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Abstract. When solving a task, a programmer actively interacts with a finite
set of code fragments. The information about their locations is important
for quick navigation, for other developers, and as a kind of documentation.
Integrated development environments (IDEs) provide tools for marking code
fragments with labels, displaying lists of labels, and using these labels for quick
navigation. However, they often lose the correspondence between the label and
the marked place when the code is edited, in particular when changes are made
outside the IDE.

In previous works, the authors propose a tool to be integrated into various
IDEs for “binding” to large syntactic entities of a program and building
a markup that is robust to code editing. The description of the marked element
is built on the basis of the abstract syntax tree (AST) of the program. Later it
is used to algorithmically search for the element in an edited code. The search
has a success rate from 99 to 100%.

This article aims at robust algorithmic binding to an arbitrary section of the
code. For binding to a single-line code fragment, we propose an extension of
the model describing the marked fragment, and an additional search algorithm.
We also propose an algorithm for embedding nodes corresponding to multi-line
fragments in an AST. We show that the correctness of the AST is not violated
by these embeddings. Bindings to randomly selected lines were made in the
code of three large C# projects. Manual check of these lines search results
in the edited code has confirmed that the bindings are robust to code editing.
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Introduction

Navigating through the code is one of the main activities of a
programmer when working on some task. It is intensively performed at all
stages of work: from the initial exploring of the code to the final review
of the changes made [1,2]. The most active transitions take place within
a finite set of code fragments which are of particular interest in the context
of the task being solved. Preserving the information about locations
of these fragments for quick navigation between them, and sharing this
information with other developers are the problems programmers solve
with some “analogue” things and tools that are not directly intended for
it [3,4]. The mechanisms offered by integrated development environments
(IDEs) for marking code fragments — associating some labels with them
and using these labels for quick access to code — are inconvenient and do
not allow one to link additional high-level semantic information, related to
the problem domain, to the marked fragments. More importantly, the
markup quickly becomes irrelevant to the current state of the code: the
connection between the label and the marked fragment can be lost due to
code editing. As a consequence, programmers rarely use built-in IDE
features for preserving information about important code fragments [5,6].

In our research [7–9], models, algorithms, and tools that allow
the programmer to mark code fragments of interest (to bind to them),
to accompany labels with detailed comments and organize them as
a hierarchical structure of a custom depth, to save and load the markup
are proposed. The labels are bound to the code algorithmically : when
the programmer marks a certain fragment, the program is parsed and
a model describing the given fragment is constructed, based on the obtained
abstract syntax tree (AST) (see Section 2). When navigating to some
previously marked fragment is needed, this model is used for algorithmic
search for the marked fragment in the current version of the program.
The algorithms restore the correspondence between the labels and the
fragments (rebind the labels) even if the fragment or its surroundings are
edited. Thus, the markup is robust to code editing.

Figure 1 shows a fragment of the Visual Studio window. On the left,
there is our markup panel integrated into the IDE. A visible part of the
markup opened in the panel consists of 8 labels grouped according to some
domain semantics.

The models and algorithms proposed in [9] are designed to bind to
large-scale and medium-scale syntactic entities of a program, for example,
classes and class members for a C# program . It is often necessary to
mark not the whole method or class, but a specific line of code or several
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Figure 1. Fragment of the Visual Studio IDE window with a
built-in markup panel.

adjacent lines. This task requires the development of additional algorithms,
as well as the modification of the models we have previously created. The
problem of binding to multi-line code fragments was raised by us in [10]. It
was noted that binding to several adjacent lines can be performed in
the same way as binding to a syntactic entity, but requires that a node
corresponding to this multi-line fragment exists in the AST of the program.
In the current paper, this idea is further developed.

The main contributions of the present research are:
(1) an extension of the model previously used for binding to syntactic

entities and a modification of the rebinding algorithm, which provide
robust binding to a single line of code;

(2) a formal concept of custom block — an auxiliary entity that helps to
bind to multi-line code fragments; an algorithm that embeds nodes
corresponding to custom blocks into an AST while maintaining the
correctness of an AST;

(3) experimental results demonstrating the successful application of
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the described models and algorithms for robust binding to code
fragments.
The remainder of the paper is organized as follows. Section 1 provides

an overview of the research related to the binding and rebinding problems.
Section 2 briefly outlines some results previously obtained by the authors,
which are the basis for the current research. Section 3 provides models and
algorithms developed to make the markup tool capable of binding to an
arbitrary code fragment, both single-line and multi-line. In Section 4,
experiments are conducted to evaluate the robustness of the code markup
made with the described models and algorithms.

1. Related work

1.1. Binding to code

The problem of “memorizing” some characteristics by which a certain
place in the code can be found is well-known. In A.L. Fuksman’s
research [11], to obtain an integrated program by adding extension
functions to some basis, it is required to unambiguously identify points
of the basis where fragments of the extension functions need to be embedded.
This identification is supposed to be done by text coordinates — a line
number and a column number. In the modern paradigms that are also
based on the idea of dividing a program into a basis and extension functions
being added to it [12–14], it is proposed to identify places where extensions
should be inserted by class names, method names, signatures, possibly
using patterns. All of the methods above are largely unreliable when the
code is being edited, and cannot be used for binding in the markup task.

Another approach to finding the right place in the codebase is to frame
this place directly in the code using pseudo-comments — comments of a
special form, processed by the language compiler in the way ordinary
comments are processed, but having a special meaning for some external
tool. Pseudo-comments are intensively used in various software development
and maintenance systems [15,16]. This approach is robust to any code
editing, but it stops working if pseudo-comments themselves are accidentally
changed. It is also unpleasant that pseudo-comments “litter” the code with
purely technical information.

The approach developed in this work is based on the idea of representing
a marked fragment as a set of special structures called contexts and storing
this representation separately from the code [18,19]. In [9], we propose
context models that capture enough information to successfully search
for large-scale and medium-scale syntactic entities later in the edited
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program. In the present research we extend this technique to arbitrary
code fragments.

1.2. Code search

There are problems related to the problem of robust binding to code:
searching for code clones [20–22], plagiarism detection [23,24], code
recommendation [25]. Like robust binding, they belong to the wider scope
of software evolution analysis. Their common subproblem is to evaluate the
similarity of programs. However, each problem has its own specifics and
additional assumptions imposed on the codebases compared. The problem
of robust binding to code has the following distinctive features:

• it is guaranteed that two versions of the same codebase are compared;
• for each fragment marked in the initial version of the code, there is

only one match in the current version of the code, or there is no
match at all.
Separate studies are devoted to restoring the current code editing

scenario from the available initial and current version of the codebase [26–29],
as well as predicting further edits [30]. To achieve good results in this
field, a detailed analysis of the program is required using a full parser
of the corresponding language, and taking into account some features
of the particular language may be important in further comparison. In our
approach, we rely on a lightweight analysis of the program structure and
then process the lightweight abstract syntax tree. We parse the program
down to the syntactic entities that we are capable of binding, and work
with the plain text at a greater depth. The models and algorithms we use
for binding and rebinding are language independent and can be applied
with minimal cost to any structured text.

It can also be noted that the algorithm we propose for finding marked
single-line fragments is conceptually close to the LHDiff [31] algorithm,
which is developed to track a line of code based on the line content and
surroundings. However, unlike [31], we do not believe that the version of
the code that existed at the time the line was “memorized” is always
available. Even the use of a version control system cannot guarantee such
availability, since the need to bind to something may arise when the code
is in some intermediate state between the commits. We save a limited
amount of information describing the marked line and its surroundings and
rely only on this stored information during the subsequent search. Before
searching, we also narrow the search scope down to an enclosing syntactic
entity.
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2. Preliminaries

2.1. Lightweight parsing

One of the main requirements when solving the robust binding problem
is the language independence of models and algorithms. First, the markup
tool is supposed to be embedded in different IDEs for different languages.
Secondly, several programming languages are often used in the same
project, and the programmer needs to preserve the information about
code fragments written in different languages in the same markup. The
requirement of language independence is also applied to the format in
which abstract syntax trees processed by the tool must be represented.

The second requirement for an AST is its lightweightness. The contexts
describing the marked fragment are developed under the assumption that
binding is done on the elements of a coarse-grained program structure —
large-scaled and medium-scaled syntactic entities. The definitions of such
entities contain a fairly considerable amount of information useful for
further search. Large pieces of the program, for example, all method
bodies, can be left unparsed and not structured in the tree. At their level,
the program is treated as a plain text. Lightweight ASTs are easier to
construct and faster to process.

To add support for another language, an existing production parser
of the language can be used. In this case, the main difficulty is to find out
how elements suitable for binding are structured in an AST built by the
parser: this information is vitally important for the correct construction
of models describing the marked element. To collect the information,
one has to investigate the complete language specification (if available).
In [32,33], it is noted that this approach is very time-consuming. In
addition, it is necessary to implement an AST converter that prunes
the tree, cutting off unnecessary details, and converts the tree into a
unified language-independent format. A more promising approach is to
implement a lightweight grammar where only syntactic entities suitable
for binding are described in accordance with one’s own understanding
of the language syntax, and the structure of the rest of the program is
omitted. From this grammar, a lightweight parser can be generated. Such
grammars are also called island grammars [32]. In the island grammars
approach, the entities described in detail are supposed to be important in
the context of the task for which the grammar is developed. Such entities
are called islands. Other areas of the program are called water. In [7,8],
we further developed the concept of island grammars and modified the
LL(1) and LR(1) parsing algorithms to make them able to process such
grammars. We also created LanD parser generator which is capable to
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block  = '{' Any '}'
arguments  = '(' Any ')'
entity_attribute = '[' Any ']'
common = entity_attribute* modifier*

water_entity = AnyInclude('delegate', 'operator', 'this') (block | ';')+
property = common type name (block (init_value ';')? | init_expression ';')
field = common type name ('[' Any ']')? init_value? (',' name ('[' Any ']')? init_value?)* ';' 
method = common type name arguments Any (init_expression? ';' | block)
class_struct_interface = common CLASS_STRUCT_INTERFACE name Any '{' entity* '}' ';'?
enum = common 'enum' name Any '{' Any '}' ';'?

Figure 2. Fragment of the lightweight LR(1) grammar of C#.

generate lightweight parsers, and a special language for describing island
grammars for this generator. With LanD, we implemented lightweight
parsers for a large number of languages to use in the markup tool. Figure 2
demonstrates a fragment of the lightweight LR(1) grammar of C#. There
is a special token Any used to indicate areas whose structure is unimportant
and should not be analysed and presented in an AST.

2.2. Binding to large-scale syntactic entities

In our recent research [9], we proposed models and algorithms for
robust binding to syntactic entities of the program. Each marked entity a
is described by a tuple of the following form:

BindingPointa = (Typea, Ha, Ia, Sa, Na, Ca) .

Herein, Typea is a nonterminal grammar symbol corresponding to a.
Since binding is based on the analysis of the AST, binding to a actually
means binding to the corresponding tree node. In general discussions of
tuple components, the lower index referring to the particular entity may be
omitted further in the paper.

Ha is the header context stored as a list of quads of the form
(Type,Priority ,ComparisonMode,Words), one per a leaf child1 of a. Fig-
ure 3 shows an example of a method header and a header context
built for the method. Type is a grammar symbol corresponding to the
header element, Priority is a non-negative real number that reflects
the importance of matching the element when comparing two headers.
ComparisonMode ∈ {“Distance”, “ExactMatch”} defines how to calculate
the similarity of two elements of the type Type. For example, when

1Speaking of trees, by the children of some node we mean the immediate descendants
of this node, and by the node parent we mean the immediate ancestor.
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𝐻𝑎 = (
(MODIFIER,    0.1,  “ExactMatch”, ((1, “public”)),
(MODIFIER,    0.1,  “ExactMatch”,   ((1, “override”)),
(type, 0.3,  “Distance”,        ((1, “void”)),
(name, 0.8,  “Distance”,        ((1, “Visit”)),

(arguments,  0.5,  “Distance”,        
(0.1, “(”), (1, “Bin”), (1, “Op”),

(1, “Node”), (1, “binop”), (0.1, “)”)
)

)

public override void Visit(BinOpNode binop) { … }

Figure 3. Header context built for a method.

comparing method names (name), an edit distance should be calculated,
and when comparing modifiers (MODIFIER), it only makes sense to check
for a strict match. Words is a list constructed by dividing the text
corresponding to the header element into alphanumeric “words” and other
characters. The list item is a pair (Priority ,Text), where Priority is set
to 1 for an alphanumeric text and equals 0.1 for other characters. The
operators Core(Ha) and NotCore(Ha) are also defined for Ha, introducing
an additional grouping of header elements according to their impact on the
correct rebinding. Operators return non-overlapping lists of Ha elements.

Ia is the inner context stored as a triple of the form (Text ,Hash,Length)
further referred as TextOrHash. Text is a text of the inner part of the
element (the text corresponding to a, minus whitespaces and fragments
corresponding to the leaf children of a). Hash is a fuzzy hash [34]
constructed for this text. If the length of the text exceeds a certain value
set with the binding algorithm parameter, only the fuzzy hash is stored,
and the Text component remains empty. For short texts, the hash cannot
be constructed due to technical limitations of the applied fuzzy hashing
algorithm, and only the text itself is saved. The length of the text is always
stored in Length.

Sa is the scope context, stored as a list of (Type, H) pairs. Each
element corresponds to one of the entities enclosing a (one of the ancestors
of a), and is represented by its type and header.

Na is the neighbours context, stored as a pair (Before,After), where
both components are of the form (All ,Nearest). Before describes the
neighbours preceding a, and After describes the neighbours following
a. All is a TextOrHash triple, built for the concatenated text of
all siblings of a (all entities suitable for binding that have a common
parent with a). Nearest is a BindingPoint built for the nearest (in
terms of location in the text) neighbour of a, that has the type Typea.
For example, if a is a method, All(Before(a)) and All(After(a)) contain
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information about all class members located before and after a, respectively.
In Nearest(Before(a)), there is information about the nearest preceding
method, possibly located in another class. Nearest(After(a)) is built in a
similar way.

Ca is the closest context. It is a list of no more than nC ∈ N ∪ {0}
BindingPoint tuples corresponding to the most similar entities of the
type Typea, presented in the program at the moment of binding to a. For
example, if a is an overloaded method, its other implementations are
memorized in Ca.

When the programmer requests a transition to the previously marked
entity a (clicks on the corresponding element in the markup panel),
rebinding is performed: a is searched in the current version of the code.
An AST of the current version of the program is built and a list of candidates
is formed — an array of BindingPoint tuples corresponding to the entities
of the Typea type, presented in the code. Then, for each candidate c,
a context-wise comparison of BindingPointa and BindingPointc is
performed and a vector of distances dac is calculated:

dac =(Dist(Core(Ha),Core(Hc)),Dist(NotCore(Ha),NotCore(Hc)),

Dist(Ia, Ic),Dist(Sa, Sc),Dist(All(Na),All(Nc)),

Dist(Nearest(Na),Nearest(Nc))).

Distances are real numbers from the range [0, 1]. For each of the
contexts, the distance evaluates the difference between the context describing
a and the corresponding context describing c. The distance vector is
scalarly multiplied by the vector of weights wa. Weights are real numbers
reflecting the importance of each of the contexts for finding the marked
element. The vectors of weights are constructed independently for every
searched element using a heuristic algorithm. The final score is computed
as follows:

Dist(a, c) =
dac ·wa∑︁
w∈wa

w
.

Dist(a, c) ∈ [0, 1] is the distance between the initial version of the entity
and the currently available candidate. Then the candidates are sorted
by increasing distance. The best candidate c1 is the one with the
minimum distance2. If c1 and the next candidate c2 satisfy the condition
Dist(a, c2) ̸= 0 ∧Dist(a, c1) · 2 ≤ Dist(a, c2), an automatic rebinding and
transition to c1 in the editor window occurs, otherwise the user of the
markup tool is provided with the ordered list of candidates, and the correct
match is selected manually.

2Hereinafter, array indexing is one-based.
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3. Binding to arbitrary code fragment

3.1. Binding to single line

Binding to a single line is performed through binding to an AST
node and storing some additional information. The previously introduced
BindingPoint model is extended with an additional line context L =
(HadSame, Inner ,Outer). It consists of a line duplication flag, an inner
context, and an outer context, respectively. Inner is a TextOrHash triple,
built for the text of the marked line. Outer = (Before,After) is a pair
of TextOrHash triples built for the concatenated text of all preceding
and all succeeding lines, respectively, which are located together with the
marked line within the same smallest enclosing syntactic entity that can be
presented as a BindingPoint. For example, when binding to a line inside
a method, Before contains information about all preceding lines belonging
to the same method, and After contains information about all subsequent
ones. HadSame is equal to 1 if, when binding, there are other lines inside
the smallest enclosing syntactic entity whose contents are identical to the
content of the marked one. Otherwise, it is equal to 0.

The binding is carried out in two steps. In the first step, a search is
made for the smallest entity a that encloses the line of interest. This entity
is memorized as BindingPointa with an empty La context. In the second
step, La is constructed to describe the line. Note that our implementation
is optimized to avoid duplication of contexts describing the a entity when
binding to other lines within it.

The rebinding process also consists of two steps. First, the entity
a is searched for in the current version of the code, then, if there is a
successful rebinding of a to some c, Algorithm 1 is started. The text
corresponding to c is split into candidate lines. For each candidate line,
the context Lc describing it and the vector of component-wise distances
between La and Lc are calculated (lines 2–6 of Algorithm 1). Then,
depending on whether there were lines identical to the marked one at the
time of binding, and whether there are candidate lines similar to the
searched one that are identical or almost identical in their contents, the
weights of the components Inner and Outer are heuristically adjusted
(lines 7–10 of Algorithm 1). The MaxW and MinW parameters specify
the maximum and minimum weight of the context. The results given
in Section 4 are obtained with MaxW = 1 and MinW = 0.25. For each
candidate line, the total distance is calculated as the scalar product of the
vector of component-wise distances and the vector of weights and then
normalized to the range [0, 1]. The candidate with the smallest distance is
considered the current version of the searched line.
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Algorithm 1 Single line rebinding.
1: function Rebind(a, c)
2: lines ← GetLines(c)

3: lineContexts ← {line ∈ lines | GetLineContext(line)}
4: for all Lc ∈ lineContexts do
5: distances[Lc]← (Dist(Inner(La), Inner(Lc)),

Dist(Outer(La),Outer(Lc)))

6: end for
7: minInDist ← MinLc∈lineContexts(distances[Lc][1])

8: confusionFlag ← HadSame(La)∨
|{Lc ∈ lineContexts |! CheckGap(minInDist , distances[Lc][1])}| > 1

9: wInner(L) ← confusionFlag ?MinW : MaxW

10: wOuter(L) ← confusionFlag ?MaxW : MinW

11: for all Lc ∈ lineContexts do

12: totalDistances[Lc ]←
distances[Lc ]·

(︂
wInner(L),wOuter(L)

)︂
(wInner(L)+wOuter(L))

13: end for
14: orderedCandidates ← OrderByAsc (lineContexts, totalDistances)

15: return orderedCandidates[1]

16: end function

17: function CheckGap(v1, v2)
18: return v2 ̸= 0 ∧ v1 · 2 ≤ v2

19: end function

The distance between two TextOrHash triples u and v is evaluated
using the similarity function Sim(u, v) given in [9], which is interconnected
with the distance function by the formula Dist(u, v) = 1− Sim(u, v). Here

Sim(u, v) =



θ
(︂
1−Dist(Text(u),Text(v)), L1

L2

)︂
,

∀k ∈ {u, v},Length(k) ≤ L2

θ
(︂
1− TlshDist(Hash(u),Hash(v)), L1

L2

)︂
,

∀k ∈ {u, v},Length(k) ≥ L1

0, otherwise,

where the distance between texts is calculated as the Levenshtein dis-
tance [35] normalized to the range [0, 1], and TlshDist is a function that
returns the normalized distance between two fuzzy hashes. θ is a threshold
function that returns the first argument if its value is greater than or equal
to the second argument, otherwise the second argument is returned. L1
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and L2 are parameters of the binding algorithm. L1 is the minimum length
of the text for which it is possible to calculate a fuzzy hash; L2 is the
maximum length of the text to store it in the Text component. In our
experiments, L1 = 25 in accordance with the technical limitations of the
hashing algorithm used, and L2 = 100.

For Outer , the distance is calculated by the formula

Dist(Outer(La),Outer(Lc)) =

(Dist(Before(Outer(La)),Before(Outer(Lc)))

+ Dist(After(Outer(La)),After(Outer(Lc))))/2 .

3.2. Multi-line binding

If it is necessary to bind to a multi-line code fragment as a whole (such
a fragment can consist of only a few lines or be quite lengthy, including
several syntactic entities), the borders of the fragment being marked must
be indicated explicitly so that it can be detected at the stage of parsing the
program and the corresponding node can be placed in the AST. After
that, the models and algorithms described in 2.2 can be used, since such
a bordered fragment can be considered as a large-scale syntactic entity.
Note that binding to multi-line fragments is not completely arbitrary. Due
to the fact that the node corresponding to the multi-line area needs to be
added to the AST, this area must satisfy certain requirements, which are
discussed later in this section.

3.2.1. Detecting bordered multi-line fragment at parsing stage

The first option for recognizing a multi-line fragment, which is bordered
in some way, at the parsing stage is to modify the rules of the lightweight
grammar of the target programming language. However, as we noted
in [10], this approach has some serious drawbacks. The most important
one is the complication of the grammar. One needs the ability to bind to
multi-line fragments in different places of the program. For example,
inside a method, as well as at the level of class members. The content
of the fragment depends on the specific place in which it is located. To
describe a bindable multi-line area, each possible place requires a separate
nonterminal symbol and a separate alternative added to the existing
grammar rule to make that symbol reachable.

We adhere to a fundamentally different approach. The only thing
that needs to be provided for the lightweight parser is the description
of language constructs that frame multi-line fragments marked by the
programmer. For this, a special configuration section CustomBlock is added
to the grammar written in the LanD language. Figure 4 shows variants
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%CustomBlock {
start("//+")
end("//-")
basetoken COMMENT

}

(a) borders are pseudo-comments

%CustomBlock {
start("#region")
end("#endregion")
basetoken DIRECTIVE

}

(b) borders are region borders

Figure 4. Configuration of binding to multi-line fragments for
a C# program

of configuration for C#. The basetoken option specifies a token that can
be interpreted as an opening and closing border of the multi-line area
being marked. The start option sets a prefix that the value of the token
specified in basetoken must have to be considered an opening border. The
end option has similar meaning for a closing border. The descriptive part
of the border — everything that comes after start and end in the text
of the corresponding token — can contain any text according to the needs
of a programmer who marks up the code. Thus, borders have the same
significance as ordinary lexemes of the type basetoken. Note that, in order
to avoid collisions between syntactic entities presented in a program and
bordered multi-line fragments, the token used as basetoken must correspond
to something that is not taken into consideration when parsing, such as
a comment or a preprocessor directive.

Figure 4a demonstrates the configuration for the case where multi-line
fragments are bordered with pseudo-comments. Figure 5a shows the
program text in which several multi-line fragments are bordered in this way.
Figure 4b offers another configuration — marked fragments can be enclosed
in regions, so the developer can not only bind to them, but also better
structure the code in the editor window.

Definition 3.1. Framed fragment is a continuous fragment of code,
consisting of zero or more lines, bordered in accordance with the description
provided in the CustomBlock section.

When parsing, opening and closing borders of framed fragments are
tracked, and in addition to an AST, in which framed fragments are not
presented, a forest is built in which each node corresponds to a certain
framed area. Then this forest is embedded in the AST. We describe this
process in detail below.

3.2.2. Representing framed fragments in AST

Figure 5 shows an example of a program and structures that are built
by our lightweight parser. In the demonstrated case, the forest of framed
fragments consists of one tree, since there is a fragment that encloses the
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//+ Program
namespace Test
{

public class Class1
{

//+ Fields
public int Field1 = 1;
public double Field2 = 2;
//- Fields

//+ Incorrect block
//+ Correct block
/// Usual comment
public void Method1()
//- Correct block
{

//+ Operators
operator1;
operator2;
//- Operators

//- Incorrect block
operator3;

}
}

}
//- Program

(a) example of a program
with framed fragments

Class1

Field1 Field2 Method1

header body

Test

(b) lightweight AST of
the program

Correct
block

Operators

Program

Fields
Incorrect 

block

(c) tree of framed
fragments

Operators

Correct
block

header

Program

Fields

Field1 Field2

Class1

Method1

header

body

Test

(d) AST obtained as a
result of embedding

Figure 5. Embedding the tree of framed fragments in the AST

entire program. At the end of the parsing, the forest is embedded in the
AST. The result is the AST, in which there are nodes corresponding to the
framed fragments (Figure 5d). One can bind to framed fragments, whose
nodes are successfully embedded in the AST.

We additionally regulate the appearance of the borders of a framed
fragment. An attempt to embed the fragment is made only if its opening
and closing borders, with the exception of the prefixes specified by the
options start and end, match, and the matching part is not empty. As
a result, the markup tool recognizes potentially incorrect edits of the
program that violate the integrity of several marked areas at once. The
tool can inform the programmer about this problem. An example of such
editing is shown in Figure 6.

In addition to the limitation above, we impose a number of conditions
on the framed fragment that are required for successful embedding in the
AST. These conditions ensure that the framed fragment is consistent
with the syntactic structure of the program. All of them are presented in
Definition 3.5.

Let a and b be the nodes of one or different trees built on the text
of the same program. We define several relations on the set of nodes of
these trees.
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namespace Test
{

public class Class1
{

public void Method1()
{

//+ First fragment
operator1;
operator2;
//- First fragment
operator3;
//+ Second fragment
operator4;
operator5;
operator6;
//- Second fragment

}
}

}

(a) initial version with two
framed fragments

namespace Test
{

public class Class1
{

public void Method1()
{

//+ First fragment
operator1;
operator5;
operator6;
//- Second fragment

}
}

}

(b) current version

Figure 6. Potentially incorrect program editing

Definition 3.2. We say the node a is nested in the node b, and denote this
fact as a ⊆ b if and only if the fragment of the program text corresponding
to the node a is strictly nested in the fragment of the program text
corresponding to node b, or matches it.

Similarly, strict nesting of nodes is defined, denoted as a ⊂ b, and textual
match of nodes is introduced, denoted as T

=. Note that a ⊆ b ≡ a ⊂ b∨a T
= b.

A text match and a regular match are not the same thing, as two distinct
nodes of the same or different trees may match textually.

Definition 3.3. We say the node a intersects the node b, and denote
this fact as a ⊓ b if and only if there is a non-empty fragment of the
program which is nested both in the fragment corresponding to a and
in the fragment corresponding to b.

Definition 3.4. We say the node a strictly intersects the node b, and
denote this fact as a !⊓ b if and only if a⊓ b and none of the nodes from the
given pair is nested in the other.

Definition 3.5. A framed fragment is called a custom block if and only
if its opening and closing borders, with the exception of the prefixes
specified by the options start and end, match, and the matching part is not
empty, and the corresponding node f from the tree belonging to the forest
of framed fragments satisfies one of the embedding conditions:
(1) r ⊆ f ;
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1|
2| 
3| 
4| 
5| 
6|
7| 
8| 
9| 
10|
11|
12|
13|
14|
15| 
16| 
17|
18| //- Fragment 2

//- Fragment 1
}
}

public double Field2 = 2;
public int Field1 = 1;

{
public class Class1

{
namespace Test
//+ Fragment 1

// This code is distributed under
// Copyright (c) Alexey Goloveshkin

//+ Fragment 2

(a) covering the entire program

1| 
2| {
3| 
4| {
5| 
6|
7| 
8| 
9| 
10|
11| 
12| 
13| 
14| 
15| 
16| {
17| 
18| {
19| System.Console.WriteLine("N > 0");
20| }
21| }
22| }
23| }

if (n > 0)

namespace Test

public class Class1

public int Field1 = 1;

//- Fragment 2
//- Fragment 1
public void Method1(int n)
//+ Fragment 1
/// <param name="n">Int number</param>
/// </summary>
//// Method 1
/// <summary>
//+ Fragment 2

(b) covering the method header

Figure 7. Examples of custom blocks

(2) an AST node n exists, such that for any AST node n′ such that n′ is
an ancestor of n or is n itself it holds that f !⊓n′ or f ⊂ n′, and for
any AST node n′′ such that n′′ ⊆ f it holds that n′′ is a descendant
of n.

The first embedding condition allows us to add f to the AST as a new
root of the tree. Figure 7a shows two custom blocks, the nodes of which can
be embedded in the AST of the program as a root and its child. Note that
the text fragment corresponding to the custom block can be significantly
larger than the fragment corresponding to the AST root, since empty lines
and comments are ignored by the parser, but can be within the custom
block area. In the example above, the AST root corresponds to the text
from line 8 to line 15 before embedding the custom blocks. The second
condition describes an AST node n to whose children it is possible to
add a node f that does not satisfy the first condition. The definition
of custom block permits not only strict nesting of f in potential ancestors,
but also strict intersection with them. Therefore, a marked fragment can
include areas that are skipped by the parser, just as is allowed by the first
embedding condition. Figure 7b shows two custom blocks going beyond
the method Method1. Figure 5 demonstrates how such a custom block
(Valid block) is embedded in an AST. Obviously, in the case shown, the text
area that corresponds to the parent node Method1 is expanded.

Checking the second condition and embedding the nodes that satisfy it
is carried out by Algorithm 2, which is run recursively during the pre-order
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traversal of the AST with the Visit method. In the algorithm, the input
parameter n is a currently visited AST node. A list of roots of all trees
from the forest of framed fragments is passed as the fragments parameter
when visiting the AST root. The fulfilment of the condition 3.5.2 is checked
incrementally while going down the AST. Simultaneously with going down
the AST, the algorithm goes down the trees from the forest. When visiting
some n node, roots of the forest subtrees whose nodes can potentially
be embedded in an AST subtree rooted in n are passed in fragments.
Stepping down some tree from the forest means the previously considered
node of this tree is accepted as fully satisfying the condition 3.5.2 and
is embedded in AST, or is discarded due to violation of the condition.
In Algorithm 2, the function Children(a) is used to denote a sequence
of children of node a, where a can be an AST node as well as a node from
the forest of framed fragments.

At the first stage (lines 4–26 of Algorithm 2), for each node f from
fragments , it is checked whether it can be embedded in the AST as a child
of n. If f strictly intersects with some of the children of n or is nested in
a child, such an embedding cannot be done. Otherwise, the fragment
corresponding to f is treated as a custom block, and all children of n that
are nested in f or textually match f are selected, forming some (possibly
empty) subsequence of the sequence Children(n) (line 6 of Algorithm 2).
Its elements become new children of f , and f itself is added instead of this
subsequence to the children of n. If there are no children of n nested in
f , f is childless and is inserted between the children of n such that the
text of the preceding child precedes the text of f and the text of the
following child follows the text of f . The InsertChild procedure used in
the algorithm takes as its first argument the node to whose children, at the
position specified by the third argument, the second argument must be
added. After the loop, the old children of every node f inserted into the
AST, which are the elements of the trees of framed fragments, are inserted
into fragments (lines 27–31 of Algorithm 2) instead of the corresponding f .

At the second stage (lines 32–36 of Algorithm 2), framed fragments are
selected that strictly intersect with exactly one child of n or are strictly
nested in such a child (line 33 of Algorithm 2). They are possibly custom
blocks. The list of the nodes corresponding to such fragments is passed as
the second argument to the recursive call of the Visit method for that child.
Finally, the only nodes remaining in fragments are those that definitely
cannot be embedded in the AST. However, this does not mean that it is
not possible to embed some of their descendants. All the nodes remaining
in fragments are replaced with the sequences of their children (line 37 of
Algorithm 2), and then the whole process is repeated.
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Algorithm 2 Embedding nodes corresponding to custom blocks in an AST.
1: procedure Visit(n, fragments)
2: while |fragments| > 0 do
3: inserted ← ∅
4: for all f ∈ fragments do
5: if {c ∈ Children(n) | f !⊓ c ∨ f ⊂ c} = ∅ then
6: innerChildren ← [c ∈ Children(n) | c ⊆ f ]

7: if |innerChildren| > 0 then
8: index ← IndexOf(innerChildren[1],Children(n))

9: else
10: index ← 0

11: for i← 1, |Children(n)| do
12: if Children(n)[i].StartOffset > f.EndOffset then
13: index ← i

14: break
15: end if
16: end for
17: if index = 0 then
18: index ← |Children(n)|+ 1

19: end if
20: end if
21: inserted ← inserted ∪ {f}; fCopy ← f

22: SetChildren(fCopy, innerChildren)

23: SetChildren(n, children \ innerChildren)

24: InsertChild(n, fCopy, index)

25: end if
26: end for
27: for all f ∈ inserted do
28: index← IndexOf(f, fragments)

29: RemoveAt(fragments, index)

30: InsertAt(fragments,Children(f), index)

31: end for
32: for all c ∈ Children(n) do
33: innerFragments ←
{f ∈ fragments | f !⊓ c ∧ ∀c′ ∈ Children(n) \ {c},¬(c′ ⊓ f) ∨ f ⊂ c}

34: fragments← fragments \ innerFragments

35: Visit(c, innerFragments)

36: end for
37: fragments ←

⋃︁
f∈fragments

Children(f)

38: end while
39: end procedure
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For an abstract syntax tree containing m nodes and a forest of framed
fragments containing l nodes, the worst-case complexity of the algorithm is
O(m · l).

Obviously, Algorithm 2 adds any node f corresponding to condition 3.5.2
to the AST as a child of some node n. When visiting the ancestors of n,
the node f is passed (directly or as a part of a subtree whose root is in
fragments) to recursive calls of the Visit method. When n is visited, the
node f itself, or one of its ancestors from the framed fragment tree, is
embedded in the AST either as enclosing one or more children of n, or
as not intersecting with any of them. If not f itself is embedded at the
current step, but its parent is, as the AST traversal continues with regard
to the changes caused by that embedding, f will be embedded when the
node corresponding to its parent is visited recursively.

In Figure 5a, the framed fragment Incorrect block is not a custom
block, since the node corresponding to it is nested in all AST nodes in the
path from the root to Method1, but at the level of the children of the node
Method1 it includes the header node and at the same time strictly intersects
with the method body. As a result, Incorrect block is not represented in the
resulting AST shown in Figure 5d .

The markup tool automatically checks the embedding conditions if the
programmer wants to bind to some multi-line fragment. It is not possible
to create the framed fragment Invalid block shown in Figure 5a using the
markup tool. When trying to bind to the corresponding code area, only
binding to the enclosing class Class1 is offered.

3.2.3. Correctness of custom block definition

The custom block concept is introduced in such a way that when
embedding a custom block into an AST, the correctness of an AST is
preserved. By such correctness, we mean consistency with the fundamental
properties of an AST. For any nodes n1 and n2 that belong to the AST
and are distinct from each other,
(1) n1 is an ancestor of n2 =⇒ n2 ⊆ n1;
(2) n1 ⊓ n2 ⇐⇒ n1 is an ancestor of n2 or n2 is an ancestor of n1.

Proposition 3.1. Let the node f corresponding to the custom block be
embedded in the AST. Then for any nodes n1 and n2 belonging to this
AST and being distinct from each other and from f ,
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(1) n1 is an ancestor of n2 if and only if n1 was an ancestor of n2 before
embedding f .

(2) n1 and n2 are connected by the relation ⊆ if and only if they were
connected by this relation before embedding f .

(3) n1 and n2 are connected by the relation ⊓ if and only if they were
connected by this relation before embedding f .

Proof. Embedding nodes that match condition 3.5.1 does not affect
the edges within the initially built AST and does not change the text areas
corresponding to the nodes that were present in the initially built AST.
For nodes embedded in the AST in accordance with condition 3.5.2, the
validity of all parts of the proposition follows from Algorithm 2. □

Note that the nodes n1 and n2, connected by the relation ⊂ before
embedding f in the AST, can be connected by the relation T

= after
embedding, if f became their descendant. As noted earlier, code areas
corresponding to AST nodes that are the ancestors of f can be expanded
as a result of embedding f , as they must cover all descendants.

Proposition 3.2. Let the node f corresponding to the custom block be
embedded in the AST. Then for any node n′ belonging to this AST and
being distinct from f ,
(1) n′ is an ancestor of f =⇒ f ⊆ n′;
(2) f is an ancestor of n′ =⇒ n′ ⊆ f ;
(3) n′ ⊓ f ⇐⇒ n′ is an ancestor of f or f is an ancestor of n′.

Proof. Node f , which is embedded due to condition 3.5.1, has no
ancestors, and all nodes of the initial AST are nested in f and become its
descendants. Therefore, all parts of the statement are satisfied. For nodes
embedded in the AST in accordance with condition 3.5.2, the validity of all
parts of the statement follows from Algorithm 2. □

Statement 3.1 means that embedding the custom block node in the
AST does not violate the relations between the nodes of the AST that
existed before embedding. Statement 3.2 means that f itself correctly
participates in relations with the initial AST nodes.
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Table 1. Projects analyzed.

Initial version date Current version date Commits Files
changed

asp 03.02.2020 04.07.2020 3551 1398
pabc 25.05.2018 26.05.2020 1462 0335
ros 03.02.2021 30.04.2021 3459 1749

4. Experiments

Since binding to multi-line code fragments is carried out in the same
way as binding to syntactic entities, the results of the experiments given
in [9] can be considered to describe the robustness of custom blocks
rebinding. For classes, methods, fields and properties, it is demonstrated
that marked and later edited elements are successfully found in 98,93–100%
of cases.

To check the robustness of binding to single-line fragments, we
perform binding to randomly selected lines in the codebases of three large
open source projects: ASP.NET Core (asp), PascalABC.NET (pabc),
Roslyn (ros). Table 1 provides more detailed information for each of
them. The main language of all projects is C#.

For each project, some version of the codebase is chosen as the initial
one. Then we move a certain number of commits ahead to some version
that is considered the current one. In the initial version of each project,
a certain number of methods (300 for asp, 100 for pabc, and 300 for ros) is
randomly selected that are edited in the current version and successfully
rebound by our markup tool. It is additionally checked that there are two
or more lines in the body of the method. Then binding is performed to two
randomly selected lines in each method. The expected result is a successful
rebinding of all lines that still exist in the current version of the method.
The prerequisite consisting in the successful rebinding of the methods
themselves makes it possible to eliminate the impact of the previously
tested algorithm, which rebinds large syntactic entities, on the results
of the experiment.

Table 2 shows the results of the experiment. For each project, the
marked lines are divided into two groups. “Good” ones are all lines except
empty lines and lines with a single operator bracket ({ or }). “Bad” lines
are ones with a single operator bracket or empty. The first subcolumn for
each project contains statistics for “good” lines, the second one is for

https://github.com/dotnet/aspnetcore
https://github.com/pascalabcnet/pascalabcnet
https://github.com/dotnet/roslyn
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Table 2. Results of the experiment.

asp pabc ros
Total 433 167 155 45 435 165
Rebound, right 410 151 147 32 414 144
Rebound, wrong 2 4 2 11 8 12
Place found, right 18 9 4 1 10 6
Place found, wrong 3 3 2 1 3 3
Success, % 99,51 97,42 98,66 74,42 98,1 92,31

“bad” lines. Empty lines and lines with operator brackets are isolated into
a separate group, since they are almost always not unique within a method,
so their rebinding can be significantly less successful than for other lines (at
the same time, the probability that in a real situation the programmer
decides to bind to them is also lower).

The “Total” row of the table shows the total number of marked lines,
“Rebound, correct” shows the number of cases when the previously marked
line is still present in the code and is correctly rebound, the row “Rebound,
incorrect” indicates the number of lines for which relevant versions are still
present in the code, but rebinding to incorrect candidates occurs. The line
“Location found, correct” indicates the number of cases when the searched
line is deleted and rebinding is performed to a place no more than 1–2
lines apart from the former location of the deleted line. In “Location
found, incorrect”, cases are considered when the searched line is deleted
and rebinding occures to a line located more than 1–2 lines apart from
the initial place. In the “Success” row, the percentage of successfully
rebound lines from the total number of marked lines that are not deleted is
calculated.

A significant difference between the results of rebinding “good” and “bad”
lines is observed, especially for pabc, where the success rate of rebinding the
“bad” lines is 74,42%, while for the rest of the lines, the success rate is
98,66%. Detailed analysis shows that the outer context plays a key role in
successful rebinding for “bad” lines, so “bad” lines located close to each
other cause misrebinding because their surroundings are almost identical.
For “bad” lines, it also turns out to be significant that the outer context
similarity score is decreased when editing the method signature. Because of
the lightweightness of the parsing, for the line located in the method body,
the outer context captures not just the content of the body, but the entire
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var symbol = semanticModel.GetDeclaredSymbol(ancestor, cancellationToken);
if (symbol != null)
{

if (symbol.Locations.Contains(location))
{

return symbol;
}
// We found some symbol, but it defined something else. We're not going to have a higher node defining _another_ …
return null;

}

(a) original version of the code
var symbol = semanticModel.GetDeclaredSymbol(ancestor, cancellationToken);
if (symbol != null)
{

// The token may be part of a larger name (for example, `int` in `public static operator int[](Goo g);`.
// So check if the symbol's location encompasses the span of the token we're asking about.
if (symbol.Locations.Any(loc => loc.SourceTree == location.SourceTree && loc.SourceSpan.Contains(location.SourceSpan)))

return symbol;
// We found some symbol, but it defined something else. We're not going to have a higher node defining _another_ …
return null;

}

(b) current version of the code

Figure 8. Example of an incorrect rebinding of a line in ros

text of the method except for the line itself. More precise handling of such
situations would increase the percentage of successful rebindings.

As for “good” (informative) lines, their rebinding fails primarily due to
intensive editing of the lines themselves. Figures 8 and 9 show two out of
eight errors occurred for the “good” lines in ros. In a) and b) in each figure,
the initially marked line and the line to which the rebinding is performed,
respectively, are highlighted in gray. A line taken into a frame with a
transparent background is the one rebinding to which would be correct.

It is worth noting that sometimes deleting a line from a method does
not mean that the line completely disappears. In every project, cases exist
when some part of the method is extracted into a separate method, or
a number of arguments is added to the signature and an overloaded version
of the method matching the old signature appears. At the level of syntactic
entities, in this case, rebinding is performed to a method with the signature
matching the initial one. However, this method may not contain some lines
that are expected to be there, as they were taken out or even never were
there. These cases are counted in the “Location found” row. The correct
place for rebinding is considered to be the call to the method in which
the searched line is actually located. Obviously, rebinding can be more
accurate in such situations if the absence of a good candidate line affects
the rebinding of the enclosing entity.
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using (var token = _asyncListener.BeginAsyncOperation(nameof(FindImplementingMembersAsync)))
{

// Let the presented know we're starting a search.
var context = presenter.StartSearch(

EditorFeaturesResources.Navigating, supportsReferences: true);
using (Logger.LogBlock(

FunctionId.CommandHandler_FindAllReference,
KeyValueLogMessage.Create(LogType.UserAction, m => m["type"] = "streaming"),
context.CancellationToken))

{
(a) original version of the code

using var token = _asyncListener.BeginAsyncOperation(nameof(FindImplementingMembersAsync));

// Let the presented know we're starting a search. We pass in no cancellation token here as this
// operation itself is fire-and-forget and the user won't cancel the operation through us (though
// the window itself can cancel the operation if it is taken over for another find operation.
var (context, cancellationToken) = presenter.StartSearch(EditorFeaturesResources.Navigating, supportsReferences: true);
using (Logger.LogBlock(

FunctionId.CommandHandler_FindAllReference,
KeyValueLogMessage.Create(LogType.UserAction, m => m["type"] = "streaming"),
cancellationToken))

{

(b) current version of the code

Figure 9. Example of an incorrect rebinding of a line in ros

Conclusion

When working on a project, programmers need a tool that allows
them to mark code sections that are important for the current task, use
previously created markup to quickly resume work on some other task, and
share this information with their colleagues. The key problems when
creating such a tool are binding to code — memorizing some place in it —
and rebinding — finding a previously memorized place in the current
version of the code. Robustness to editing is the crucial property of binding
to code. It means that rebinding should be successful no matter how much
the fragment of interest is edited.

In the paper, we propose the continuation of our research on binding
to code based on binding to nodes of a lightweight abstract syntax tree of
a program.

Previously created models and algorithms, which are designed for
robust binding to large syntactic entities of a program, are extended
to provide robust binding to arbitrary single-line fragment nested in
some syntactic entity. For binding to a multi-line fragment, the necessary
formalization and the algorithm that checks the correctness of the multi-line
fragment selection with regard to the syntactic structure of the program,
and then embeds the node, corresponding to this fragment, in the AST, are
proposed. The experiments demonstrate that rebindings of previously
marked arbitrary code lines are successful in the vast majority of the cases.
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For future work, we consider improving the robustness of binding
to single-line fragments by more complex examination of the contexts
describing the line, and tighter integration of the markup tool with IDEs
and taking into account the current code editing scenarios when rebinding.

Authors contribution: Alexey V. Goloveshkin— 85% (software, valida-
tion, formal analysis, investigation, resources, data curation, writing (review
& editing), visualization, supervision); Stanislav S.Mikhalkovich— 15%
(methodology, visualization, project administration, funding acquisition).
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