Table 3. These metrics are
important for HPC applications where memory bandwidth limits the
supported performance (for example, for CFD [20]). Kunpeng 920 is ahead
of ThunderX2 and Xeon Skylake here, and behind AMD EPYC Roma —
which corresponds to the memory supported by these processors (see
Table 1 and Table 4).

In a RoCE (100 Gb/s) cluster of 4 dual-processor servers with Kunpeng
920, HPCG benchmarks with MPI parallelization were carried out; data for
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Table 3. Comparison of stream benchmark data (GB/s)
in dual-socket nodes with Kunpeng 920, ThunderX2 and
x86-64 processors1. All bandwidths are in GB/s

Processor Copy Scale Add Triad
Kunpeng 920-6426 322 322 324 324
ThunderX2/2,5 GGz ∼ 225 ∼ 225 ∼ 240 ∼ 240

EPYC Rome 7742 338 338 340 340
Xeon 8160/2,1 GGz ∼ 180 ∼ 180 ∼ 200 ∼ 200

Xeon 8174/2,4 GGz ∼ 180 ∼ 180 ∼ 200 ∼ 200
1The highest results achieved in [10] are given.
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Figure 1. Kunpeng 920 performance in HPCG

1–4 nodes are shown in Figure 1 from [10, Figure 7]. A single-socket
server with ThunderX2/2.5 GHz in this test received noticeably less
than 20 GFLOPS, and a two-socket server with Kunpeng — about 40
GFLOPS [10], which indicates its higher performance than ThunderX2.
A two-socket server with Kunpeng 920 in the HPCG test can be compared
with two-socket servers based on 24-core Xeon Skylake: with Xeon Platinum
8160/2.7 GHz, performance is noticeably below 40 GFLOPS, and with Xeon
Platinim 8174/2.7 GHz — about 40 GFLOPS [10]. Thus, two-socket servers
with Kunpeng 920 proved to be competitive in performance in HPCG with
two-socket servers with Xeon Skylake, which has AVX-512 support. This is
due to the fact that working with vectors/matrices is not as important
in HPCG as it is in HPL.
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Table 4. Main features of A64FX and modern x86-64 processors

Features A64FX Xeon Platinum
8180

Xeon Platinum
8280

Xeon Platinum
8380

AMD EPYC 7763
(milan)

AMD EPYC 7662
(ROME)

Architecture ARM-v8.2-A +
SVE Skylake Cascade Lake Ice Lake (Sunny

Cove) Zen 3 Zen 2

Technology TSMC 7 nm 14 nm 14 nm 10 nm TSMC 7 nm TSMC 7 nm
Cores number 48+4 28 28 (321) 40 64 64
Clock GGz 1,8-2,2 2,5/3,82 2,7/4,02 2,3/3,42 2,45/3,52 2,0/3,32

SMP sockets 1 via UPI up to 8 via UPI up to
81 ⩽ 8 1/2 1/2

Multithreading no SMT2 SMT2 SMT2 SMT2 SMT2
Vectorization, bit SVE,512 AVX-512 AVX-512 AVX-512 AVX-256 (AVX2) AVX-256 (AVX2)
FLOPS/cicle (DP,
per 1 core) 32 32 32 32 16 16

L1 cache (I+D) 64KB+64KB per
core 4-way

32KB+32KB
per core 8-way

32KB+32KB
per core 8-way

32KB+48KB per
core 8/12-way

32KB+32KB per
core 8-way

32KB+32KB per
core 8-way

L2 cache 32MB (8MB×4)
16-way

1 MB/core
16-way

1 MB/core
16-way

512 KB/core
8-way 32 MB 8-way 32 MB 8-way

L3 cache no 38,5 MB 11-way 38,5 MB
11-way 60 MB 16-way 256 MB 16-way 256 MB 16-way

Memory HBM2 6xDDR4-2666 6xDDR4-2933 8xDDR4-3200 8xDDR4-3200 8xDDR4-3200
32 GB ⩽ 768 GB ⩽ 1 TB ⩽ 6 TB ⩽ 4 TB ⩽ 4 TB

Peak bandwidth3
1 TB/c (4x256
GB/c) 128 GB/c 141 GB/c 205 GB/c 205 GB/c 205 GB/c

I/O PCIe-v3×16 +
TofuD PCIe-v3 48x PCIe-v3 48x PCIe-v4 64× PCIe-v4 128× PCIe-v4 128×

TDP, W no data 205 205 270 280 225
Price, $ no data 10010 10010 8100 7890 7000

1For Cascade Lake AP 92XX; 2High values — maximum turbo frequency; 3peak value
Data for Intel and AMD processors taken from the sites 5.09.2021. European data (PRACE) also used.

https://ark.intel.com/
https://www.amd.com/
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide-Modern-Processors-Accelerators.pdf
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It is well known that working with matrices, primarily matrix
multiplication (GEMM), often limits the calculation time. Examples
include, for example, HPL [28] or quantum chemical calculations using
methods that take into account electronic correlations [6]. There are
many mathematical libraries supporting BLAS [29]. However, they are
developing very quickly, and new libraries also appear, including those for
optimization problems on new computer architectures. A comparative
analysis of various libraries with BLAS for DGEMM calculations in a
dual-processor server with 48-core Kunpeng 920/2.6 GHz showed maximum
performance in OpenBLAS, where DGEMM was then optimized by
explicitly taking into account the peculiarities of working with NUMA,
which gave a gain in operation with large matrices. Maximum performance
was achieved using pthreads for parallelization in OpenBLAS rather
than OpenMP. The increase in performance achieved due to the update
of DGEMM is about 20% [14].

Another notable thing about HPC is the sparse matrix vector multipli-
cation, SpMV. It is actual, for example, in the numerical solution of partial
differential equations [30]. In quantum chemistry, it is used, for example,
for calculations by the configuration interaction method [31]. In [32]
a study was done on the Kunpeng 920 of the performance achieved when
using NEON SIMD instructions with an analysis of the dependence on the
data storage format in the matrix. It should also be noted that for the
performance of SpMV, it was found important to explicitly take into
account the presence of the NUMA architecture [30].

In [33] , a detailed comparison of the performance of Kunpeng 920-6426
and 18-core Xeon Gold 6140 was made. In cases where performance was
limited by working with cache or memory, Kunpeng turned out to be ahead.
But in more computationally intensive benchmarks using vectorization,
the Xeon outperformed. A study at the Research Computing Center
of Moscow State University within the framework of a joint project with
Huawei covers the comparison of Kunpeng 920-6426 not only with Xeon
6140, but also with EPYC 7763 (Milan, with Zen 3). The Kunpeng 920
outperformed the Xeon 6140 in computationally intensive not vectorizable
benchmarks and was slower in sparse matrices. And EPYC 7763 usually
outperformed both Xeon 6140 and Kunpeng 920. At the same time, some
features of EPYC 7763 are close to Kunpeng 920: 64 cores with comparable
frequencies, both support only 128-bit vectors, 8 memory channels each

https://rcc.msu.ru/ru/issledovanie-potenciala-processorov-kunpeng-na-nabore-benchmarkov-iz-nauchnyh-prilozheniy
https://rcc.msu.ru/ru/issledovanie-potenciala-processorov-kunpeng-na-nabore-benchmarkov-iz-nauchnyh-prilozheniy
https://rcc.msu.ru/ru/issledovanie-potenciala-processorov-kunpeng-na-nabore-benchmarkov-iz-nauchnyh-prilozheniy
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(although EPYC is supported by DDR4-3200 vs DDR4-2933 in Kunpeng).
However, this data is somewhat preliminary.

In general, it can be considered clear that Kunpeng 920 is slow
in performance compared to leading models of modern server processors
Intel Xeon Scalable 2nd or 3rd generation, and AMD EPYC with Zen 2 or
3 architecture. Newer models of Kunpeng server processors have also
appeared, including the Kunpeng 920 7265, in which the cores operate at a
higher frequency of 3.0 Ghz (the list of models is available in cite ). The
Kunpeng 920 performance data is not analyzed in more detail here, among
other reasons, due to the small number of relevant publications. And
in 2021, the Kunpeng 930 (5 nm) with SVE support is expected to be
released, and it is likely to become used more in supercomputers. However,
the implementation of this is now possibly frozen by sanctions against
Huawei, including restrictions on the supply of modern chips from TSMC.

Another modern AArch64 processor that might be of interest to
HPC is the 80-core Ampere Altra Q80 [1] (see Table 1 above) and the
newer 128-core Altra Max . They have more cores than the 64-core
Kunpeng and higher peak performance. Ampere states that their 80-core
processor has a performance comparable to AMD Roma EPYC 7742 and 2
times faster than Intel Cascade Lake SP Xeon Platinum 8280 [1] (see
Table 4 for general information about processors of this type). Thus, in a
molecular dynamics performance test using NAMD , the Altra Q80/3.3
GHz processor turned out to be faster than 1-–2 processor servers with
Xeon 8280, and a single processor server with EPYC 7742, but lost to
a two-processor server with EPYC 7742. However, this test does not use
AVX-512, which can reduce Xeon performance by, say, 2 times. And
information about parallelization was not given at all. The Ampere Altra
Review also shows the data obtained for SPEC benchmarks (including
SPECrate2017_int and _fp). Data on other more reliable benchmarks
topical to HPC is not available for these processors. The manufacturer is
generally focused not on the traditional HPC market, but rather on AI and
other areas of application, and Altra is not considered in this review.

The 64-core Amazon AWS Graviton2 is inferior to Ampere Altra
in all parameters (important for performance) given in this review (see
Table 1), as in the above SPECcpu2017 benchmarks, and is also focused
not on traditional HPC, but on the use of cloud computing technologies,
and is not considered in the review.

https://support.huawei.com/enterprise/en/doc/EDOC1100093459/3c3b9088/technical-specifications
https://amperecomputing.com/wp-content/uploads/2021/06/Altra_Rev_A1_DS_v1.10_20210612-1.pdf
https://amperecomputing.com/wp-content/uploads/2021/06/Altra_Max_Rev_A1_PB_v0.55_2021061261.pdf
https://www.anandtech.com/show/16315/the-ampere-altra-review
https://www.anandtech.com/show/16315/the-ampere-altra-review
https://www.anandtech.com/show/16315/the-ampere-altra-review
https://www.anandtech.com/show/16315/the-ampere-altra-review
https://www.anandtech.com/show/16315/the-ampere-altra-review
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Considering all that has been said above about AArch64 processors
supporting NEON vectorization, this review does not analyze their
performance in more detail.

1.2. Processors with SVE support: Fujitsu A64FX and computing
systems based on it

Other than the A64FX, processors that support SVE are yet to be
released in the near future. These are Huawei Kunpeng 930, which was also
planned to support multithreading (SMT), and the European SiPearl
Rhea [1]. It assumes support for SVE-256 bits (not only with DP, but also
with bfloat16), but also additional DDR5 memory to HBM2E. Perhaps this
reflects the desire of developers for slightly more mainstream applications
for HPC, since the relevance of today’s hardware support for GEMM is
disputed [4].

1.2.1. A64FX important for performance hardware features

The ARM processors discussed above at the time of their release
were characterized by increased memory bandwidth (compared to Xeon
processors), which became more relevant for HPC during the transition to
work with multi-core processors, since the bandwidth increased not so
fast [20]. As noted above, this is very important, for example, for CFD
calculations.

The A64FX became famous in HPC not only due to the record peak
performance for today, but also due to the stable leadership in the TOP500
of the Japanese supercomputer Fugaku, built on these processors without
the use of a GPU at all [13]. It differs from the most modern x86-64
processors not only in the use of radically faster HBM2 memory (see
Table 4), but also in the construction of the entire memory hierarchy
(although EPYC Zen 2 and 3 have analogies in cache construction) and an
advanced SVE system of work with vectors. For energy management, the
A64FX also has more sophisticated tools than Xeon, allowing you to affect
energy efficiency. To optimize performance and energy efficiency, all this
must be taken into account in compilers, libraries for HPC, and sometimes
even in applications themselves.

The most important features for A64FX performance are shown above
(Table 4), where they are compared with various models of modern Intel
and AMD server processors, and Figure 2 based on Figure 2 from [35]
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Figure 2. Block diagram of A64FX CPU

shows the general design of the A64FX, illustrating the memory design
of the A64FX [34,35]. This processor consists of 4 groups of cores and
memory (CMG, core cluster) — so that each CMG has 12 cores (plus one
auxiliary), an HBM2 memory controller and shares the L2 cache (and each
core has its own L1 cache). All CMGs in the processor are connected by
a single ring bus, so that the L2 cache and the entire HBM2 are common
to the entire A64FX, and the processor is a ccNUMA system [35].

This memory hierarchy is different from all modern x86-64 server
processors, in which the L3 cache is shared, and the L1 and L2 caches
belong to the cores (see above, Table 4). In the A64FX, the size of the L1
cache area in the chip is more than 10% of each core, and adding another
cache level in the core would significantly increase the die size, which was
found to be economically unreasonable [34]. At the same time, the HBM2
used in the A64FX has a dramatically higher bandwidth than DDR4
in x86-64 processors — 256 GB/s for each CMG (see Table 4 above). Each
CMG contains, in addition to 12 computational cores, another auxiliary one
— for servicing the operating system. However, Fujitsu PRIMEHPC FX700
supercomputer servers use A64FX models without such auxiliary cores .

There is no SMT support in A64FX. This may be of an economic
nature (considering that, because of this, the A64FX abandoned both the
additional cache level on the cores and the addition of DDR4 memory to
HBM2 [34]). Рerhaps, it was done because SMT is far from is always useful
for HPC (see, for example, [10]), and the implementation of such a complex

https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1113-02.html
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thing requires not only additional area, but also energy. Performance
increases due to the use of SMT are not always observed in HPCs, since the
performance of most applications is limited more often either by different
threads using the same execution units, or by memory bandwidth [10].
In [10], there are cases where disabling SMT in the AArch64 processor
gives a performance increase, although there are also applications where
SMT is important.

SVE (Scalable Vector Extension) is the most important addition
of A64FX relative to ARM v8.2-A. The A64FX now supports 128, 256
and 512 bit vectors. In modern processors with vector operations, the
length of vectors is indicated in bits, including since ISA assumes vector
operations on different data types, not only DP and single precision (SP),
but also half precision, including bfloat16. SVE assumes the ability to
work with vectors of different lengths from 128 to 2048 bits with a step
of 128 [36], and the program for working with hardware support for
vectors of other lengths does not need to be retranslated (the length is
already determined at runtime). This is one of the advantages of SVE over
AVX-512. Another advantage of SVE is the use of predicate registers there
(for example, for fully vector processing of operations on arrays of length
not a multiple of the hardware length of the vector) [36]. One bit of the
predicate register corresponds to one byte of the SVE register, and this
allows you to work with fragments of vectors.

Another important plus is the support for vector gather/scatter
operations, illustrated by the following two operators

gather : a[i] = b[index[i]],

scatter : a[index[i]] = b[i].

As a result, SVE contributes to improved autovectorization by compilers.
Due to the fact that SVE in A64FX can work with 512-bit vectors, you

can get 32 results (DP) per core per clock, as in Xeon, starting with
Skylake. However, the A64FX has many more cores, giving it higher peak
performance. SVE provides not only an increase in performance, but also
a reduction in power consumption [37].

Another unique feature of the A64FX, especially for supercomputers,
is its integration of highly scalable and fault resilient TofuD RDMA
interconnect management. This network has the 6-dimensional grid/torus
topology previously used in the K supercomputer, Fugaku’s predecessor.
But the bandwidth of TofuD, due to its integration into the processor,

https://developer.arm.com/-/media/Files/DDI0584B_a_SVE.zip
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now depends on its frequency. For the accelerated (boost, see below)
mode with a frequency of 2.2 GHz, it is 6.8 GB/s for each of the 6
communication channels (Tofu Network Interfaces, TNI) [10,34,35].
This is less than in Infiniband HDR 4x and 16x, but for large computing
systems with a complex communication topology between nodes, the total
node (injection) bandwidth of all simultaneously operating channels (TNIs)
is important — 40.8 GB/s, which is higher than the bandwidth of a single
HDR 4x card, but lower than HDR 12x.

But the reason for using in small clusters (for example, with FX700)
not TofuD, but Infiniband EDR is due to the continuous allocation
of nodes in TofuD, which can reduce the availability of such clusters due to
fragmentation (Yuichiro Ajima, Global Fujitsu Distinguished Engineer,
private communication). The latency of RDMA communication (Put 8
bytes) in TofuD is 0.49 (for near CMGs) and 0.54 µs(for far CMGs) [38],
while in Infiniband HDR (Nvidia/Mellanox ConnectX-6) it is 0.6 µs.

TofuD shares a controller with PCIe-v3 in the A64FX, so the entire
A64FX can be classified as a system-on-a-chip (SoC).

The A64FX has special power control. There are 2 basic frequency
selection modes — normal and boost; in the FX1000, this corresponds to
frequencies of 2.0 and 2.2 GHz. In each of these modes, it is possible
to enable another eco-mode, in which only one of the two floating-
point ALU pipelines remains functioning [34,35]. Accordingly, 4 power
management modes are obtained, which can be selected to achieve maximum
performance or select energy efficiency (this will be discussed below).
GPUs are considered to be more energy efficient than CPUs. However,
in [35] the energy efficiency of the A64FX is noted as comparable to
GPU-based computing systems.

We do not consider the available data on the A64FX microarchitecture
in the review; more detailed information about OoO, branch prediction
mechanism, TLB construction and other things can be found in the
manual . But the A64FX has another key feature for HPC. It was
developed specifically for HPC tasks [34], and first of all for the creation
of the Fugaku supercomputer [35]. In [34], the use of co-design for the
A64FX is indicated, when the performance-determining parameters of the
future A64FX were selected together with software developers for HPC,
and taking into account specific applications. For this, a processor emulator
was used. For example, to select the optimal number of cores in CMG, HPL
performance was tested. The well-known Japanese complex of quantum

https://www.mellanox.com/files/doc-2020/br-infiniband-product-guide.pdf
https://www.stonybrook.edu/commcms/ookami/support/_docs/A64FX_Microarchitecture_Manual_en_1.3.pdf
https://www.stonybrook.edu/commcms/ookami/support/_docs/A64FX_Microarchitecture_Manual_en_1.3.pdf
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chemical programs NTChem was also one of the “participating in the
selection” applications. As a result, [34] clearly demonstrates why Fujitsu
chose these parameters. Undoubtedly, this approach is very attractive for
HPC-oriented processors.

1.2.2. Potential deficiences of A64FX for HPC performance

The A64FX also has a number of weaknesses, usually considered
in relation to x86-64 server processors (see above, Table 4), which are often
caused by the desire not to increase the cost (for example, not as large
a fixed amount of HBM2 memory, to which DDR4 is not added) [34]. There
is also data from 2017 that in the NSF supercomputer resources for HPC,
86% of tasks did not require more than 32 GB of memory in the nodes [39].
And the latencies of HBM2 are greater than those of DDR4 [35].

It should be noted that the memory latency values measured in the
benchmarks include several components, and the latency in the data
transfer bus may not be the main contributor to the total latency. Although
the significantly large HBM latencies relative to DRAM have been known
for a long time, and this is indicated in a number of publications, there are
not so many quantitative estimates, and the resulting latencies depend
on the chips working with the memory. As an example, we indicate the
latencies obtained in the Shuhai benchmark when hitting the page (that is,
when it is already open) when working with the FPGA chip on the Xilinx
Alveo U280 board — 107 ns for HBM and 73 ns for DDR4 [40].

Another weakness is the absence of L3 cache, the reason for which is
explained above.

The A64FX’s out-of-order (OoO) design also used simulation of A64FX
and using small parts of applications, but deciding on the right amount
of resources for OoO at that time was hampered by the lack of efficiency
of the new compiler. At the same time, limiting resources for OoO
contributes to lower power consumption, and progress in the work of the
compiler can generally make weaker problems with OoO [34].

In A64FX, the capacity of the reorder buffer (ROB) is 128 entries,
which is significantly less than in modern x86-64 processors: there are
224 of them in Xeon Skylake, 352 in Ice Lake, and 512 are planned
in the expected Alder Lake; in EPYC Zen 2 — 224, in Zen 3 — 256.
The number of physical registers (except for predicate registers missing
in Xeon) in A64FX is also less than in Xeon Skylake [41]. A large latency
in instruction execution times can lead to a weakness of OoO [34]. And
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in a number of works [42–45] , large latencies in the execution of various
A64FX commands were noted. So performance limitations of the A64FX
due to OoO weaknesses are quite likely.

The PCIe used in the A64FX is not the latest version used (see Table 4
above); SSDs can work with PCIe-v4, and the expected Power10 will
already have PCIe-v5 [16]. At the same time, SSDs are also used for
HPC [46]. But for the A64FX, the integration of the controller with
TofuD in the processor is more important, and the problem of a high-speed
connection to the GPU did not arise, since they are not supposed to be
used in the supercomputer on the A64FX. But the peak performance of the
Nvidia V100 and A100 GPUs is several times higher than that of the
A64FX: 7.8 and 9.7 TFLOPS, respectively [47], and the new AMD Instinct
MI100 has even more (11.5 TFLOPS) against 3.4 TFLOPS in A64FX, and
the use of the GPU is now relevant, at least for HPC applications that
already work effectively with the GPU. Due to PCIe-v3 limitations in the
A64FX, the new Japanese supercomputer Wisteria/BDEC-01 is planned to
use a heterogeneous fabric with some nodes on the A64FX and others
on the Xeon Ice Lake with A100.

Finally, keep in mind that there are also HPC benchmarks/applications
where using SMT (not supported on the A64FX as noted above) can
improve performance.

The following section 3 of this review also shows the impact of the
A64FX indicators noted in 1.2.2 on performance.

1.2.3. About computing systems based on A64FX

The first thing that is unusual for HPC clusters that have been using
dual-processor servers for a long time is that servers with A64FX are
single-processor, and A64FX performance is often compared with two
x86-64 processors. Moreover, two Xeon processors often have a number
of cores close to A64FX. Fujitsu with A64FX offers two PRIMEHPC
supercomputer platforms — FX700 and FX1000. The latter is used in the
Fugaku supercomputer, and has the maximum facilities — up to 384 nodes
per water-cooled rack, connected via TofuD. A64FX nodes have a frequency
of 2.2 GHz and 48 cores plus 4 assistant ones (see Figure 2). FX700 is
based on 2U devices; up to 8 nodes are placed on the chassis, and they
work with air cooling. A64FX in them operates at frequencies of 1.8 or
2 GHz, and there are no assistant cores. The nodes are connected via
Infiniband EDR .

https://www.mellanox.com/files/doc-202/br-infiniband-product-guide.pdf
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You should pay attention to the difference between A64FX in FX700
and FX1000. The A64FX from the FX700 does not support TofuD, clusters
work with Infiniband EDR or HDR100 — this uses a PCIe-v3 x16 slot. But
then there is also PCIe-v3 x4, to which the SSD is connected. Other
computing systems with A64FX offered by HPE/Cray are Apollo 80
(previously announced as Cray CS500). The nodes here are connected via
Infiniband EDR or HDR100. A 42U rack can contain up to 168 servers
with 48-core A64FX clocked at 1.8 or 2 GHz — similar to those used in the
FX700.

In general, you should pay attention to the fact that not only the clock
frequencies differ in different A64FX models, but there may or may not be
attachment processors, and TofuD may not be supported and will work
with different bandwidth depending on the processor frequency. And all
of the just listed computing systems with A64FX are not traditional
servers, but are initially oriented towards working in clusters for HPC.

2. A64FX: Operating systems and software development tools for
HPC

To work with the A64FX, you can use the classic Linux distributions
for HPC — RHEL 8/CentOS, and SLES 15/OpenSuSE. Here you need to
pay attention to the need for their real installation on all SSDs of all
computing nodes of the cluster — to store the root file system there.
The option of storing in these nodes only root filesystem images resident
in memory on the Ookami supercomputer (on special nodes for compiling
and debugging SSDs were originally there) required about 14 GB of memory
for this in each node — due to work with pages with a capacity of 64 KB,
and so much “takes away” even a super-small file [39]. And since Fugaku can
already be attributed to the EFLOPS-level supercomputer (when working
with half precision), to implement HPC with such an ultra-high level
of parallelization, a complicated memory hierarchy and other complexities,
in addition to Linux (RHEL), the McKernel microkernel [48] is used,
which fulfills massive system calls for HPC, while more complex ones are
forwarded to Linux.

Five C/C++/Fortran compilers capable of creating code with SVE and
a number of math libraries are available for the A64FX. There is a statement
that the performance of most HPC applications today is limited by memory
bandwidth [49], which gives the A64FX a clear advantage among available
processors. The A64FX, however, has a different performance-to-memory

https://h20195.www2.hpe.com/v2/GetDocument.aspx?doc- name=a00094636enw
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bandwidth ratio, and real HPC application data and benchmarks show that
the A64FX isn’t always a performance leader, and the quality of software
development tools is critical. In this review, compilers and libraries are
analyzed mainly in terms of the performance received by the consumer —
and not to analyze the possible causes of their performance flaws and ways
to eliminate these. Also relevant for choosing a compiler, the availability
of modern versions of C/C++/Fortran, including OpenMP tools, is not
taken into account here.

There are already quite a few publications demonstrating the level
of efficiency of compilers. But since A64FX uses a number of original
microarchitectural solutions, and became available quite recently, compilers
are considered as not yet “mature” enough [50], and although all modern
versions of them can already implement autovectorization in SVE, in [39,51]
it is made essentially the same conclusion. We list the available compiler
versions used in a number of publications: Fujitsu 4.5.0 (there are two of its
modes — traditional (FJtrad) and based on LLVM (including FJclang),
where the back-end is based on LLVM 7); LLVM v.12 (there you can use
vectorization in polly loop optimization tools); GNU v.10.2.0, as well as
ARM and HPE/Cray compilers — not available on Fugaku due to lack
of licenses (at least at the time of sending the publications used in the
review). As “immature” compilers for A64FX, we will refer, for example, to
data on GNU compiler errors, flang errors in LLVM [50], run-time errors
in ARM and Cray compilers [39,52].

Used in [50,53,54] LLVM 12 is a modern stable version, version 13.0.0
appeared only in October 2021. The continuous rapid development of other
compilers for the A64FX also clearly manifested itself in 2021. For example,
new versions of the ARM compiler (including 21.1) and Cray (12.0) were
released.

The Cray and Fujitsu compilers are commercial, as are the ARM
compilers included in Allinea Studio’s HPC-focused suite, including
C/C++/Fortran compilers and the Arm Performance Library, armPL
(although a free trial version is also available), and the freely available
compilers are GNU and LLVM. The main options for all these compilers to
enable vectorization, OpenMP and other optimizations are given in [55].

ARM compilers for HPC use cland/flang as front-end, and back-end is
based on LLVM (in 21.1 — on Clang 11), where 2 vectorization units
are used: one natural for loops, and the other gives parallelism at the
superword level ( SLP), when vector instructions are generated instead

https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/release-history
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of a set of similar independent instructions [55]. It should also be noted
that the C extension implemented for the first time in the ARM compiler,
ACLE (Arm C Language Extensions), which was also made for SVE, and
helped autovectorization in the initial period of work with SVE, is now
outdated and is planned to be removed in future versions of the compiler.

Fujitsu’s compilers have the advantage of supporting some performance-
enhancing A64FX hardware features that weren’t mentioned above —
since they are more sophisticated, they currently could only be used
in these compilers, and their impact has been little studied. However, [43]
explored the impact of FJtrad 4.4.0a on the use of these facilities through
options, environment variables, or pragma directives. This is zero fill
(allows better memory handling, and [43] shows performance acceleration
in the stream triad test, but other processors have similar mechanisms); the
use of hardware barriers for accelerated synchronization of threads and the
splitting of the cache into sectors of different sizes. The latter allows for
better management of the cache space allocated to each data structure
in the code and can help avoid “polluting” the entire cache. In [43], an
increase due to this performance was shown when multiplying a dense
matrix by a vector. And the use of hardware barriers accelerated the
synchronization of threads in FJtrad (fcc), including in comparison with its
software implementation in gcc 10.2.

One of the largest compiler studies [50] analyzed not only the choice
of compiler options, but also the effectiveness of Fujitsu’s recommended
choice of the number of OpenMP threads and MPI ranks in hybrid
parallelization on the A64FX.

Fujitsu and RIKEN (the Japanese Institute of Physics and Chemistry,
where the Fugaku supercomputer is installed) recommend using 12 OpenMP
threads on each CMG, and on top — parallelization with MPI rank 4
(according to the number of CMGs). In [50] , other options for choosing
combinations of OpenMP/MPI were also used.

For microkernels from RIKEN-priority applications, FJtrad almost
always gave the best performance; GNU generated faster code in a few cases,
but bugs in some. In a group of mini-applications from RIKEN, for example,
for the quantum chemical program NTChem, GNU lags behind other
compilers. In the stream tests, LLVM and GNU gave a performance increase
of up to 51% relative to FJtrad. In the SPECspeed 2017 benchmarks
with multi-threaded floating point workloads and in SPEComp, GNU
generally performed the worst. For C/C++ SPEC tests, LLVM-based
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compilers (including FJclang) and in some cases, GNU-based compilers
may provide a runtime advantage over FJtrad, but for Fortran, LLVM
does not provide a significant performance benefit. In the Polyhedral
Benchmark (PolyBench) , which include 30 single-threaded microkernels,
LLVM with polly, according to [50] , very often dramatically outperformed
other compilers, but sometimes it was significantly inferior. But we must
keep in mind that PolyBench is used for performance testing in the
development of polly tools. And in [50] these tools are generally classified
as of little use anywhere outside the PolyBench benchmarks itself.

In [56], within the BP3 benchmark from CEED (Center for Efficient
Exascale Discretizations), gcc 10.2.0 gave better performance than Fujitsu
(fcc) 4.4.0a.

In [57] on A64FX/1.8 GHz, performance testing (bandwidth) of DAXPY
both in a single-threaded version and on the entire processor with
parallelization in OpenMP or pthreads showed that gcc 11 was ahead
of ARMclang 21 in performance. As a weakness, gcc 11 only the absence
of elementary function vectorization in glibc was pointed out (see below for
more on this).

However, in [53] on the application of quantum chromodynamics
QPACE 4, and on benchmarks stream and matrix multiplication in a cluster
on an FX700 with A64FX/1.8 Ghz, gcc 10.1 and 10.2 was optimal in terms
of performance, while gcc 11.1 and LLVM 12 lagged behind. It is also
not clear to what extent these results were affected by the use of ACLE.
In [54], on the same computer system, with the same benchmarks and
application, a comparison with other compilers was added, including with
ARMclang 21.0 and FJtrad, FJclang 4.3.1 — but all compilers (including
gcc 11.1), except for gcc 10.1/10.2, gave a bad performance.

In [50] it was concluded that the compiler system for HPC with A64FX
is not yet as developed as for x86, and it is impossible to point to one
basically the best compiler. There may be different recommendations for
different types of benchmarks/applications. It seems that the version
of GNU 10.2 studied in [50,53,54] should still not be recommended for use
due to a considerable number of errors; should now initially target the
more up-to-date stable version of GNU, and 10.2 is not supported. Support
for A64FX and improvements in working with SVE are declared in the
currently supported version 10.3, and in the stable version 11.2 a number
of bugs are fixed, partial support is already provided for OpenMP 5.0, and
autovectorization when working with complex numbers — these GNU

https://sourceforge.net/projects/polybench/files/
https://sourceforge.net/projects/polybench/files/
https://polly.llvm.org/performance.html
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versions seem to be recommended now for extensive work with A64FX.
Version 12, which is under development, may be of interest mainly due to
the development of OpenMP 5.0 and OpenACC implementations in it.

Other publications on A64FX performance sometimes analyze a wider
number of compilers, other versions of the above compilers (and other
options), including Cray 10.0.1/10.0.2 and ARM 20.3 (i.e. not only
21.0) [39,57–59].

Another detailed comparison of compilers for A64FX is [52], where
a wide range of compilers was compared in work on 3 different applications
based on classical mechanics (including mini-applications, including minimod
for seismic modeling implemented by the finite difference method [60];
minimod is used as a platform for comparing the performance of new
compilers in HPC). And the SWIM (weather prediction) application used
for performance tests in [52] is included in the modern version of the
SPEC CPU, and is also used to evaluate the performance achieved on a
supercomputer.

In this article, performance investigations were carried out on 2
different A64FX models: with a frequency of 2.2 GHz — on Fugaku and 1.8
GHz — on the Ookami supercomputer (there were no auxiliary cores
in addition to 48 computing ones in the processors). In this data, the
orientation for applications should be on the total execution time, and not
on the acceleration achieved depending on the number of OpenMP threads.
However, the reason for the reduced performance of the application on a
certain number of A64FX cores may also be insufficient parallelization
on OpenMP by the compiler. The number of OpenMP threads used was
a multiple of 4, plus calculations with 1 and 2 threads; the total number
of these threads was evenly distributed among the CMGs.

On Fugaku, the performance tests used versions of Fujitsu compilers
older than 4.5.0, but there were no Fujitsu compilers on Ookami. On Ookami,
Cray 10.0.1 gave all applications maximum performance with any number
of threads up to 48 — except for minimod, where the Cray compiler gave
an error. gcc 10.2.0 and 9.3 were sometimes ahead and sometimes behind
ARM 20.3; the Cray compiler on Fugaku was unavailable.

FJtrad on Fugaku in the PENNANT mini-application (which uses
some algorithms from the well-known FLAG fluid dynamics application
of the Los Alamos National Laboratory in the USA, which gives patterns
of typical FLAG memory access) generated less performant code than
FJllvm, and that was ahead of gcc 10.3 with less than 12 OpenMP threads

https://github.com/lanl/PENNANT
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Figure 3. Vectorization of elementary operations and func-
tions

used — here the poor performance scaling of version 4.3.0 Fujitsu compilers
with an increase in the number of threads was clearly expressed. SWIM
translated by Fujitsu 4.4.0a was always faster than GNU 10.2. And
on minimod, FJtrad turned out to be the best, then FJllvm, and the
slowest — gcc 8.3.1.

This data, unfortunately, provides less comparative information due to
different compiler versions used. Probably, Cray 10.0.1 provided better
performance, and as a conclusion, [52] points to less efficient OpenMP
parallelization in Fujitsu compilers. Unfortunately, the applications tested
in [52] did not use the OpenMP SIMD directives.

In [39] on the same Ookami, the same compilers are used for a much
wider range of benchmarks. The authors of [39] referred to insufficient
experience with the Fujitsu compiler, and believe that for C/C++ the
choice of the optimal compiler for A64FX is difficult, including due to
possible limitations in supporting new C++ standards, and for Fortran, the
Cray compiler was considered the best choice. In [57,59] the vectorization
of elementary functions (square root, exponent, sine, etc.) was investigated,
and here Cray 10.0.1 was also faster than GNU 10.2 and ARM 20 and 21
(see Figure 3 from [57, p. 25]). Here “pow” means exponentiation, “recip”
is the calculation of the reciprocal, and “simple” probably refers to the
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primitive loop from [59] containing the operator

y[i] = 2 ∗ x[i] + 3 ∗ x[i] ∗ x[i].

The vectorization of such functions allows us to vectorize using cycles
which were not previously vectorized at all. This can be used, for example,
to calculate basis functions in quantum chemistry. Modern Fujitsu, Cray,
and ARM compilers use this vectorization, and GNU 11.1.0 did not
vectorize sine, exponent, and exponentiation. To vectorize elementary
functions, some compilers can use the Sleef library (see below) [59]. And
the best execution times are due to the vectorization of such functions
in [59]. And the best execution times due to the vectorization of such
functions in [59] were given by the Fujitsu compiler, significantly ahead
of Cray.

The GNU 11.1.0 used in [59] is close to the last stable version of GNU
11.2 mentioned above, and this paper assumes that this situation with
non-vectorization of elementary functions in the GNU glibc library will
continue for a significant time.

In [59] on Ookami, the Cray compiler gave slightly lower performance
than the Fujitsu compiler in a number of simple, typical SVE loops (more
significantly, in vectorized elementary functions), and almost always
in the NAS Parallel Benchmarks (NPB) tests for single-core execution.
And in NPB, when parallelizing on all 48 A64FX cores, in some NPB
benchmarks the Cray compiler was faster than Fujitsu, in others it was
inferior, but more often, GNU 11.1.0 became the leader here. LLVM 11 is
characterized in [59] as having limited support for SVE, and the weakest
point of GNU 11.1 is the absence of vectorization of a number of elementary
functions. The Cray compiler often yielded up GNU in the NPB tests
on 48 cores, but outperformed GNU in the exascale-oriented explosive fluid
dynamics proxy application LULESH 1.0 . As a conclusion, [59] indicates
the highest performance achieved with tools from Fujitsu and HPE/Cray.

In [43], in performance tests, including SpMV, conducted on the
FX1000 with A64FX/2.2 GHz, fcc 4.4.0a and gcc 10.2.0 are compared —
but there is no clear conclusion about the performance advantage given by
fcc or gcc. In [41], for genomics tasks, the FJclang compiler gave better
performance than gcc 11 and ARM HPC — but the exact versions of the
compilers are not indicated.

https://github.com/lanl/PENNAN
https://asc.llnl.gov/codes/proxy-apps/lulesh
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Based on the above data on the performance achieved during com-
pilation, we can say that now the only one claiming to be the leader
more often, giving the maximum compiler performance for the A64FX,
could still be HPE/Cray, although there is absolutely not enough data for
this. Another commercial compiler from Fujitsu is not yet ready for this
role. It wins mainly when the features of A64FX implemented in it are
extremely important, and HPC-oriented LLVM cannot yet be considered
advantageous relative to GNU. Yes, we can talk about the lack of maturity
of A64FX compilers, but such a clear leadership as Intel’s compilers for
x86-64 may not develop for A64FX compilers at all. And if in performance
tests using these compilers, A64FX is ahead of x86-64 server processors,
then it can be argued that this will continue with future compilers.

For ARM processors, a large number of mathematical libraries are
available for HPC, and for A64FX (including a lot of them for linear
algebra problems) — including Fujitsu SSL2 (Scientific Subroutine Library
II), HPE/Cray LibSci, Arm Performance Libraries (ArmPL). According
to [59], by mid-2021, SVE was already used in ArmPL, Cray LibSci,
Fujitsu BLAS and FFTW. Libraries freely available in source code (such
as OpenBLAS) can be translated to create codes containing SVE. For
a complete list of available compilers and libraries, as well as applications
on Fugaku, see [62].

In [39], ArmPL, LibSci, and OpenBLAS are compared on several
Ookami benchmarks. On DGEMM and HPL in single-threaded versions,
ArmPL turned out to be the best here, LibSci lagged behind (in DGEMM,
57.6% and 34.6% of peak performance were obtained, respectively), and
OpenBLAS even stronger. FFTW in the Fujitsu implementation gave
0.93%; LibSci — 0.79%. ArmPL (20.3) did not give SVE codes and only
0.01% of peak performance was obtained in FFTW. In the DGEMM
calculation on the whole node, LibSci gave 88% of peak performance, and
Fujitsu declared 94% reachability [39]. In [63] in the Sandia Laboratories,
known in the world of supercomputers, it was shown that on the same
Fugaku node for DGEMM and ZGEMM, the Fujitsu SSL2 library gives
better performance than ArmPL, which corresponds to the data [59], where
in DGEMM ArmPL, LibSci and OpenBLAS lagged behind in performance
on single A64FX core from Fujitsu BLAS.

In [45], the performance of DGEMM was studied when working with
small matrices that fit in the cache L1 when working with different linear

https://developer.arm.com/solutions/hpc/hpc-software/categories/math-libraries
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algebra libraries. Here, tools were used, including those of own design —
loopy, and the PSpaMM library for sparse matrix multiplications (it can
also work with dense matrices), which generate optimized intermediate
code, and then they can be translated, for example, by gcc (used gcc 11).
But of all the libraries analyzed, SVE was used only in loopy, and the
achieved single-core performance on A64FX/1.8 GHz was only 32% of the
peak value. Thus [45] demonstrates the high importance of the software
development tools used.

For comparison, here it can be pointed to [57], where for the product
of small matrices (non-square, the product of the matrix by the transposed)
with the same A64FX/1.8 GHz processors using the MADNESS library
with optimization for small non-square matrices gave 92% of the peak
performance in the same single-threaded execution. SciLab 10.0.1 gave
less than MADNESS performance, often close to ArmPL 20.3, although
sometimes significantly ahead of ArmPL.

It is possible that the simple use of SSL2 in [45] would have given
significantly higher performance. SSL2 also includes programs for sparse
matrix vector multiplication (SpMV) with different sparse matrix stor-
age formats. However, it was found in [43] that careful optimization
of SpMV with the choice of storage format can significantly outperform the
performance in SSL2 for A64FX.

Other linear algebra libraries have also been ported to the A64FX. For
example, in [56], the A64FX used the MAGMA library, known for its focus
on working with GPUs, and in [64] — BLIS [65]. The latest library, which
features an extended set of functions for operations with dense matrices
compared to BLAS, is available in source code and builds modules that are
optimal for a certain set of architectures, including A64FX. According
to the documentation , BLIS usually outperforms SSL2, ArmPL, and
Eigen in single-thread and multi-thread versions, although sometimes is
slower to SSL2.

The EigenExa library (for solving an eigenvalue problem by reducing
a matrix to a tridiagonal one by the Householder method, and then
applying the Divide-and-Conquer (DC) method [66] previously worked on a
K-computer, and is now ported to Fugaku with the modernization of the
DC-part, based on DC from ELPA, and its scaling with MPI-parallelization
was tested up to 32768 nodes [66]. Among other things, the SLEEF library
can be noted, where vectorization is used to calculate elementary functions;
SVE has been supported there since 2018 [67].

https://github.com/flame/blis/blob/master/docs/Performance.md#a64fx-experiment-details
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But in general, the influence of libraries on the performance obtained
in the test should not be overestimated. So in HPL, where work with
DGEMM limits performance, the use of LLVM gave 5% more performance
than codes translated by Fujitsu compilers, although SSL2 was used in all
these calculations [50].

Parallelization facilities are other important ones for working with
the A64FX. It is understood that different implementations of OpenMP
are available for A64FX simply due to the availability of a number
of different compilers. An analysis of the levels of parallelization achieved
in OpenMP was carried out in [39,52]. As noted above, for the development
of applications, it is more natural to focus on the achieved performance,
and not on the level of OpenMP parallelization itself.

On the A64FX, you can work with a whole set of different MPI
implementations, including Fujitsu MPI (based on OpenMPI), RIKEN-
MPICH, HPE/Cray MPI (based on MPICH), and of course MVAPICH2
and OpenMPI. As rightly noted in [68], good performance testing should
include a combination of a compiler and an MPI implementation. In [68]
at Ookami on the world-famous FLASH supercomputer application (using
hydrodynamics for astrophysics), Cray 10.0.1 with SVE support turned out
to be the best in terms of execution time; gcc 10 was inferior to it, Fujitsu
was still behind, and ARM 21 was already several times behind. The Cray
and gcc variants worked with the corresponding compilers translated
MVAPICH 2.3.5 and OpenMPI 4.0.5; the latter was slightly slower than
MVAPICH. In [59], it is assumed that there are weaknesses of Fujitsu MPI
when working not with TofuD, but with Infiniband HDR, which resulted
in poorer scaling (with the number of nodes) in HPL and FFTW on their
Fujitsu implementation compared to ArmPL.

In [39], various combinations of compilers and MPI implementations
(MVAPICH 2.3.4 and OpenMPI 4.0.5) were successfully tested on Ookami
with an Infiniband HDR200 interconnect. In OSU MPI tests between
two nodes (point-to-point) using OpenMPI, the bidirectional throughput
achieved was 19.4 GB/s (about 78% of the peak), unidirectional — 12.3
GB/s (transmitted at 8 MB); PUT/GET delays (transfers of 8 bytes) were
3.9/5.2 s. In [56], MPI point-to-point communication on the Summit
supercomputer (second place in the TOP500 after Fugaku) with different
message sizes gave lower latency than on Fugaku.

Since the A64FX was originally planned for use in supercomputers,
the popular PGAS parallelization tool, OpenSHMEM, can already be



Modern server ARM processors for supercomputers: A64FX and others 157

used here. The PUT/GET latencies obtained in [39] were 4.5/4.1 µs
here. Unfortunately, there is no data on the possibility of using the
new Nvidia/Mellanox HPC-X tools on the A64FX when working with
Infiniband, which, in addition to supporting MPI and OpenSHMEM,
also has other original developments. In [69], it was when working with
HPC-X that the highest performance was obtained in a number of tests
on HDR200. Here, the two-socket servers used PCIe-v3 x16 just like
the A64FX, but with one shared HDR card per server. GET latency
achieved in OSU benchmarks for all used MPI implementations (including
for MVAPICH2-2.3.1), and on MVAPICH2 — unidirectional GET/PUT
bandwidthes, as well as bidirectional PUT bandwidthes when working
with servers on different Xeon processors Haswell and Cascade Lake were
significantly better here than when running on servers with a single A64FX
in [39].

For difficult HPC tasks that can run on different computing systems
and use parallelization, there is also the problem of porting from one
hardware environment to another. To solve this problem, Kokkos tools
using C++ are used, which create their own high level of abstraction
for the hierarchy of computations and memory [70]. Kokkos is planned
as a possible use in an EFLOPS supercomputer; naturally, these tools
also work with the A64FX. Starting with Kokkos version 3.3, the Fujitsu
compiler can be used there; SVE support has been added to the Kokkos
SIMD library. However, in [63] it was found that although work with SVE
is faster than with NEON, Kokkos works faster on Xeon Skylake than
on A64FX.

3. A64FX performance for HPC tasks

3.1. A64FX performance at the level of a large number
of supercomputer nodes

At the beginning — a brief information about the performance at the
level of the entire Fugaku supercomputer, which allows us to demonstrate
the achievable level of performance scaling, and the possibility of building
or using a supercomputer without accelerators. The following data is
taken from the respective sites for TOP500/GREEN500 and GRAPH500
(June 2021 versions). Fugaku’s original performance indicators in the
TOP500 [13] have been slightly increased in 2020, which is obviously

https://github.com/flame/blis/blob/master/docs/Performance.md#a64fx-experiment-details
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a consequence of progress in the software. Fugaku has 158976 nodes,
of which 152064 were used in calculations for the TOP500 benchmarks.
With a peak performance of 537 PFLOPS (A64FX in Fugaku operating
at a frequency of 2.2 GHz), HPL received 442 PFLOPS (this is 86% of the
peak performance of all nodes participating in the calculations). The
HPL-AI benchmark, which uses mixed precision (including half precision),
achieved a level of 2.0 EFLOPS. Coming in second place in both of these
benchmarks, the Summit supercomputer (with Power9 and V100 in nodes)
has 149 PFLOPS in HPL and 1.15 EFLOPS in HPL-AI (the last result was
obtained only in 2021). In HPCG, Fugaku outperforms the second-placed
Summit much more — 16 versus 3 PFLOPS, which is 2.8% and 1.3%
of peak performance, respectively [13].

Previously, Fugaku running on A64FX/2.0 GHz in the HPL-AI test
achieved a performance of 1.4 EFLOPS, which was the first achievement
of the EFLOPS level, albeit with reduced accuracy [71,72]. And it’s still
higher than that received at Summit.

In terms of energy efficiency in the HPL Summit, it is slightly behind
Fugaku: 14.72 versus Fugaku’s 14.78 GFLOPS/W, but the TOP500 now
has supercomputers with much better performance. The GREEN500 is now
also headed by the Japanese supercomputer MN-3, which includes Japanese
accelerators in servers with Xeon 8260M, but in the TOP500 it is in 336th
place. From second to ninth places in the GREEN500 are supercomputers
with servers based on AMD EPYC Rome or Milan of various models with
NVIDIA A100 GPUs. Of these, we note 6th place in the GREEN500
Perlmutter supercomputer, which also ranks fifth in the TOP500. Fugaku,
which led the GREEN500 at the end of 2019, is now in 20th place. This
demonstrates not only AMD’s recent success with the A100, but also the
much more frequent x86-64 server processor improvements compared to
the Fujitsu processor. But its possible upgrade may be distinguished by
a stronger increase in productivity (see about its potential upgrade in the
Conclusion).

GRAPH500 [73] demonstrates performance in processing big data, and
implements the task of searching in a graph. RIKEN computing systems
have been leading in GRAPH500 since 2014, and the earlier leader was
a K-computer, and now Fugaku is the leader in BFS search [73] Similar to
the GREEN500, the GRAPH500 now measures energy efficiency; Fugaku is
not represented here, and in the top ten there are two computing systems
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from Russia. For more details on working with GRAPH500 using the BFS
core on Fugaku, see [74], and about optimizing power consumption in this
case, see subsection 3.2 below.

We also present performance data on FUGAKU in a performance test
that is topical for quantum chromodynamics (QCD) problems. QCD
calculations were performed using mixed accuracy. On 147456 nodes,
a performance of 102 PFLOPS (about 10% of the peak SP performance)
was achieved with a power consumption of 20 MW [75,76]. See section 3.3
for more information on these test calculations.

Let us also point out the initial data [56] on comparing the performance
of the Summit and Fugaku supercomputers on the well-known CFD
application NEK5000 , which is part of the exascale-oriented CEED
software suite . Summit gave the best results here, while Fugaku had
I/O problems on large tasks. Performance scalability on Fugaku with
A64FX/2.0 GHz up to 2048 nodes in other applications is illustrated
in [38], see Figure 4 based on [38, p. 15]. Applications on A64FX and their
performance data are provided below in overview subsection 3.3.

Here, one should also point out the NICAM atmospheric model
calculations performed using 131072 Fugaku nodes (82% of all nodes),
where a performance of 79 PFLOPS was achieved using single precision [77].

As another classical task, which is parallelized between Fugaku nodes
connected by TofuD, one should also indicate the eigenvalue problem for
dense matrices, which can be applied in various HPC areas, including CFD

https://nek5000.mcs.anl.gov/
https://ceed.exascaleproject.org/
https://ceed.exascaleproject.org/


160 Mikhail B.Kuzminsky

and quantum chemistry. In quantum chemistry, it is often considered
necessary to diagonalize matrices of large dimensions N , for example,
for large molecules, although in some modern methods of quantum
chemistry, including the most popular DFT, for large molecular systems,
diagonalization requiring O(N3) was abandoned by developing approximate
linearly scalable methods. Both stages used in testing for diagonalization
using the EigenExa library — reduction to a tridiagonal matrix and its
subsequent diagonalization by the DC method require significant computing
resources. But the Householder method is poorly parallelized and requires
a large memory bandwidth — and DC is well parallelized, but often gives
unbalancing the load of different parallel processes [66]. For matrices
with N > 250000, when parallelizing OpenMP + MPI, an acceptable
performance scaling was obtained using up to 16384 nodes [66].

3.2. A64FX benchmark data on computing systems with no more
than a few nodes

Further, we are only talking about performance from a single A64FX
core to multiple compute nodes — a good opportunity for scaling at the
level of the big Fugaku supercomputer is almost obvious. As starting
values for evaluating these performance tests per node (they were often
performed on Fugaku and Ookami), we indicate the estimates given in [13]
for the stream triad — about 830-840 GB/s, and for DGEMM 2.4 TFLOPS
(Ookami, Cray SciLab) and over 2.5 TFLOPS (on Fugaku).

The A64FX performance data below contains mostly published
maximum values only; possible selection of optimal algorithms, compil-
ers/options/libraries and so on is not considered here. The performance
data here refers to a range from a single core to multiple servers in a cluster
(and therefore multiple A64FX processors). When available, performance
is compared to x86-64 processors: Xeon Skylake and Cascade Lake;
AMD EPYC Zen 2 and 3, and when running on V100 and A100 GPUs.
Performance comparisons with older processors or accelerators are not seen
as much less interesting (and data on the MI100 is not yet available).
Comparative data is sometimes given with the first well known in the
supercomputer world ARM processor, ThunderX2, but the performance
advantages of the A64FX relative to it, on average, are obvious.

A review of these A64FX benchmarks begins with DGEMM (and other
dense matrix multiplications), as this largely determines the performance
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on A64FX

in the HPL benchmark used in the TOP500. But DGEMM is topical for
a variety of applications. For example, in computational chemistry —
in molecular dynamics or in various non-empirical methods of quantum
chemistry, taking into account electron correlation. According to [34],
on A64FX/1.8 GHz in DGEMM you can get more than 2.5 TFLOPS (90%
of peak performance). At the same time, reducing the frequency from 2.0
to 1.6 GHz reduces performance by 20%, and power consumption by
18%; turning on the eco-mode reduces performance by 50%, and power
consumption by 16% [34]. In [38], for A64FX/2.2 GHz, the performance is
3.2 TFLOPS at 200 W. Figure 5 from [38, p. 23] shows graphs of achieved
performance (in TFLOPS) and power consumption (W) depending on the
number of threads used in DGEMM [38]. The data obtained in [5] on the
power consumption levels of A64FX components when working with
DGEMM show that the main share of power consumption falls on processor
cores, the L2 cache consumes many times less, and work with HBM2 takes
very little energy.

Since the A64FX is designed to work with HPCs without connecting
accelerators, it is useful to compare the performance of DGEMM on the
A64FX and on the V100 and A100 GPUs. According to [4], on the V100,
7.2 TFLOPS is achieved, and on the A100, the performance is clearly
higher; more information on A100 benchmarks is presented at [47].

The maximum DGEMM performance per A64FX core is achieved
using SSL2, so the data for comparison with x86-64 processors is given here
for A64FX with SSL2. The A64FX/1.8 GHz achieved 40.9 GFLOPS (71%
of peak performance) — which is less than the Xeon Skylake 8160 core
(43.4 GFLOPS and 97%), but higher than the EPYC 7742 (25.3 GFLOPS
and 70%) [59], which only supports 256-bit vectors. In [39], a calculation
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on the same node with A64FX gave lower performance, probably due to
not using SSL2.

There is also data on the performance of the A64FX in other matrix
products other than the traditional (for HPC) DGEMM. For example, [63]
provides data on the performance of ZGEMM on A64FX from Fugaku.
Special performance studies were also carried out on the A64FX for
multiplications of small matrices, including those that fit into the cache L2
in the A64FX, using various linear algebra libraries [45]. In [45], results
close enough to the peak performance of A64FX/1.8 GHz were not achieved
— only 1.7 TFLOPS, but newer batch versions of BLAS/DGEMM [78],
focused on working with small matrices, or a well-optimized SSL2 library
not used here. In [57], A64FX/1.8 GHz performance data for small
matrix multiplication by transpose using a specialized algorithm was
obtained, which for a single core gave 53.2 GFLOPS (about 92% of peak
performance), outperforming the Xeon Skylake/3.7 GHz core with MKL.
And in [53], the performance of matrix multiplication, special for problems
of quantum chromodynamics, where DGEMM is not used, was studied.

HPL benchmark data at the Fugaku level (including modern versions
of the TOP500) is given above in section 3.1. For Ookami with A64FX/1.8
GHz, HPL performance per node was 1129 GFLOPS (40.8% of peak), less
than in a two-socket server with Xeon 8160 (1156 GFLOPS and 53.7%,
respectively), containing the same 48 cores as at A64FX. A dual-processor
server with EPYC 7742 with 128 cores significantly outperformed both
of them (1911 GFLOPS and 41.5%, respectively). As the number of nodes
increased to 4–8, the performance advantages of clusters based on x86-64
remained [59]. And in terms of energy efficiency in HPL, at the end
of 2019, supercomputers based on A64FX/2.0 GHz prototypes, with not
very large dimensions, took first place in the TOP500, overtaking systems
with accelerators [79]. In [39], performance in HPL on the same node with
A64FX was lower, but SSL2 was not used.

In the above tests, A64FX often lagged behind modern x86-64
processors in performance, and now we should pay attention to benchmarks
that give data on memory performance (its bandwidth), where A64FX
should have clear advantages. Stream , which includes 4 performance
tests in the form of loops for working with one-dimensional arrays and
can be considered a practical standard for this — copying them (“copy”),
multiplying by a scalar (scaling, “scale”), summing two arrays into a third

https://www.cs.virginia.edu/stream/ref.html#what
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one (“add”) and test “triad”, the most commonly used in stream benchmark:

A[i] = B[i] + s ∗ C[i]

where s is a scalar. This benchmark has a number of modernized variants,
including BabelStream [80], which is primarily focused on working with the
GPU (in this case, the transfer time, for example, over PCIe, is not taken
into account) or on devices with a very large number of cores, in which
including added another test for the scalar product of vectors. The set
of microbenchmarks lmbench [81] also includes a stream with initial data
from this set. In the event that the throughput achieved per stream
for the A64FX and in alternative hardware is little dependent on the
specific stream option, the refinement of that option in the text here can be
omitted. But about the use of DAXPY, where the result in the above
stream triad loop statement is written to the same array B, and not to
another array A, the review clearly indicates.

The above starting estimates [13] for stream triad in A64FX on Fugaku
are close to the BabelStream benchmark data for V100, 800-840 GB/s, and
on A100 the bandwidth in BabelStream is much higher: 1.3-1.4 TB/s [47].
The bandwidth of such an A64FX processor (about 840 GB/s) in [43] was
much higher than that of a dual-processor 96-core server with Cascade
Lake (Xeon 9242), where 420 GB/s was obtained, and is close to the
bandwidth of V100. In [43], the bandwidth of a stream triad was also
studied depending on the number of cores used within one CMG.

In [79], about 80% of the peak bandwidth was received on the Fugaku
node in the stream triad. In , for a server from Fugaku, the bandwidth
in the stream triad was obtained close to the data in [43], and it was
shown that turning on the eco-mode practically does not reduce bandwidth,
but reduces power consumption by 18%.

In [41], bandwidth in the Fugaku node on lmbench/stream was
compared with a two-socket server with a Xeon 8160 with a total number
of processor cores as in A64FX, while also examining the impact of memory
localization. A64FX outperformed the Skylake server by a factor of two
or more. In [82], the stream copy bandwidth of A64FX/2.2 GHz and
ThunderX2 is compared depending on the number of cores; A64FX results
were many times greater. In [5], it was found that in the stream benchmark
on the A64FX, the main power consumption was related to the processor
cores; HBM2 consumed noticeably less, and cache L2 — many times less.
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Table 5. Bandwidth comparison (BW1) in DAXPY:
A64FX/1,8 GHz and Xeon Skylake SP2

Cores number A64FX Skylake
BW bytes/FLOP BW bytes/FLOP

1 core 53,0 0,92 21,1 0,17
1 socket 840 0,30 145 ∼ 0, 06

1in GB/s; 2Xeon Gold 6136/3 Ghz — 24 cores

In [39] stream triad gave 830 GB/s on Ookami for A64FX/1.8 GHz,
while DAXPY managed to get 840 GB/s. It was several times faster than
a two-processor server with Xeon 8160. On one A64FX core, DAXPY gave
53 GB/s — 2.5 more than on a server with Xeon 8160. In [53,54] for
A64FX/2.2 and 1.8 GHz received data for all four stream tests depending
on the number of A64FX cores involved; the maximum achieved bandwidth
was 835 GB/s, and in [43] the maximum for the Fugaku node was 841
GB/s.

In [57], the memory bandwidth achieved by A64FX in Ookami
in DAXPY was studied in both single-threaded and multi-threaded versions
(with parallelization in OpenMP), see Table 5. Already the single-thread
result in A64FX is much higher than in the Xeon Skylake/3 GHz core.
Found that about 6 threads per CMG can saturate bandwidth.

All in all, the A64FX memory bandwidth test data confirms the
large hardware advantage of HBM2 over DDR4 memory in Xeon and
ThunderX2 processors. But there is also a special, parallelized in OpenMP
+ MPI, test for memory bandwidth, where the result largely depends
on the memory latency — mega-sweep . And here A64FX loses such total
bandwidth to a two-processor (probably with Xeon 6126) server with DDR4
(SKL in Figure 6), which has 2 times fewer cores due to higher memory
latencies of HBM2 [83]. But a dual-processor server with ThunderX2 (56
cores/2.6 GHz — TX2 in Figure 6), which has the same DDR4 memory, is
significantly slower than the A64FX — since its vectors are 2 times shorter
than in the A64FX, and vectorization is important in this test.

Matrix-vector multiplication is also important for various applications,
such as CFD. For dense-matrix-vector multiplication, memory bandwidth
can be the performance limiter, so A64FX can take advantage over x86-64.
In [84], where this was important for the operation of the application, the
performance of the BLAS program SGEMV was also analyzed, and it was

https://github.com/UK-MAC/mega-stream
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found that A64FX/2.2 GHz (from FX1000) is several times slower than the
GPU A100 and the Japanese computer system NEC TSUBASA based
on SX-Aurora processors supporting work with long vectors [85]. However,
the A64FX outperformed the dual processor Xeon 6248/2.5 GHz servers
(40 cores in total) and AMD EPYC Rome 7702/2.2 GHz servers (128
cores in total). In [43] on the A64FX in the FX1000, one of the specific
implementations of dense matrix-vector multiplication was studied, and it
was found that the use of a sector cache makes it possible to suppress
performance degradation at increasing vector length.

Sparse matrix-vector multiplication (SpMV) can be even more important
for various applications, for example, for quantum chemistry (in the method
of configuration interaction) or quantum chromodynamics. Possibly, the
solution of the problem of multiplication of a sparse matrix by a vector
on the A64FX was first undertaken with the use of A64FX processor
emulation, in [86]; however, only calculations on a real processor are
considered here. As the highest performance achieved in SpMV, one
can probably point to about 220 GFLOPS, which was obtained on the
A100 [47].

Figure 7 [43,87] shows the achievable performance in SpMV for
large and small matrices with different input data choices indicated
on the horizontal axis — for A64FX/2.2 GHz, V100 and a dual-processor
server with Xeon 9242 (96 cores in total; in the figure — CLX-AP). In
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Figure 7. Comparison of SpMV performance on A64FX with
V100 and Xeon 9242 (CLX-AP) based on Figure 6 in [87])

comparative calculations, the SELL-C-σ format was used, in which the
highest performance was achieved on the A64FX [43]. The performance
of the V100 and A64FX turned out to be quite close (certainly less than 150
GFLOPS), and the CLX-AP often led in performance on small matrices,
but was inferior on large matrices. The limit between large and small
matrices was chosen as the total capacity of the L2/L3 caches in the
CLX-AP.

In [43,87], an analysis of power consumption modes on the performance
of A64FX in SpMV was also carried out. Frequency reduction from 2.2
GHz to 2.0 GHz reduces performance by an average of 2.7%, but reduces
power consumption by about 13%. Enabling the eco-mode also reduces
power consumption by another 21% (31% in total).

In [88], the achieved performance of SpMV on A64FX/1.8 GHz (in
FX700) was studied. When scaling to 12 cores (in the CMG), 31 GFLOPS
was achieved, and the maximum performance on the entire node was 131
GFLOPS.

HPCG is another benchmark for HPC, where performance also depends
heavily on memory bandwidth [89]. Below (Table 6) is the performance
data from [89] in Fugaku — up to 8 nodes with A64FX/2.2 GHz, connected
via TofuD, compared to clustered systems of two-socket servers: based
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Table 6. Comparison of performance of computing systems
on ARM and x86-64 server processors in HPCG and OpenSBLI
benchmarks

Computing system 1 node 2 nodes 4 nodes 8 nodes % from peak
performance

HPCG benchmark (GFLOPS)
A64FX/2,2 ГГц1 38,3 78,9 157,5 313,5 1,1
EPCC NGIO2 37,6 73,9 147,9 292,6 2,0
Fullhame3 33,8 67,7 133,3 261,3 3,0

OpenSBLI benchmark (calculation time in seconds)
A64FX/2,2 GGz 3,4 1,9 1,0 0,7
EPCC NGIO 1,2 0,8 0,5 0,3
Fullhame 1,2 0,7 0,6 0,3

1with TofuD; 2with FDR Infiniband; 2× Xeon 8260M; 3with Aries;
2× ThunderX2/2,2 GGz

on Cascade Lake (linked via Intel OmniPath) and based on 32-core
ThunderX2/2.2 GHz (linked via Infiniband EDR). At the same time,
HPCG source codes were optimized for Xeon and ThunderX2, which gave
a significant performance boost — but this was not done on the A64FX.

Therefore, the HPCG performance advantages of the A64FX shown
in this table over ThunderX2 and Cascade Lake may be even greater.
At the same time, the number of cores in the node with A64FX is the same
as the number of cores in the node with Cascade Lake, and less than in the
node with ThunderX2. For A64FX, the performance leadership vs Xeon
becomes more pronounced on several nodes, which may also be associated
with efficient work with TofuD [89].

There are two sets of cycles created at Livermore Laboratories USA
that are used in HPC benchmarks. The classic long-used set [90] in Fortran
contains typical cycles from some HPC programs, which are used primarily
for performance evaluations in vectorization. This set was used in [34] to
study performance on a single A64FX/2.2 GHz core.

Another set, RAJA Performance Suite , which includes C++ looping
kernels (including dot product) for HPC with OpenMP parallelization, was
used in [83] to compare the performance of A64FX/2.0 GHz from FX1000
with two-socket servers with ThunderX2/2.0 GHz (56 cores in total) and
Xeon Skylake/2.6 GHz (24 cores in total — probably Xeon 6126) with

https://github.com/LLNL/RAJAPerf
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different number of threads. In three of the four kernels used from RAJA,
A64FX was several times ahead of Skylake, and ThunderX2 from A64FX
was always far behind.

Benchmarks generally used in HPC sometimes include separate
components that are themselves other well-known benchmarks. For
example, HPCC [91] includes HPL, DGEMM, stream and other benchmarks.
In [39,59], performance data are considered on several benchmarks from
HPCC, including DGEMM and HPL (they were discussed above), as
well as in the FFT (in FFTW). The highest performance on a node
with A64FX/1.8 GHz (26 GFLOPS — 0.9% of peak performance) was
achieved using FFTW3 from Fujitsu [39]; in [59] it is slightly lower. At the
same time, dual-processor nodes with x86-64 processors showed higher
performance: 46 GFLOPS (1.5% of the peak) on the Xeon 8160 — also
with 48 cores; 72 GFLOPS (1.6% of peak) on EPYC 7742 — with 128
cores per server. When parallelized to several nodes (up to 8), the clear
performance advantages of x86-64 processors were preserved [59].

Another famous benchmark that was also run on the A64FX is
NPB, which also includes a number of computational components, most
of which are based on CFD codes. NPB also has a variant with OpenMP
parallelization [92], which was used in the A64FX/1.8 GHz tests in [59],
where testing included 6 components from NPB. On one core, the A64FX
lost a lot in performance to the Xeon 8160 core; on all cores, the A64FX
outperformed Skylake on two NPB components, and narrowed the gap
on the other NPB components. The level of parallelization on A64FX was
higher than on Skylake. A64FX performed better on NPB components
where memory bandwidth is important, while Skylake won in more
computationally intensive calculations.

SPEC cpu2017 should probably be considered the most massive
benchmark. Authors of [93] measured performance in SPECrate for
A64FX, but this was based on using the gem5-based A64FX simulator, and
these results are not discussed here. In [50], data was obtained for A64FX
SPECspeed — both integer and floating point, and SPEC OMP2012, but
the values given in [50] are relative and show only conditional performance
obtained by one compiler in relation to another. It was found in [94] that
the A64FX in Fugaku in SPEC cpu2017 lagged behind a dual-processor
server with Xeon 8168 (48 cores per server) in performance, and in SPEC
OMP tests it also lagged behind a 28-core Xeon (the reason for this was
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specified support for SMT mode in Xeon). But in some floating point
SPEC cpu2017 benchmarks, and SPEC OMP, due to higher memory
bandwidth, A64FX had better performance than Xeon.

The main results of the GRAPH500 benchmarks on Fugaku were
discussed above in subsection 3.1. These benchmarks are discussed in detail
in [74,95,96], where the dependence of BFS performance on the number
of nodes is investigated, and the peculiarities of using the TofuD topology
are indicated. The dependence of performance on the choice of power
consumption mode has also been studied. Since BFS does not work
with floating point numbers, turning on the eco-mode was expected to
be an effective solution. Respectively, the optimal combination of high
performance and power consumption was given by the boost mode +
eco-mode.

Another benchmark performed on Fugaku’s A64FX is HIMENO ,
which focuses on CFD (Incompressible Fluid Analysis) and solves Poisson’s
equation by the iterative Jacobi method. This benchmark has become quite
common in HPC; it runs on SX-Aurora TSUBASA, there is also an option
for a cluster with GPUs in the nodes. According to [13], 346 GFLOPS
were obtained on the A64FX, 305 GFLOPS on the V100, 286 GFLOPS
on the SX-Aurora TSUBASA, and only 85 GFLOPS on a dual-processor
server with a Xeon 8168.

In [97] on the A64FX/1.8 GHz, performance was investigated on an
improved sorting algorithm using vectorization with work on large and
small arrays. The speedup achieved by using this algorithm was lower than
that obtained on the Xeon 8170 with AVX-512.

Above, in the section about development tools for A64FX programs,
some shortcomings in compilers were pointed for A64FX in the vectorization
of elementary functions. In [59], there is comparative data on the
performance of A64FX/1.8 GHz and Xeon 6140 (see Figure 8 based
on Figure 2 in [59]). This figure uses the same notation as Figure 3, and
CPE stands for Cray Programming Environment. It can be seen that
Skylake here has performance advantages.

In general, these benchmark data show that A64FX is often inferior
in performance to x86-64 processors, and the newer Xeon Ice Lake can be
even better in this regard. The performance benefits of the A64FX for
HPCs are more often applied when performance is limited by memory
bandwidth.

https://i.riken.jp/en/supercom/documents/himenobmt
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3.3. Performance data of A64FX on applications

At the beginning of this section, we will illustrate a figure available
in a number of publications showing the increased performance of the
A64FX/2.2 GHz compared to Xeon Cascade Lake with the same number
of cores (relative to a two-processor server with Xeon 8268/24 cores 2.9
GHz) at almost twice as much low energy consumption (Figure 9 is based
on [38, p. 24]). The A64FX outperformed Cascade Lake in all applications
(except application for weather prediction, MPAS), although Intel has more
powerful processors, including the newer Xeon Ice Lake family, and the cost
metrics should also be compared.

The data presented in this figure refers to the various applications
available in the source code. To understand what this Figure 9 gives, it is
important what exactly was computed — this may determine what will be
limit calculation time, and in applications of quantum chemistry, methods
that are radically different in terms of performance can be used in general.
This figure shows different calculations for different applications, where
A64FX can be more efficient than Cascade Lake, for example, due to higher
memory bandwidth. For HPC applications, more detailed information may
be needed, and brief additional information on the tests presented in this
figure can be found in [34].
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Figure 9. A64FX relative performance data for applications

In addition to the data from [38], related to A64FX from FX1000,
a mapping to the same Cascade Lake server is available for A64FX from
FX700 [98], where it includes 4 applications out of 7 used in [38]. On two
computational chemistry applications (LAMMPS for molecular dynamics
and Quantum Espresso for quantum chemistry), the performance of the
A64FX was almost identical to that of the Xeon server, while on the other
two applications it was significantly better.

This part of the review further discusses the applications and their
corresponding mini-applications, although the latter’s performance in com-
plex HPC areas may not be a good estimate of the performance of the
entire application. But to begin with, it is useful to illustrate the general
situation with applications available for the A63FX using the example
of computational chemistry applications (see Table 7 below). First,
a number of applications mentioned as being available to run on A64FX
are simply ported to AArch64, and may not have SVE support. And, for
example, the developers of the ABINIT quantum chemical program were
still working on testing it on the A64FX, and it is likely that Figure 9
refers to the Japanese ABINIT-MP program running on the A64FX (see
also [13]), which implements calculations only for very large molecules
specialized approximate FMO method, to which in this figure related data.
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Table 7. Computational chemistry programs that can run on the A64FX

Package, version Issuing year
w/ARM URL1

Availability
of performance

data
Quantum chemistry

Gaussian 16, Rev. C01 2021 https://gaussian.com/relnotes/ —
Gamess-US, R1 2021 https://www.msg.chem.iastate.edu/gamess/versions.html —
ABINIT, 92 2021 [38]
CASTEP, 18.1.0 2020 +
VASP2 2019 —

NWChem, от 6.82 2018 https://gitlab.com/arm-hpc/packages/-/wikis/packages/
nwchem 4 —

CP2K, 8.22 2021
Quantum Espresso5 https://github.com/fujitsu/oss-patches-for-a64fx

SALMON, v.2.0.1 2020 http://salmon-tddft.jp/download/Manual_SALMON-v.2.0.1_
simple_20210129.pdf

[38]

NTChem 2019 https://gitlab.com/arm-/hpc/packages/-/wikis/packages/
ntchem

+6

Molecular dynamics

GROMACS 2021 https://manual.gromacs.org/2021/release-notes/2021/major/
highlights.html

+

LAMMPS https://github.com/fujitsu/oss-patches-for-a64fx +
NAMD2 2019 —

1only URLs shown for versions that support A64FX; 2for AArch64; 3in [38];
4For A64FX: https://static.linaro.org/ . . ./TheFirstSVEEnabledArmProcessor_A64FXandBuildingupArmHPCEcosystem5.pdf
5made by Fujitsu; 6NTChem-MINI, https://github.com/fiber-miniapp/ntchem-mini;

https://gaussian.com/relnotes/
https://www.msg.chem.iastate.edu/gamess/versions.html
https://gitlab.com/arm-hpc/packages/-/wikis/packages/nwchem
https://gitlab.com/arm-hpc/packages/-/wikis/packages/nwchem
https://github.com/fujitsu/oss-patches-for-a64fx
http://salmon-tddft.jp/download/Manual_SALMON-v.2.0.1_simple_20210129.pdf
http://salmon-tddft.jp/download/Manual_SALMON-v.2.0.1_simple_20210129.pdf
https://gitlab.com/arm-/hpc/packages/-/wikis/packages/ntchem
https://gitlab.com/arm-/hpc/packages/-/wikis/packages/ntchem
https://manual.gromacs.org/2021/release-notes/2021/major/highlights.html
https://manual.gromacs.org/2021/release-notes/2021/major/highlights.html
https://github.com/fujitsu/oss-patches-for-a64fx
https://static.linaro.org/event-resources/arm-hpc-2019/slides/TheFirstSVEEnabledArmProcessor_A64FXandBuildingupArmHPCEcosystem5.pdf
https://github.com/fiber-miniapp/ntchem-mini
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Figure 10. Comparative performance of A64FX in CASTEP

Other performance data that can be attributed to the area of quantum
chemistry is the calculation of TiN with CASTEP 18.1.0 (see Figure 10
based on [89, p. 18]), where performance on A64FX/2.2 GHz is compared
with two-processor servers: with Xeon 8260M/2.4 GHz (total — also 48
cores) and with ThunderX2/2.2 GHz (total — 64 cores). The data on the
vertical axis reflects performance, and the A64FX clearly outperforms
ThunderX2 and lags behind Cascade Lake. Table 8 shows the performance
of these two-socket servers in relation to the A64FX. But it should be kept
in mind that CASTEP is focused on solids research and work on the basis
of plane waves, where calculations are limited by the FFT, and in quantum
chemistry usually work with the basis of Gaussian orbitals.

Another quantum chemical application ported to the A64FX is
SALMON (the TDDFT implementation), which, like ABINIT above,

Table 8. Relative performance of two-socket servers with
other processors in relation to a server with A64FX

Server with: minikab1 nekbone CASTEP
A64FX 1,0 1,0 1,0
Xeon 8260M ∼ 0, 9 0,3 1,3
ThunderX2 ∼ 0, 5 0,4 0,97

1On one processor core.
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outperforms a two-processor server with Xeon 8268 (also having 48 cores,
2.9 GHz). However, TDDFT in chemistry is still not widely used, like DFT
itself. And problems with memory bandwidth when working with TDDFT
were discussed even before the advent of A64FX, in [99], when the authors
were working on a K-computer.

A more natural application for quantum chemists tested on the
A64FX is perhaps NTChem [50,100]; more precisely, the mini-application
NTChem-mini was tested, which is part of the NTChem for calculations by
the RI-MP2 method, taking into account electron correlation [?130], which
uses parallelization in MPI and XcalableMP, which is now moving in the
PGAS direction [101]. Comparison of performance on NTChem-mini (on
Fugaku) with a K-computer depending on the number of nodes is available
in [101], while MPI gave almost the same performance as parallelization
on XcalableMP. It is also useful to note that for calculating the energy and
its gradient in MP2 on ARM systems, the memory bandwidth was found to
be important long before the advent of the A64FX [9].

The mini-application for the fast multipole method (miniFMM)
parallelized in OpenMP is referred here to computational chemistry, since
this method can also be applied to large molecular systems (although, due
to general mathematics, it can also work at the level of galaxy). In [83] , it
was found that a node on the Fugaku A64FX/2.0 GHz was far ahead of a
server with two 28-core ThunderX2/2.0 GHz, but was noticeably inferior
in performance to a server with two 12-core Xeon Skylake/2.6 GHz (
probably Xeon 6126) up to 24 threads, and at 48 threads it was already
ahead due to the larger number of processor cores.

The tasks of computational chemistry also include the application
BUDE (Bristol University Docking Engine), also parallelized in OpenMP,
where the interaction energy of a protein with a ligand is calculated without
the use of quantum mechanics. Fugaku A64FX/2.0 GHz in comparison
with the servers indicated in the previous paragraph looked similar
in performance to miniFMM: it was far ahead of ThunderX2, and up to
24 threads was significantly inferior in performance to the server with
Skylake, surpassing it by 48 threads [83]. In [102] the performance of a
BUDE-based mini-application (miniBUDE) is reviewed.

Molecular dynamics applications belong to the computationally
intensive HPC group, and run efficiently on the GPU.

https://github.com/fiber-miniapp/ntchem-mini
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Table 9. Performance in different power modes (PM) on ap-
plications of computational chemistry and bioinformatics
in relation to the normal mode N

Application
B N+E B+E

П М П М П М
GENESIS 1,09 1,20 1,00 0,80 1,09 0,96
Genomon 1,10 1,17
NTChem 1,08 1,21 0,57 0,69 0,62 0,83
RSDFT 1,06 1,20 0,71 0,80 0,77 0,9

B— boost mode; E— eco mode;
GENESIS — molecular dynamics application for biomolecular systems

(https://www.r-ccs.riken.jp);
Genomon —– bioinformatics application (https://genomon.hgc.jp/);
RSDFT — quantum chemical application.

A detailed analysis of molecular dynamics calculations using the
LAMMPS program and ways to possibly increase performance at A64FX/2.2
GHz, including using vectorization and various parallelization variants, was
carried out in [103]. For another famous molecular dynamics application,
GROMACS, which focuses on biomolecular systems, the use of C++17
overrides the possibility of using the Cray 10.0.1 and ARM 20.3 compilers,
and gcc 10.2.0 was used. On the A64FX/1.8 GHz, GROMACS (for
a system of 87k atoms) reached 20.2 ns/day, and the dual-processor variant
with the Xeon 8160 (48 cores in total) reached 75.6 ns/day. The reasons for
Skylake’s large performance gain are not clear; perhaps this was facilitated
by the absence of vectorization of elementary functions in gcc [39].

In conclusion of the part about applications in computational chemistry,
let us also consider the data from [34], see Table 9, which slightly illustrate
the possibilities of using different power consumption modes in the A64FX,
including for applications in the field of bioinformatics. Here you can see
that the boost mode has always given a performance boost compared
to the normal one, but for the GENESIS application, the combination
of boost and eco-modes is optimal, which does not give a noticeable
decrease in performance. And for quantum chemical applications, turning
on the eco-mode gave a large decrease in performance.

Among the applications in computational chemistry, one of the main
parts is quantum chemistry, where quantum mechanics is applied to

https://www.r-ccs.riken.jp
https://genomon.hgc.jp/
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chemical objects, but purely quantum mechanical calculations that are not
related to quantum chemistry were also carried out on the A64FX.

In [64], using the BLIS library, calculations were carried out according
to the improved method of the authors — on the A64FX, Xeon 8260, and
EPYC 7702, but the performance between different processors was not
directly compared. In [104], in the DCA++ application for quantum
Monte Carlo calculations with parallelization on OpenMP, A64FX and
ThunderX2 were compared using ARMclang 20.3 and ArmPL 20.3. The
OpenMP SIMD directives were also used here, but from the point of view
of comparative performance, only the obvious advance of the A64FX (by
several times) relative to ThunderX2 is shown.

The above data indicates that modern x86-64 processors (there is
no data comparing the performance of A64FX with the newer Xeon Ice
Lake) often outperform A64FX in computational chemistry tasks. The
traditional estimates that, in a typical case, 2 GB of memory per processor
core are needed for quantum chemical calculations, are unacceptable for
a multi-core A64FX and require additional analysis. According to another
rough estimate, good for a typical quantum-chemical calculation of the
ratio of 1 GB/s in memory per 1 GFLOPS, the A64FX processor looks
more attractive than others. But the user will still watch the efficiency and
performance of the application.

In [41], BWA-MEM2 software tools were ported to the A64FX
for solving genomics problems related to HPC; however, the achieved
performance of the A64FX on Fugaku was lower than on the Xeon 8160.
Although the memory bandwidth in the A64FX is much higher, the large
memory latencies in the A64FX could have an effect here [41].

As in quantum chemistry, quantum mechanics is also used in QCD, the
application performance of which was actively studied on the A64FX
with calculations on the FX700 and FX1000. In the used lattice QCD
model, it is important to multiply a matrix by a vector [43,87,105].
The performance of SpMV on the A64FX was discussed above. Here we
will focus on the performance in lattice QCD. It is important to note
here that the use of A64FX for QCD calculations was assumed to be
very promising, and a special QPACE 4 project was created to create
a supercomputer for parallel QCD calculations based on A64FX, in which
Cray also participated. This system, using the FX700, where 64 nodes are
connected via Infiniband EDR, went live in 2020 [54].
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In [43], within the framework of the GRID application (C++, with
OpenMP + MPI parallelization) for lattice QCD, the performance of the
Domain Wall (DW) kernel was studied. Using interleaved storage form RIRI
(R-real, I-imaginary), the A64FX (from Fugaku) achieved performance
of about 440 GFLOPS. But the RRII form was found to be more effective;
it achieved 182 GFLOPS on the CMG (on 12 cores), and 712 GFLOPS
on the entire A64FX, 12% more than with RIRI.

In [43] also investigated the effect of choosing different A64FX power
consumption control options for RIRI and RRII. Power consumption with
RIRI was higher than with RRII. Unlike RIRI, when working with RRII, it
was possible to reduce power consumption by reducing the clock frequency
(from 2.2 to 2.0 GHz) and enabling eco-mode, while performance was not
significantly reduced. In [87], for similar DW calculations, it was found
possible to reduce the power consumption on such an A64FX by 18%.

The A64FX performance data for various lattice sizes (on one of the
coordinates) using the RRII scheme was compared with the performance
on the V100 and a two-socket server with a Xeon 9242 (96 processor cores
in total), but they used only the RIRI scheme. With the RRII, the A64FX
was almost always the fastest; with the RIRI, depending on the size of the
grid, sometimes was faster than the A64FX, sometimes was faster the
V100, and the Xeon Cascade Lake was significantly inferior to them. But
to achieve high performance for QCD problems on the A64FX in [43], it
was necessary to upgrade the code.

In [43,87], a decrease in the achievable performance of lattice QCD
on the A64FX was noted due to large command delays and paucity
of resources for OoO, including the small size of the ROB buffer.

This performance data on Fugaku with A64FX/2.2 GHz was compared
with performance on the QPACE 4 supercomputer with A64FX/1.8
GHz [53,54]. On QPACE 4, calculations were made using SP and DP,
but the performance data given is for DP. With the RIRI scheme on the
Wilson Dslash (WD) kernel, 376 GFLOPS per node were obtained, and the
dependence of performance with SP and DP depending on the number
of nodes (up to 32) was studied. In the DW (Domain Wall) kernel, 475
GFLOPS per node were obtained, and the same dependence on the number
of nodes as in WD was investigated. The RRII scheme also gave better
performance here than RIRI; about 20% higher performance was obtained
on the DW kernel than with RIRI (different lattice variants were studied).
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Although the clock speed of the A64FX on the QPACE 4 is 1.22 times
lower than the Fugaku, the resulting performance is down to around
25%. However, some A64FX features that were used on Fugaku were
not available on QPACE 4, including sector cache or eco-modes [54].
In [53,54] it was noted that the optimization of the codes of these kernels
required manual work, and in [54] — the lack of progress in the work
of compilers with SVE over the past year.

For lattice QCD, GRID is not the only application for the A64FX; [75]
also mentions Bridge++, BQCD, and LDDHMC. In addition, there is
a special library developed by Fujitsu for QCD problems — QWS [106] .
The optimization methods used in QWS are general, except for the use
of ACLE and tools for working with TofuD [76].

Using QWS and BiCGstab (biconjugate gradient stabilized method)
with OpenMP + MPI parallelization on 147456 Fugaku nodes in boost
mode (at 2.2 GHz) without enabling eco-mode, the 102 PFLOPS SP
performance indicated above in section 3.1. was obtained, and energy
efficiency 5 GFLOPS/W [75]. Detailed information about this calculation
and performance data, starting from the two CMGs involved, is given
in [76].

In [105], for lattice QCD, the performance of their object-oriented
code, and when using BiCGstab with mixed precision, was compared,
among other things, on A64FX and V100; while their code gave better
performance and scaling. It was also noted here that the code needs to
be adapted to the specific architecture being used in order to achieve
maximum performance.

The next group of applications, the performance of which was
obtained on the A64FX, relates to relativistic mechanics and astrophysics.
In [39,107], the performance on the A64FX in Ookami was studied in the
FLASH application, which is oriented to use in various fields of physics,
including astrophysics, but problems with compilers, including problems
in the generation of codes with SVE support, did not give interesting
results.

In [108], the performance of the A64FX (at Apollo 80, at Ookami) was
studied within the framework of the VPIC 2.0 application using the Kokkos
tools and focused on solving problems of relativistic plasma physics (they
are also important for astrophysics). Figure 11 compares A64FX/1.8GHz
performance with EPYC (Zen 2) and Xeon Cascade Lake performance.
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is our belief that for cutting-edge performance on a specific
target platform, some level of specialization will always be
required. In many cases the portability abstraction layer
may be able to achieve this, but other times the burden will
fall to the programmer.
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Fig. 10: Compute and communication time for small scale
CPU performance (8 sockets). Results are ordered chrono-
logically (based on the CPU releases).

With a portability study such as ours that relies on an un-
derlying toolkit to facilitate the codes operation on a variety
of platforms, it is somewhat inevitable that the performance
results reflect the priorities and maturity of the framework,
as well as reflecting the facets of the target hardware. It
is clear from these results that the code, as written in its
present state, maps best to GPU platforms. Proposals have
been made to extend Kokkos SIMD support, and we look
forward to being able to leverage these improvements for
VPIC 2.0.

6 SCIENTIFIC IMPACTS OF VPIC 2.0
The ability for any code to readily deploy itself on a new
machine, with limited manual refactoring effort, is a huge
win that actively drives down the time to scientific discov-
ery. As the heterogeneity of modern platforms continues to
increase to meet the demands of exascale, effective use of
these platforms translates directly to codes such as VPIC
being able to run simulations at unprecedented scales, and
opens the door to performing analysis and investigation
which was previously intractable. Sec. 5.2 demonstrates that
VPIC 2.0, by following the methodology laid out in this
paper, is well prepared for the exascale challenge.

While enabling portability, VPIC 2.0 is also able to as-
sure performance. The performance-portability trade-off al-
lows simulations to complete quickly and without multiple
restarts by using accelerators and emerging architectures;
such platforms are not optimized or supported by the
original VPIC code (VPIC 1.0). The reduction in execution
costs when using accelerators, coupled with the portability
presented in this paper, facilitate the following changes in
VPIC simulations:

• Simulating more timesteps in fewer core-hours en-
ables simulations which advance further in time,

allowing us to set our sights towards performing
longer fully resolved electromagnetic simulations
than were previously possible.

• Advanced and expensive diagnostics can now be
performed within the timestep that allows for more
accurate analysis. The extensive analysis enables new
fundamental insights to particle acceleration model-
ing at unprecedented scales [35].

• Previous simulations, which took considerable re-
sources, can now be run multiple times to analyze
stochastic variation in, for example, short-pulse laser
experiments, which in turn can generate sufficient
data for machine learning analysis.

The newly release VPIC code opens up new avenues of
science, carrying the domain of plasma physics research to
exascale level simulations

7 RELATED WORK

While the computational characteristics of PIC codes are
fairly well understood, much of the communities optimiza-
tion and development efforts to date have been focused
around platform and hardware specific optimization [36],
[37]. As heterogeneity within leading supercomputers in-
creases [38], it is no longer viable to periodically optimize for
a single target platform, making portability more important
than ever. Within the PIC community, portability is under-
explored, and our work seeks to address this weakness.
Example projects such as PIConGPU [39], [40] and the
AMITIS project [41] demonstrate the applicability of the
PIC algorithm to GPU architectures, but do not make a
concerted effort to address the portability issues presented
by the increasing diversity of modern HPC platforms.

We leverage the Kokkos framework to address many
aspects of the performance-portability trade-off. While
Kokkos represents a fairly modern approach to code porta-
bility, it has already established itself as a key technology
in the race for performance portability, and has successfully
helped a variety of applications run on multiple large-scale
platforms. These target applications span science domains
including finite element analysis [42], computational fluid
dynamics [43], and even deep neural networks [44]. It is of
particular note previous work by the molecular dynamics
community to leverage Kokkos for performance portability
[45]–[47]. Molecular dynamics is an important workload for
Sandia National Laboratory, the creators of Kokkos; and is
also the best explored workload that shares computational
similarities with the PIC method. Both methods are par-
ticle dominated, and rely on the fast processing of large
amounts of particles to simulate the kinetic level behavior
of a large system. It is important to note, however, that
Kokkos is not the only project which seeks to address issues
of performance-portable code development. These tools can
be split into two types: high-level frameworks (such as
Kokkos, RAJA [6], or HPX [48]) and lower-level tools for
which code can be generated (such as OpenMP, SYCL, or
HIP). A comparison of these technologies has already been
the subject of previous studies [49], [50]. Our selection of
Kokkos to support VPIC’s portability is based on the fact
that Kokkos allows for high-level programmability while
still offering good low-level performance.

Figure 11. Performance comparison on VPIC in clusters:
compute and communication time (Figure 11 is based on Fig-
ure 10 in [108]

x86-64 processors were used in clusters with dual processor nodes connected
by Infiniband HDR. The processor time on eight EPYC 7742s was 6
times less than on eight A64FX, and the communication time on the
EPYC system was also several times less. The 8 Xeon 8280 processors also
significantly outperformed the eight A64FX in these parameters. Due to
the inefficient implementation of vectorization in Kokkos, only EPYC gave
comparable performance to the V100 and A100 GPUs [108].

A large number of applications for which data on their performance
on the A64FX have become available do not use either quantum or
relativistic physics. They cover different areas such as CFD and weather
prediction.

Thus, in [39,52,58] on A64FX/1.8 GHz, performance data were
obtained on the well-known weather prediction application SWIM, paral-
lelized in OpenMP. In [56], a performance study was done on the A64FX
(on Fugaku) of the famous Nek5000 application for turbulent atmospheric
phenomena. The performance of the Nek5000 has been studied over a wide
range of Fugaku nodes. In CEED’s BP3 benchmark, which uses similar
math, the A64FX is compared to the V100 on Summit and Xeon Gold
6130/2.1GHz (16 cores). A64FX and V100’s performance was sometimes
close, and sometimes V100 outperformed A64FX by 2-3 times, while
Skylake always lagged behind. In [89], Nekbone mini-application for
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Figure 12. Performance in COSA

Nek5000 for A64FX/2.2 GHz achieved 176 GFLOPS, more than dual
processor servers: 127 GFLOPS with Xeon 8260M (also only 48 cores/2.4
GHz), and with ThunderX2 (total 64 cores/2.2 GHz) — 122 GFLOPS.

The performance of the same computing systems was compared
on another CFD application, COSA, in [89], but here these computing
systems acted as cluster nodes with TofuD interconnections for A64FX,
Infiniband EDR for ThunderX2, OmniPath for Xeon 8260M. In Figure 12,
which shows the graphs of the calculation time versus the number of nodes
used, the system with ThunderX2 is marked as Fulhame, and with Xeon
— as NGIO. A64FX here requires less time to calculate with a small
number of nodes. But in general, the performance of these computing
systems when working with COSA is quite close. Another CFD application,
ShallowWaters.jl (for liquid circulation), created in [109] on A64FX to
work with half precision, accelerated the calculation by 3.6 times compared
to DP, which may become topical for weather and climate modeling in the
future.

For CFD on the A64FX, a lot of performance data has been obtained.
Thus, in [83], the obtained data on A64FX/2.0 GHz performance
on LULESH and CloverLeaf applications (parallelized in MPI+OpenMP)
are compared with performance on dual-processor servers: with Xeon
Skylake with 24 cores (in total) at 2.6 GHz (probably Xeon 6126) and
28-core ThunderX2/2.0 GHz. In LULESH, the A64FX was inferior
in performance to both ThunderX2 and Skylake — also because memory
latency is important in this application; similar data is available in [38].
In terms of performance in the proxy application, LULESH A64FX/1.8
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GHz was significantly slow for a two-processor server with Xeon 6130 (32
cores per server) [59].

And in СloverLeaf, with a different number of OpenMP threads and
MPI processes, A64FX was always ahead of ThunderX2, and usually ahead
of Skylake as well [83]. According to [38], the performance comparability
of A64FX with CloverLeaf was achieved only when working on two
dual-processor servers with Skylake. This advantage of the A64FX is due
to the fact that the performance of the CloverLeaf mini-application is
limited by memory bandwidth [34].

On the A64FX/2.2 GHz, the performance of another CFD-related
application, OPenSBLI, was studied. Its originality for HPC is associated
with the use of Python source code, which, in order to solve specific
differential equations written in Einstein notation, generates C code that
will use MPI + OpenMP parallelization [89]. Table 6 above shows the
performance obtained in clusters containing up to 8 nodes: with A64FX
(with connected TofuD nodes) and clusters of two-socket servers: with Xeon
8260M (total 48 cores/2.4 GHz) — with OmniPath interconnect, and with
ThunderX2 (total 64 cores/2.2GHz) — with Infiniband EDR interconnect.
Here, for any number of nodes, a cluster with A64FX is several times
behind in performance than alternative clusters with the same number
of nodes; a preliminary analysis of the reasons for this suggested a possible
modification of the OPenSBLI code in order to improve performance on the
A64FX [89].

The PENNANT mesh physics mini-application [110] is based on the
FLAG code used for radiative CFD problems. In [39,52,58] the performance
in PENNANT on A64FX/1.8 GHz with OpenMP parallelization (up to 48
cores) was studied.

In a number of papers [39,52,58,60] there are data comparing the
performance of A64FX with other processors and GPUs in the minimod
mini-application for seismic modeling problems [60]. In [39,52,58] the
data on the acceleration achieved on the A64FX with parallelization
on OpenMP depending on the number of processor cores used is given.

In [60], MPI parallelization was used, and the value of the achieved
speedup was analyzed depending on the number of cores (up to 48)
on A64FX and EPYC 7702 (Roma, 64 cores); on the A64FX, the
acceleration with the increase in the number of cores became much greater
than on the Roma. As for the performance of minimod, calculations
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were performed many times faster on A64FX than on Roma, and the
AMD server was sometimes significantly ahead, and sometimes lagged
behind the two-processor server with Xeon 5112 (24 cores in total). The
A64FX has always been ahead of the x86-64, but lagged behind the V100
in performance [60].

In [38,71] performance data on the A64FX from Fugaku is presented
for another mini-application parallelized on MPI + OpenMP — Tealeaf,
which solves the linear heat equation. The performance obtained at the
same time on the A64FX (dependence on the number of OpenMP threads
and MPI rank was also studied) was higher than that of a two-processor
server with Xeon Skylake (24 cores/2.6 GHz in total) and a two-processor
server with ThunderX2 (56 cores in total). /2.0 GHz). At the same time,
the resulting performance of the A64FX was twice that of two dual-processor
servers with Skylake. But in this mini-application, performance is limited
by memory bandwidth [38].

The A64FX performance data of applications/mini-applications just
reviewed differed in that they do not use either quantum or relativistic
mechanics. Below is data on other applications studied on the A64FX and
relatively less used. For example, in [84], adaptive optics problems were
used on the A64FX, which must be solved in real time. A64FX/2.2GHz
performance benchmarked against dual-socket servers with Xeon 6248
(40 cores/2.5GHz total), EPYC 7702 (128 cores total/2.2GHz), and
GPU A100, V100, and AMD MI100. The computation time on the
A64FX was comparable to that obtained on those GPUs (and on the NEC
SX-Aurora TSUBASA), and usually significantly less than on x86-64
servers. The calculation time here strongly depends on the efficiency of the
implementation of matrix-vector multiplication.

In [89] on a cluster system with A64FX/2.2 GHz in nodes connected by
TofuD, the performance of the minikab (Mini Krylov ASiMoV Benchmark)
mini-application using the conjugate gradient method and parallelized
in MPI + OpenMP was studied in comparison with a cluster of two-processor
servers with ThunderX2/2.2GHz 32-core processors (with Infiniband EDR).
Used up to 6 nodes with ThunderX2 and up to 8 nodes with A64FX
(up to 384 cores in each cluster). With an equal number of processor
cores, the cluster with A64FX significantly outperformed the cluster
with ThunderX2 in terms of performance. This also corresponds to the
comparative estimates of minikab performance on a single processor core
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presented in [89]: in A64FX it is twice as fast as in ThunderX2 and 7%
faster than Xeon 8260M.

Due to the recent extension of AI workloads, which could provide
a potentially wider market than traditional HPCs, the performance of the
A64FX has also been studied on such workloads. For AI, half-precision
calculations are more often important, especially with bfloat16 — with the
same 8 bits for the exponent as in SP — which is not typical for traditional
HPC with DP; therefore, data on such performance are considered very
briefly and at the end of this section (3.3.) of the review.

Fugaku’s performance data on the world-famous HPL-AI supercomputer
benchmark is shown above in Section 3.1. In general, AI was also used in the
task of emulating the A64FX itself — the resulting latencies in command
execution were checked [44].

[111] obtained performance data on Fugaku for a ResNet-50 residual
neural network for image classification, and in the Chainer application
using deep learning (in Python using NumPy), linear performance scaling
(number of processed images per second) was obtained with an increase
in the number of Fugaku nodes up to 8. ResNet-50 is now generally
used, for example, for the tasks of detecting COVID-19 in x-rays [112].
In [113], A64FX/2.2 GHz performance on ResNet-50 is compared with the
performance of a two-socket server with Xeon 8268 (48 cores/2.9 GHz
total). The performance of the A64FX was only slightly lagging behind,
but the energy efficiency of the A64FX was 2.8 times higher than that
of the Xeon.

Based on the performance data in sections 2 and 3 above, it is clear
that the Fujitsu processor almost always outperformed the ThunderX2
significantly, which was to be expected. All of the benchmark and application
performance data for the A64FX suggests that the A64FX takes precedence
over x86-64 server processors, usually when high memory bandwidth is
required to achieve high performance. And in most applications and
benchmarks, modern x86-64 processors from Intel and AMD get better
performance. GPUs in their natural areas of application usually have
a much higher performance than the A64FX. In addition, to achieve high
performance, A64FX often requires modifying the source code of programs.
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Conclusion

The A64FX’s performance and data of energy efficiency indicate that
the use of the A64FX in supercomputers is now likely to expand. And we
can draw a more general conclusion, including on the basis of data on the
ThunderX2 and A64FX ARM processors used in supercomputers, that the
hegemony of x86-64 processors in HPC will clearly decrease — this has
actually been said, for example, in the documents of the European HPC-
PRACE infrastructure. But the data of the A64FX microarchitecture
also shows its certain disadvantages compared to modern x86-64 server
processors, including increased latencies in a number of instructions and
when working with memory, and the paucity of OoO resources, which can
be partly dealt with. In addition, the software development tools for the
A64FX are still in need of improvement. Simply translating source code
with A64FX compilers without converting the source code for optimization
may not give the expected performance. The performance benefits on the
A64FX come when the benefit comes from the drastically higher bandwidth
of the HBM2.

In benchmarks and applications A64FX, perhaps, loses more often
in performance to Xeon processors starting with Skylake (and there are no
comparisons at all with Ice Lake, where the highest performance should
appear) and EPYC Roma/Milan. It seems that the performance analysis
should explicitly include data on the price and actually consumed energy,
that is, also a cost indicator. And now it is impossible to determine which
of the AArch64 processors will lead in the near future in the process
of pushing x86-64 out of absolute leadership in HPC: Fujitsu A64FX,
SiPearl Rhea, Nvidia Grace or some other (for example, Huawei Kunpeng
930 — if its production starts soon).

There are publications about studies conducted, including in RIKEN,
on possible ways of developing the A64FX, for which processor emulation
was used (Gem5 with added SVE emulation). In [37], for a 1024-bit SVE,
a possible performance improvement with reduced power consumption was
shown. And in [5], both the possibility of simply increasing the number
of cores and increasing the length of SVE vectors up to 2048 bits were
studied using 5 and 3 nm technologies. It can be assumed that this will be
a possible main focus for Fujitsu for future based on A64FX.
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