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Introduction

While working on a project in the field of delay-tolerant networks
(DTN [1]) we faced the task of compressing data on a sensor node with
relatively large number of sensors (n ∼ 10÷ 100). We need compression
to increase the volume of data that fits in memory of the sensor node,
thereby increasing the maximum time gap between communication sessions
we can survive without data loss.
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Table 1. Sensor node RAM volumes

Year Processor RAM

2006 MSP430 10KB
2020 NRF52 256KB

Table 2. Input block sizes for selected
compression algorithms

Algorithm Input block (bytes)

S-LZW [2] 528

FELACS [4] 16÷ 300

FLAC [6] 2048÷ 6144

Shorten [7] 256

Data compression is popular in sensors networks as it reduces the
volume of data transferred, and thus conserves (a) the battery resource,
and (b) the network bandwidth. A number of compression algorithms
with low memory (Table 1) and CPU requirements, targeted specifically
toward sensor networks have been developed, e.g. [2–5]. The field appears
well-established, but we could not find an algorithm fitting the task.

Most algorithms compress data blocks of fixed size (Table 2), the
output block size varies with compression ratio actually achieved. What
we need is an algorithm that receives a slow stream of data points and
compresses into an output buffer of fixed size. The size may be chosen
to be transferable atomically in one communication session, or to be
convenient for memory management (fixed size buffer pool). We would
want an algorithm with a small memory footprint, as it will be multiplied
by the number of sensors n. We would also want good compression ratios
for “runs” of v = const which are often present in real world sensor data.

Sensor data are time series:

{(t0, v0), (t1, v1), . . . }.

Authors dealing with sensor data compression at database level additionally
consider the issue of timestamp compression ti [8,9]. We avoid this
issue by assuming the data are sampled in accordance with a schedule:
ti = schedule(t0, i), with no points lost. In this case it is sufficient to
send t0 along with every compressed block.

1. Methodology

We will consider compression algorithms with low CPU usage and
a small memory footprint, both existing and developed ad hoc. For every
algorithm we implement a coder prototype to measure the compression
ratio, and test the coders on real world sensor data. Test data come from
our own sensor network (Table 3), and also from “ground truth” watt-meter
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Table 3. Description of own datasets

Name Bits Frequency Description

Pa 18 1/10Hz electricity consumption data of a cottage: mean active
power obtained by differentiating data from an energy
counter based on Analog Devices ADE7758 chip.
Phase A

Pb 18 1/10Hz ditto, Phase B
Pc 18 1/10Hz ditto, Phase C

T1 12 1/60Hz air temperature, room 1 (sensor Sensirion SHTW2 )
T2 12 1/60Hz air temperature, room 2

Tdp1 12 1/60Hz air dew point in room 1
Tdp2 12 1/60Hz air dew point in room 2

data of EMBED project [10]. For each source of our own data we consider
three three-day periods to see how data distributions change in time.

All test results are shown in Table 4 and we refer to them while discussing
algorithms. The algorithms are described informally, but encoder implemen-
tations in Perl5 are available under https://github.com/yysizif/sencomp .

Data in test datasets are real numbers, while the algorithms are
intended for compressing integers (ADC samples). We convert test data
to integer form by multiplying by 10k, where k is the length of the fractional
part in every particular dataset.

1.1. Compression ratio calculation

We define the compression ratio as K = S0/Sc, where S0 is uncom-
pressed size in bits and Sc is compressed size in bits, i.e. larger K means
better compression.

To compute the uncompressed size in bits, we need to know the ADC
resolution. For sources T , Tdp, the ADC resolution is known to be 12 bits.
For sources PA/B/C and EMBED project data, we don’t know the ADC
resolution and have calculated it based on measurement range and precision

m = ⌈log2(ImaxVnom10k)⌉,

where Vnom and Imax are nominal mains voltage and maximum measurable
current (Imax = 100A for PA/B/C , Imax = 15A for EMBED data), k is the
length of fractional part (k = 1 in PA/B/C data, k = 2 in EMBED data).
In both cases we obtained projected ADC resolution of m = 18 bits.

https://datasheetspdf.com/datasheet/ADE7758.html
https://datasheetspdf.com/datasheet/SHTW2.html
https://github.com/yysizif/sencomp


38
Y

u
ry

V
.S

h
evch

u
k

Table 4. Compression ratios for 75 data sources with 16 algorithms
Cell background: hors concours best ratio in the row -5%-5% -10%-10% -20%-20% -50%-50% -80%-80% -90%-90%

№ Source z22 z1 EB F16 F256 RLGR EG EW e1 e2 e3 e4 e5 DD RLGR′ e10

1 period 1, Pa 5.21 3.12 2.43 1.161.16 1.181.18 1.491.49 1.141.14 1.231.23 1.471.47 1.62 1.611.61 1.591.59 1.511.51 1.481.48 1.561.56 1.611.61
2 period 1, Pa-noise 4.90 3.29 2.53 1.161.16 1.181.18 1.551.55 1.181.18 1.281.28 1.591.59 1.70 1.70 1.641.64 1.571.57 1.611.61 1.571.57 1.641.64
3 period 1, Pb 4.99 3.36 4.02 1.931.93 1.891.89 0.310.31 1.811.81 1.741.74 2.112.11 2.252.25 2.212.21 2.192.19 2.172.17 2.132.13 1.761.76 2.28
4 period 1, Pb-noise 5.96 4.24 4.95 1.961.96 1.901.90 0.670.67 2.202.20 2.152.15 2.722.72 2.78 2.772.77 2.702.70 2.742.74 2.682.68 2.192.19 2.78
5 period 1, Pc 5.43 3.67 4.85 2.392.39 2.522.52 1.921.92 2.132.13 1.941.94 2.582.58 2.582.58 2.572.57 2.602.60 2.542.54 2.482.48 2.392.39 2.71
6 period 1, Pc-noise 7.68 4.85 6.86 2.452.45 2.562.56 2.692.69 2.912.91 2.652.65 3.553.55 3.393.39 3.393.39 3.553.55 3.603.60 3.383.38 3.083.08 3.65
7 period 1, Tdp1 3.85 3.63 4.30 2.052.05 2.202.20 2.30 1.811.81 1.641.64 2.142.14 2.022.02 2.022.02 2.082.08 2.032.03 2.042.04 2.252.25 2.282.28
8 period 1, Tdp1-noise 6.65 5.03 9.52 2.572.57 2.572.57 5.005.00 3.993.99 3.573.57 4.784.78 4.464.46 4.464.46 4.784.78 4.864.86 4.544.54 4.904.90 5.20
9 period 1, T1 4.52 3.87 5.05 2.232.23 2.442.44 2.502.50 2.062.06 1.861.86 2.312.31 2.182.18 2.182.18 2.262.26 2.232.23 2.232.23 2.452.45 2.51

10 period 1, T1-noise 7.04 5.27 12.71 2.992.99 3.343.34 6.596.59 5.305.30 4.694.69 6.336.33 5.855.85 5.855.85 6.346.34 6.506.50 6.016.01 6.486.48 6.84
11 period 1, Tdp2 4.17 3.58 4.13 2.002.00 2.172.17 2.24 1.751.75 1.591.59 2.082.08 1.981.98 1.981.98 2.052.05 2.012.01 1.991.99 2.202.20 2.222.22
12 period 1, Tdp2-noise 6.34 4.89 7.71 2.382.38 2.512.51 4.064.06 3.263.26 2.942.94 4.024.02 3.733.73 3.733.73 3.973.97 4.044.04 3.823.82 4.004.00 4.23
13 period 1, T2 4.40 3.77 4.21 2.032.03 2.162.16 2.26 1.781.78 1.621.62 2.072.07 2.002.00 2.002.00 2.062.06 2.022.02 2.022.02 2.212.21 2.26
14 period 1, T2-noise 6.62 4.89 7.69 2.502.50 2.702.70 4.054.05 3.283.28 2.982.98 4.124.12 3.853.85 3.853.85 4.074.07 4.104.10 3.913.91 3.993.99 4.24
15 period 2, Pa 4.64 3.06 2.35 1.251.25 1.281.28 1.561.56 1.111.11 1.201.20 1.441.44 1.591.59 1.581.58 1.561.56 1.471.47 1.471.47 1.551.55 1.60
16 period 2, Pa-noise 4.25 3.17 2.42 1.251.25 1.281.28 1.551.55 1.131.13 1.231.23 1.521.52 1.64 1.64 1.581.58 1.511.51 1.551.55 1.551.55 1.611.61
17 period 2, Pb 4.95 3.33 3.82 1.891.89 1.901.90 0.390.39 1.731.73 1.681.68 2.072.07 2.192.19 2.162.16 2.152.15 2.122.12 2.082.08 1.911.91 2.23
18 period 2, Pb-noise 5.46 4.10 4.61 1.911.91 1.901.90 0.710.71 2.062.06 2.032.03 2.582.58 2.652.65 2.632.63 2.592.59 2.612.61 2.542.54 2.252.25 2.66
19 period 2, Pc 4.55 3.42 3.93 1.941.94 1.971.97 0.120.12 1.771.77 1.671.67 2.222.22 2.262.26 2.252.25 2.272.27 2.202.20 2.162.16 1.771.77 2.32
20 period 2, Pc-noise 5.31 3.98 4.71 1.961.96 1.981.98 0.240.24 2.072.07 1.981.98 2.68 2.612.61 2.602.60 2.642.64 2.632.63 2.552.55 1.871.87 2.612.61
21 period 2, Tdp1 4.58 3.72 4.24 2.042.04 2.232.23 2.29 1.791.79 1.601.60 2.172.17 2.022.02 2.022.02 2.082.08 2.052.05 2.022.02 2.252.25 2.262.26
22 period 2, Tdp1-noise 6.20 5.32 11.87 2.632.63 2.712.71 6.186.18 4.894.89 4.234.23 5.515.51 5.125.12 5.125.12 5.685.68 5.785.78 5.255.25 6.046.04 6.30
23 period 2, T1 4.40 3.64 3.74 1.901.90 2.022.02 2.12 1.611.61 1.431.43 2.012.01 1.891.89 1.891.89 1.941.94 1.911.91 1.881.88 2.082.08 2.112.11
24 period 2, T1-noise 6.40 4.24 7.23 2.112.11 2.232.23 3.773.77 2.982.98 2.622.62 3.523.52 3.263.26 3.263.26 3.583.58 3.673.67 3.343.34 3.713.71 3.87
25 period 2, Tdp2 4.61 4.04 6.53 2.532.53 2.842.84 2.91 2.522.52 2.322.32 2.652.65 2.422.42 2.422.42 2.612.61 2.582.58 2.572.57 2.832.83 2.91
26 period 2, Tdp2-noise 7.89 6.46 52.54 4.774.77 6.846.84 32.02 22.1422.14 19.2719.27 22.0122.01 21.0321.03 21.0321.03 23.3423.34 23.2923.29 21.5221.52 31.6131.61 27.8427.84
27 period 2, T2 5.24 4.20 6.21 2.492.49 2.812.81 2.86 2.432.43 2.232.23 2.622.62 2.382.38 2.382.38 2.562.56 2.522.52 2.522.52 2.782.78 2.842.84
28 period 2, T2-noise 8.87 5.82 92.51 5.425.42 8.028.02 48.5848.58 39.2339.23 34.3834.38 40.6040.60 38.5838.58 38.5838.58 43.2143.21 43.1043.10 39.4739.47 47.4547.45 48.81
29 period 3, Pa 4.46 3.07 2.30 1.071.07 1.081.08 1.551.55 1.091.09 1.191.19 1.431.43 1.571.57 1.561.56 1.531.53 1.451.45 1.461.46 1.551.55 1.58
30 period 3, Pa-noise 4.56 3.17 2.36 1.071.07 1.081.08 1.541.54 1.111.11 1.221.22 1.491.49 1.62 1.611.61 1.561.56 1.481.48 1.531.53 1.551.55 1.591.59
31 period 3, Pb 4.92 3.39 4.23 1.921.92 1.881.88 0.340.34 1.891.89 1.811.81 2.152.15 2.302.30 2.272.27 2.242.24 2.242.24 2.172.17 1.891.89 2.31
32 period 3, Pb-noise 6.08 4.43 5.51 1.961.96 1.891.89 0.620.62 2.432.43 2.362.36 2.912.91 3.02 3.003.00 2.922.92 3.003.00 2.862.86 2.462.46 2.982.98
33 period 3, Pc 4.44 3.53 4.32 2.142.14 2.222.22 0.230.23 1.931.93 1.791.79 2.372.37 2.402.40 2.392.39 2.422.42 2.352.35 2.292.29 1.951.95 2.49
34 period 3, Pc-noise 5.77 4.31 5.53 2.162.16 2.232.23 0.340.34 2.392.39 2.232.23 3.01 2.902.90 2.902.90 2.992.99 3.003.00 2.862.86 2.222.22 2.982.98
35 period 3, Tdp1 4.52 3.93 6.32 2.512.51 2.812.81 2.88 2.462.46 2.262.26 2.612.61 2.392.39 2.392.39 2.572.57 2.542.54 2.542.54 2.812.81 2.872.87
36 period 3, Tdp1-noise 7.72 6.52 55.66 4.774.77 6.856.85 33.80 23.5123.51 20.5020.50 23.6523.65 22.5822.58 22.5822.58 25.3125.31 25.2825.28 23.0823.08 33.2633.26 29.4329.43
37 period 3, T1 5.24 4.31 6.56 2.562.56 2.912.91 2.96 2.532.53 2.322.32 2.652.65 2.422.42 2.422.42 2.622.62 2.602.60 2.612.61 2.882.88 2.952.95
38 period 3, T1-noise 8.88 6.20 95.44 5.315.31 8.278.27 52.45 40.7240.72 36.1736.17 42.3542.35 40.1840.18 40.1840.18 44.8044.80 44.6944.69 41.0941.09 51.2351.23 50.3450.34
39 period 3, Tdp2 4.24 3.89 6.62 2.562.56 2.852.85 2.952.95 2.552.55 2.342.34 2.652.65 2.432.43 2.432.43 2.622.62 2.592.59 2.612.61 2.872.87 2.96
40 period 3, Tdp2-noise 7.67 6.64 52.87 4.744.74 6.676.67 32.65 22.3222.32 19.4619.46 22.2222.22 21.1921.19 21.1921.19 23.5123.51 23.5123.51 21.7321.73 32.1732.17 27.7327.73
41 period 3, T2 5.08 4.38 7.08 2.652.65 2.952.95 3.063.06 2.682.68 2.462.46 2.722.72 2.492.49 2.492.49 2.712.71 2.692.69 2.702.70 2.962.96 3.08
42 period 3, T2-noise 8.83 6.15 117.0 5.605.60 8.978.97 67.36 50.6250.62 45.2945.29 52.3152.31 49.8649.86 49.8649.86 55.1755.17 55.0055.00 51.0151.01 65.3065.30 61.7561.75

Continued on the next page
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Table 4. Continued from previous page

№ Source z22 z1 EB F16 F256 RLGR EG EW e1 e2 e3 e4 e5 DD RLGR′ e10

43 1/Hair Dryer 11.47 7.03 18.60 5.025.02 7.017.01 0.010.01 6.226.22 5.855.85 5.115.11 4.924.92 4.924.92 5.815.81 5.805.80 6.056.05 6.736.73 7.27
44 1/Iron 2000 1428 3407 7.817.81 15.6815.68 1.001.00 14681468 15481548 14921492 16421642 16181618 16451645 1663 12431243 590.0590.0 11651165
45 1/Kettle 625.0 526.0 838.0 7.727.72 15.0615.06 0.200.20 391.1391.1 417.1417.1 513.0513.0 533.0533.0 528.0528.0 536.0 519.0519.0 493.1493.1 263.1263.1 495.1495.1
46 1/Laptop 3.61 3.04 3.25 1.921.92 2.032.03 1.651.65 1.491.49 1.491.49 1.921.92 2.022.02 2.012.01 2.022.02 1.951.95 1.971.97 2.022.02 2.13
47 1/Modem 8.64 5.15 12.25 3.923.92 4.974.97 4.884.88 4.464.46 4.134.13 4.254.25 3.953.95 3.953.95 4.324.32 4.344.34 4.374.37 4.714.71 5.00
48 1/Monitor 8.85 5.72 12.60 4.244.24 5.355.35 3.473.47 4.684.68 4.324.32 4.334.33 4.244.24 4.244.24 4.684.68 4.664.66 4.784.78 5.195.19 5.66
49 1/NILM LCD 6.05 4.26 6.12 2.722.72 3.103.10 3.143.14 2.602.60 2.332.33 3.053.05 2.962.96 2.962.96 2.902.90 2.872.87 2.862.86 3.093.09 3.18
50 1/Refrigerator 4.63 3.67 4.22 2.262.26 2.412.41 0.0010.001 1.901.90 1.781.78 2.492.49 2.462.46 2.462.46 2.502.50 2.442.44 2.382.38 2.552.55 2.65
51 1/Router 5.73 3.92 4.84 2.572.57 2.912.91 3.01 2.132.13 1.831.83 2.852.85 2.632.63 2.632.63 2.852.85 2.812.81 2.692.69 2.962.96 2.962.96
52 1/TV 38.17 28.82 52.36 6.696.69 11.0211.02 2.582.58 21.0421.04 18.8318.83 22.5022.50 21.1321.13 21.1021.10 23.1523.15 22.9022.90 22.3522.35 22.1022.10 24.96
53 1/Toaster 909.0 769.0 1305 7.807.80 15.2215.22 0.900.90 612.0612.0 648.0648.0 807.0807.0 858.0858.0 850.0850.0 861.0 832.0832.0 806.0806.0 351.1351.1 800.0800.0
54 1/Washing Machine 17.09 10.42 25.77 5.495.49 8.358.35 0.420.42 7.977.97 7.777.77 5.835.83 5.785.78 5.785.78 7.167.16 7.147.14 7.697.69 8.648.64 9.56
55 2/AC 9.07 7.40 10.46 3.543.54 4.154.15 0.170.17 4.794.79 4.764.76 6.256.25 6.396.39 6.326.32 6.426.42 6.156.15 6.146.14 5.595.59 6.58
56 2/Cablebox 7.14 4.78 7.64 3.063.06 3.563.56 3.613.61 3.113.11 2.792.79 3.523.52 3.283.28 3.283.28 3.303.30 3.273.27 3.273.27 3.543.54 3.64
57 2/Coffeemaker 9.78 6.02 15.11 4.384.38 5.735.73 0.0050.005 5.145.14 4.734.73 4.474.47 4.214.21 4.214.21 4.884.88 4.914.91 5.015.01 5.455.45 6.01
58 2/Floor Lamp 10000 10000 1.5e6 8.008.00 16.7016.70 7.2e57.2e5 9.4e59.4e5 1.1e6 9.9e59.9e5 9.9e59.9e5 9.9e59.9e5 1.0e61.0e6 1.0e61.0e6 1.1e61.1e6 6.0e56.0e5 8.8e58.8e5
59 2/Kitchen Light 8.08 5.10 2.04 1.061.06 1.081.08 1.53 0.970.97 1.101.10 1.491.49 1.501.50 1.501.50 1.481.48 1.401.40 1.481.48 1.521.52 1.53
60 2/Laptop 8.10 6.00 9.80 3.943.94 4.984.98 3.143.14 3.913.91 3.863.86 4.044.04 3.983.98 3.983.98 4.454.45 4.414.41 4.544.54 4.954.95 5.28
61 2/Microwave 8.49 5.63 12.55 4.234.23 5.375.37 2.952.95 4.734.73 4.394.39 4.644.64 4.354.35 4.354.35 4.854.85 4.794.79 4.884.88 5.435.43 5.59
62 2/Refrigerator 8.95 7.02 10.01 3.423.42 3.383.38 0.0090.009 4.544.54 4.304.30 5.935.93 5.925.92 5.885.88 6.046.04 5.875.87 5.705.70 5.055.05 6.24
63 2/Speaker 7.56 5.02 9.77 3.563.56 4.334.33 4.364.36 3.773.77 3.473.47 3.963.96 3.623.62 3.623.62 3.923.92 3.883.88 3.853.85 4.244.24 4.39
64 2/TV 14.10 8.70 14.44 4.814.81 6.33 3.103.10 5.215.21 4.614.61 5.025.02 4.604.60 4.604.60 5.405.40 5.405.40 5.235.23 5.675.67 5.995.99
65 2/Toaster 1428 1250 2202 7.857.85 15.6915.69 0.790.79 10351035 10961096 13071307 1426 14171417 14251425 13721372 13381338 549.0549.0 13291329
66 2/xbox 11.07 6.53 15.70 4.474.47 5.875.87 2.212.21 5.655.65 5.215.21 5.225.22 4.934.93 4.934.93 5.545.54 5.555.55 5.645.64 6.056.05 6.51
67 3/DishWasher 196.1 161.1 273.1 7.507.50 14.4414.44 1.481.48 127.0127.0 134.1134.1 172.1172.1 179.1 176.1176.1 179.1 172.1172.1 171.1171.1 142.1142.1 179.1
68 3/HairDryer 18.98 11.74 28.97 6.076.07 9.659.65 0.0040.004 9.029.02 8.698.69 6.596.59 6.516.51 6.516.51 8.038.03 8.038.03 8.658.65 9.489.48 10.23
69 3/Kettle 256.1 227.1 357.1 7.417.41 13.6813.68 0.070.07 163.1163.1 168.1168.1 196.1196.1 199.1199.1 198.1198.1 207.1 202.1202.1 189.1189.1 104.0104.0 196.1196.1
70 3/Laptop 17.54 14.58 22.51 5.375.37 7.707.70 8.758.75 9.939.93 9.369.36 12.0212.02 12.0812.08 12.0512.05 12.1812.18 11.9511.95 11.8611.86 12.2312.23 12.96
71 3/Microwave 8.73 5.33 14.95 4.394.39 5.695.69 0.240.24 5.155.15 4.784.78 4.514.51 4.264.26 4.264.26 4.914.91 4.924.92 5.045.04 5.515.51 5.99
72 3/Refrigerator 7.21 5.10 6.65 2.772.77 2.452.45 0.0070.007 3.013.01 2.872.87 3.933.93 3.943.94 3.913.91 4.014.01 3.903.90 3.813.81 3.333.33 4.15
73 3/Surface 10.48 6.22 16.74 4.764.76 6.276.27 5.795.79 5.645.64 5.325.32 4.684.68 4.544.54 4.544.54 5.365.36 5.355.35 5.565.56 6.026.02 6.70
74 3/TV 10.38 6.60 17.21 4.834.83 6.406.40 2.532.53 5.815.81 5.445.44 4.874.87 4.694.69 4.694.69 5.515.51 5.515.51 5.725.72 6.326.32 6.93
75 3/Toaster 434.1 357.1 615.0 7.607.60 14.3914.39 0.200.20 288.1288.1 303.1303.1 385.1385.1 406.1406.1 403.1403.1 408.1 391.1391.1 386.1386.1 197.1197.1 388.1388.1
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double h y s t e r e t i c _ f i l t e r ( double sample )
{

s t a t i c double prev = 0 ;
i f ( abs ( sample − prev ) > THRESHOLD) {

prev = sample ;
}
re turn prev ;

}

Figure 1. Hysteretic noise reduction. THRESHOLD=0.1 for sources
T , Tdp, THRESHOLD=1.0 for sources PA/B/C

1.2. Compression mode

Most1 algorithms are tested in streaming mode with output buffer
size Bout = 256 bytes. When the buffer fills up, the algorithm state is
re-initialized, all adaptation data gets lost. This reinitialization is necessary
to be able to uncompress the blocks independently.

With every compressed block, the first data point from its respective
uncompressed block (v0) is transmitted uncompressed, taking m bits in
binary coding. We take this into account when computing the compression
ratio.

1.3. Redundant resolution and noise reduction

Temperature and humidity data (T , Tdp) change slowly and ought
to compress well with RLE2 technique. As we will see below, the actual
compression ratio is not very good because of low amplitude higher
frequency noise mixed in the slow signal. The sources T , Tdp are logged
with fractional part of two decimal digits, which corresponds to the specified
resolution of the sensor: 0.01◦C [11]. But the specified repeatability of the
sensor, limited by the noise level of the underlying physical sensor, is only
0.1◦C. Consequently, storing data at maximum resolution is pointless. We
will lose nothing if we apply noise reduction before compression. To test the
effect of noise reduction on compression ratio, we include in the test routine
the results of noise reduction with a simple hysteretic algorithm shown on
Figure 1. The noise reduced sources bear the suffix -noise in Table 4.

1exceptions are noted in algorithm descriptions
2Run Length Encoding
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Applying noise reduction before compression looks like switching
from lossless to lossy compression, but it is not exactly the case. Lossy
compression drops signal details that do not fit the compression schema.
Noise reduction removes noise unrelated to measured physical parameter,
or redundant resolution actually provided by the sensor but unnecessary
in specific application, which results in improved compression with a lossless
compression algorithm.

2. Compression technique selection

Sensor data are “analog signal” type sources [12] for which LPC3

technique is a natural choice. This technique appears with variations in many
algorithms intended for data with significant autocorrelation [3,6,7,13–16].
Sensor data also fall into this category, if the sampling frequency is much
higher than the higher frequency in the signal spectrum. The technique can
be used in streaming mode and does not require considerable memory or
CPU resources.

LPC employs a predictor which provides a prognosis of the next data
value Evi based on k previous values:4

Evi = E(vi−k, . . . vi−1).

The algorithm calculates residual errors ri = vi − Evi , and replaces the
original sequence V = [v0 . . . vn] with V ′ = [v0, r1, . . . rn]. With sufficiently
good predictions, the average number of significant digits in ri is lower
than in vi, so encoding V ′ in a variable-length coding yields a compression
effect. For greater effect, the coding should use shorter codewords for
values of ri that occur more frequently.

The distribution of r is most often [7,15,16] modeled with Laplace
distribution

p(r) = L(0, b) = 1

2b
e−

|r|
b ,

where 2b2 is the variation. For a dataset with a Laplace distribution (also
called double exponential distribution), near optimal coding is achieved [18]
by Golomb-Rice coding [19,20], and indeed, the coding is often used
in digital audio compression algorithms. The prefix coding provides short

3Linear Predictive Coding
4k ∈ 0, 1, ... is termed prediction order [6]. In the special case of k = 1, E(vi) = vi−1

the technique is called delta-coding or differential coding [17]



42 YuryV. Shevchuk

codewords for small r values, and also allows to encode large r values with
no memory-consuming encoding table:

r ∈ [−2m . . . 2m],(1)

where m = max
i

⌈log2(vi)⌉is the ADC resolution.

Some authors use more powerful entropy coding techniques (namely,
arithmetic coding) for residual coding [5,16]. As the alphabet of all
possible r values is rather large, arithmetic coding is used only for a limited
range of most probable r values. The rest of r values are coded with
Golomb-Rice coding [16], or with fixed length binary coding [5]. We cannot
follow these examples as both arithmetic coding and optimal Golomb-Rice
coding require knowledge of data distribution which is unavailable to
a streaming coder.

A solution might be an adaptive algorithm where the algorithm state is
adapted after compressing every data point r. Adaptation rules in the coder
and decoder are identical, which removes the need to transfer a coding
table along with compressed data. Examples of adaptive algorithms are
adaptive Huffman coding [21], adaptive arithmetic coding [22], book stack
compression [23], adaptive Golomb-Rice coding RLGR [24]. The latter is
notable for its low memory footprint, so we will try to apply it to our task.

2.1. Prediction technique selection

We will use first-order linear prediction: E(vi) = vi−1 because of its
low memory and CPU requirements. Approaches to improve prediction do
exist: higher order linear prediction [25], context-based prediction [9,14],
neural networks [26,27]. We can turn to them in cases where data
characteristics are better known, and RAM and CPU resources are not so
scarce. In this article we will pursue V ′ coding techniques which yield
acceptable results even when prediction quality is not very good, and
require minimal RAM and CPU resources.

3. Testing known algorithms

3.1. Algorithms z22, z1

We include results of the popular zstd [28] compressor in the test
routine to get an idea of test data entropy. z1 stands for zstd -1 (the
minimum compression level), z22 stands for zstd –ultra -22 (the
maximum compression level). Data was fed to zstd in text form, one



Memory-efficient sensor data compression 43

sample per line, timestamp and decimal point removed. Compression ratio
was found from zstd output in verbose mode (option -v). Results achieved
by zstd are most often better than the results of streaming algorithms
below, because zstd uses RAM at will to implement powerful compression
algorithms, in particular LZ77[29] and ANS[30]. Besides, zstd compresses
the input stream as a whole, with no limitation of output buffer size Bout.

3.2. Algorithms F16, F256

These two tests use block mode compression algorithm FELACS [4] with
input block sizes of 16 and 256 bytes respectively. FELACS is closely based
on the algorithm designed by NASA for a compression chip [31], adapted
for software implementation by adding a heuristic method to choose
[nearly] optimal Golomb-Rice coding parameter k.

FELACS is not a steaming algorithm and as such does not fit the task
in hand. However, its results are interesting to compare with, as it is an
algorithm intended for sensor data and using modest resources. To get the
upper bound estimate of compression ratio, we test FELACS in the most
favorable conditions with no limitation of output buffer size Bout.

Note that FELACS does not feature RLE encoding mode, so on test data
with a large number of repetitions (rows №№ 44,45,53,58,65 in Table 4) its
results are comparatively low.

3.3. Algorithm RLGR

Algorithm RLGR [24] combines run length encoding (RLE) and
entropy coding with Golomb-Rice coding GR(k). Unlike FELACS, RLGR
is a streaming algorithm that could fit our task. RLGR is an adaptive
algorithm: the Golomb-Rice coding parameter k is changed after every
codeword so as to reduce the average codeword length when encoding
specific data stream V ′.

After encoding several r = 0 in series, the algorithm switches to “run
mode”, where every codeword representing ri ̸= 0 is preceded by a counter of
preceding zero r values. The run length counter is encoded in Golomb-Rice
code GR(k2), the parameter k2 being adapted independently of k.

The test results for RLGR are contradictory. For many data sources
the compression ratio is better than that of many other algorithms, but for
a number of sources the compression ratio is lower than 1, i.e. applying
RLGR results in expansion instead of compression. Using the coder
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Figure 2. Golomb-Rice GR(k) effectiveness

prototype rlgr.pl we can study5 the stream of codewords produced by
the coder and explain the effect. When processing a long sequence of small
r the adaptation rule reduces k to make GR(k) efficient for encoding small
numbers. If the sequence is followed by a large r, GR(k) with a small k
turns out very inefficient. For example, when encoding data source № 3,
at step i = 44 the number 1530 is encoded with GR(2), which results in
a “superlong” codeword of 385 bits:

bitlength(GR(x, k)) = ⌈ x

2k
⌉+ k

bitlength(GR(1530, 2)) = 385.

There are three reasons for this behavior.
(1) The algorithm works on the principle of “backward adaptation”:

the adaptation is based on already processed values in the hopes
that more similar values are ahead. There is no way to change k
explicitly when needed; the only available signaling from coder to
decoder to change k is by transmitting suboptimal codewords.

(2) Golomb-Rice is a linear coding (with k = const the codeword length
is proportional to the value encoded):

x > k : bitlength(GR(x, k))∼x

i.e. the cost of encoding large numbers with insufficiently large k
is very high (Figure 2). By contrast, in exponential codings the
number or representable values grows in geometric progression (cf.

5shell command: ./rlgr.pl -18 data/1/aem1-BWATT

https://github.com/yysizif/sencomp/blob/main/rlgr.pl
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Elias γ [32]), so encoding large values does not produce superlong
codewords:

bitlength(γ(x))∼ log2(x),

bitlength(γ(1530)) = 21.

(3) The rule of “upwards” adaptation is ki+1 = ki+(p+1)/4, where p > 1
is the length of the unary prefix in the suboptimal codeword GR(k)
just produced. In the example being studied, the rule yields k = 97 (!)
at step i = 45. Then the adaptation algorithm starts lowering k at
the rate of 0.5/step, which is rather slow, so optimal k = 8 is only
reached at step i = 222. The average codeword length in the interval
i ∈ {44, . . . , 222} equals 56, which is more than the bit length of
encoded numbers (Equation 1). Consequently, the compression ratio
in the interval is lower than 1: K = S0/Sc = (18 + 1)/56 = 0.34.
We see that on real sensor data the algorithm RLGR sometimes gets

into “tight places” and needs some adjustments to be usable for the task
in hand. Let us put it aside for a while and try to use exponential codings
instead of Golomb-Rice coding. We will return to RLGR in subsection 4.11.

This preliminary test is done without output buffer size limit (Bout).

4. Experimental algorithms design and testing

4.1. Algorithms EG and EW

Algorithm EG encodes values r in Elias γ coding (Appendix 1). After
encoding r = 0 (which corresponds to a perfect prediction), the algorithm
follows it with a repetition counter, also in Elias γ coding. This way, the
algorithm implements RLE mode.

Algorithm EW is similar to EG, except the coding employed is Elias ω.
Test results of the algorithms EG and EW (Table 4) are also similar,

neither is a definite leader. The results are much more consistent than those
shown by RLGR, but for some sources the compression ratio is low. As we
will see below, these sources have heavy distribution tails— a considerable
share of r : |r| ⩾ 128.

4.2. Exponential binary coding (expbinary)

To describe the following algorithms, we will need a coding that
we will call expbinary for lack of a better name. It is a variable length
coding without the prefix property6, so it is never used alone — always in

6∄A,B : Ax = B (no codeword A is a prefix of another codeword B)
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combination with some prefix code, and is seldom mentioned in literature.
In [18] it is mentioned under the name of B(n). It can be seen in the suffix
part of Elias γ or Elias ω which are exponential codings with prefix property.
The expbinary coding as well as Elias γ and Elias ω coding examples are
shown in Appendix 1.

In binary coding an n-bit word represents numbers in

[0 . . . 2n − 1], n ∈ 1, 2, . . ..(2)

In expbinary coding an n-bit word represents numbers in

[2n . . . 2n+1 − 1], n ∈ 0, 1, 2, . . ..(3)

One can note that
• codeword length in expbinary is one bit less than in binary:

bitlength(Cexpbinary(N)) = bitlength(Cbinary(N))− 1

• expbinary coding cannot encode zero (N = 0);
• empty (0-bit) codeword is in use: Cexpbinary(1) =empty ; this is

possible because expbinary codewords are always accompanied by a
kind of prefix.

To decode C = Cexpbinary(N) one needs to use the prefix to determine
the length of expbinary codeword n = bitlength(C), then find the start
of the value range for codeword length n: S = 2n, and finally calculate N :

N =

{︄
S + C, n > 0,

0, n = 0,

where C is interpreted as an n-bit number in binary coding.

4.3. Algorithm EB

The test is intended to obtain an upper-bound compression ratio
estimate when coding V ′ with a variable length coding based on expbinary.
The algorithm encodes ri in expbinary and outputs without prefixes that
would be necessary for the decoder to split the stream into codewords, i.e.
decoding is impossible. Results of the test are painted gray in Table 4
to show they are hors concours.

The results are better than the results of EG and EW by a factor of ∼ 2.
Hence we can hope to improve the results of EG and EW if we find a more
suitable prefix coding schema than that used in Elias γ and Elias ω codings.
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4.4. Distribution of delta-coded data

The residual distribution p(r) is usually modeled with the Laplace
distribution but does not necessarily fit the model well. Figure 3 shows
both the best case (a) ri ≡ 0 with the distribution p(0) = 1 and the
worst case (b) in which vi ie random data with uniform distribution. The
best case occurs when the predictor works perfectly; for the simplest
delta-predictor, this happens only on constant data vi ≡ const. In the
worst case p(r) has the form of an equicrural triangle.

Consider the distributions of the datasets used in the tests. For the
purpose of coding technique selection it is convenient to consider not
the probability density function p(r) but the discrete distribution of
an auxiliary function p(W (r)), where

W (r) =


bitlength(Cexpbinary(r)) + 1, r > 0

0, r = 0

−bitlength(Cexpbinary(−r))− 1, r < 0

and wi = |W (ri)| − 1 is the number of bits necessary to represent ri
in expbinary. W (r) is negative for negative r to make the distribution
asymmetry observable. W (0) = 0 appears when vi = vi−1 and indicates an
opportunity for RLE.

By comparing the distributions on Figure 4, we can observe that:
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Figure 4. Distribution of W (r) for different sources

• delta coding does cope with the task of bit width reduction for all
datasets considered, despite prediction quality being far from perfect.
With a perfect predictor, the distribution would be a single peak:
p(W (0)) = 1;

• the source Pa, for which EG and EW show the worst results, has
a considerable (up to 40%) share of large values requiring 8–9 bits to
code in expbinary, apparently because delta-coding is not a good
predictor for the dataset. Encoding the values in Elias γ results
in codewors with 9–10 bit prefix, the total codeword length being
18–20 bits, hence the low compression ratio;

• range of W (r) and distribution modes vary from source to source
as well as from period to period. Hence, neither Elias γ nor any
other fixed coding schema will be good for all datasets; the coding
schema has to be adaptive;

• there is a slight asymmetry in distributions for positive and negative
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r which reflects a difference of rise and fall rates in the original
sequence V .

4.5. e1: dynamic prefixes with “book stack” algorithm

The alphabet of prefixes needed to support encoding V ′ in expbinary is
rather small: [−m,m] at worst (Equation 1), much less actually (Figure 4b).
For a small alphabet, we can implement dynamic encoding with little
resources using the “book stack” technique7 [23].

Algorithm e1 uses W (r) for prefixes, i.e. a prefix specifies the bit
length and the sign of the value encoded in expbinary that follows the prefix.
To encode prefixes dynamically, the algorithm uses a data structure similar
to a book stack; book titles correspond to encoded prefix values (W (r)).
Initially the book stack is empty, its height h = 0. Encoding a residual ri
goes as follows:

• w = W (ri) is computed and looked up in the stack with downward
linear search: j ∈ [0 . . . h− 1];
– if the book w is found in the stack at depth j, the prefix is

encoded as Cp(j), and the book w is moved to the top of the
stack, its index becoming j = 0;

– otherwise (the book w is not found in the stack), the prefix is
encoded in two codewords: Cp(h), Cn(w), and the book w is
added at the top of the stack. The stack height h is thus increased
by 1.

• if ri ̸= 0, the value codeword is sent: Cexpbinary(ri), the length
of the codeword is |w|;

• otherwise ({ri, . . .ri+R−1} = {0 . . . 0}), the codeword Cr(R) is sent,
where R ∈ 0, 1, . . . is the run length.

Here Cp(j) is a variable length coding used for prefix encoding, such as
unary or Golomb-Rice codings. The best results have been obtained with
vbinary2x1x [34] coding, where the first three codewords have the same
length of 2 bits (Appendix 1). A variable length coding Cr(x) is used for
run length encoding; the best results have been obtained with Elias ω
coding.

The results shown by e1 are indeed better for data sources where EW
and EG were weak, especially for № 59. However, for a number of sources,
e1 is weaker than F256 and RLGR.

7also known as Move-to-front transform [33]
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The possible reason for the weakness is the decision to move ri sign
info to prefixes in the hopes of benefiting from distribution asymmetry.
This way, we encode |ri|, not ri in expbinary, which reduces the length
of all expbinary codewords by 1 bit. This could be beneficial on monotonic
ranges of V ′. But the number of prefixes in use (the book stack height h)
is increased by a factor of two, so we need high locality (the use of prefixes
near the top of the stack) to achieve the benefit. Otherwise, the losses from
increased prefix codeword lengths will outweigh the gains.

4.6. Algorithm e2: sign in expbinary part

Algorithm e2 differs from e1 only by moving the sign from prefixes
back to the expbinary part. Now prefixes are computed as w = |W (ri)|, the
number of different prefixes in use is reduced by factor of two. In tests
without Bout limitation (not included in Table 4) e2 outperforms e1 for all
data sources, but with Bout = 256 limitation, e2 is often weaker than e1.

4.7. Algorithm e3: limiting the stack height

In the naive book stack implementation, the “move-to-front” operation
is relatively expensive. The operation is executed once for every ri, i.e.
frequently. With 10–20 different prefixes in use, the stack has to be
implemented in memory, e.g. as an array; moving a book from position j to
the top requires a shift (sequential copying) of array elements from 0 to j
to free the place at the top.

If we limit the stack height by a small value, like hmax = 5, we can
implement the stack as a 32-bit integer. The operations on the stack on
32/64-bit processors can be implemented very efficiently in the spirit
of SWAR algorithms [35]. Shifting the book stack becomes a bitwise shift
instead of memory copying. Naturally, limiting the height implies more
“missed” cases which will have to be handled as a “new prefix”. We will
minimize the codeword length of the “new prefix” case by coding it as j = 0
instead of j = h used in the original book stack technique.

It is also likely that a book found deep in a high book stack will be
not better but even worse than a book from the shelf, as for large j the
codeword Cp(j) might be longer than the “new prefix” codeword pair
Cp(0), Cn(w).

Test results in Table 4 of e3 as compared to e2 have a slightly worse
compression ratio for 31 sources of 75, with no change for 44 sources.
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4.8. Algorithm e4: slower adaptation

Let us try to improve compression by slowing down the adaptation. Do
not move the book to the top after use (giving it the shortest prefix at
once, taking it from the current favorite), move the book up only by one
position, similar to what bubble sort does.

Test results of e4 in Table 4 as compared to e3 are better for 59
sources out of 75, and worse for 16 sources.

Test results of e4 as compared to e1 are better for 50 sources, worse
for 21 sources, no change for 4 sources.

4.9. Algorithm e5: multiple book stacks

Limiting the book stack height has increased the number of “new prefix”
cases because when adding a new book to the stack we have to remove
a book to make space (subsection 4.7). We can try to decrease the number
of “new prefix” cases using multiple low-height book stacks. Organize the
coder as a Moore finite state machine with the number of states equal
to the number of used prefixes Nw. After handling ri, the coder enters the
state w = wi and stays there while handling ri+1. There is a separate book
stack in each state; the coder uses the current state book stack to map
wi+1→ji+1, then goes to state wi+1. If the input data is such that not all
state transitions are equiprobable, there is a hope that the book stack
of every state will contain the books needed in that state.

Algorithm e5 requires slightly more RAM than its predecessors as it
needs to store multiple book stacks

M∼⌈log2(Nw)⌉hmax.

E.g. if the number of states Nw = 16 and every book stack is represented
by a 32-bit number (hmax ≤ 8), M = 64 bytes of RAM will be needed.
Halfway implementations are also possible, with the number of book stacks
Ns < Nw, where the state number is hashed to choose the book stack
to use in the state.

In a preliminary test without Bout limitation which is not included in
Table 4, algorithm e5 was better than e4 for 26 sources of 75, insignificantly
worse for 9 sources (№ 26, 28, 36, 38, 42, 45, 50, 69, 75), and the same for
1 source. However results of the test with Bout = 256 bytes, shown in
Table 4, are very different: e5 is better than e4 for 16 sources, worse for 58
sources, and no change for 1 source. Overall, the effect from multiple book
stacks was lower than expected, and even negative in Bout = 256 mode
that is needed for our task.
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0 Cbinary(w, ri)

ri in binary of w bits

1 Cc(0) Cr(R)

“run” of zeroes {ri . . . ri+R−1} = {0 . . . 0}

1 Cc(∆w)

signal to increase w by ∆w bits

Figure 5. Codewords used by algorithm DD. Cc — control
coding (vbinary2x), Cr — coding for RLE counter R (Elias ω)

4.10. Algorithm DD: “dynamic delta”

Let us try a different approach based on the idea from [3]: encode ri
not with a variable-length prefix coding, but with binary coding of fixed
length w which can be changed when necessary by transmitting an escape
codeword. The algorithm in [3] is not specified exactly; we will implement
the idea in adaptive style, without accumulating blocks of uncompressed
data to choose w per block.

The coder converts the sequence V ′ into a sequence of codewords
shown at Figure 5. No signal to decrease w is provided; instead, the
decrease is performed automatically after each step:

wi+1 =

{︄
wi − d wi > 1,

wi wi = 1,

where d and w0 are the algorithm parameters. The best results in the tests
are obtained with d = 0.5, w0 = 7.

Algorithm DD loses to e1 ...e5 in binary part coding efficiency because
of insignificant leading zeroes it has to transfer when encoding r < 2w−1.
But it gains in efficiency of prefix encoding when a significant part of data
is transferred with a minimal one-bit prefix.

Test results of algorithm DD shown in Table 4 are mostly worse than
those of predecessors, but they are consistent and unexpectedly good for
an algorithm so simple.

4.11. Algorithm RLGR′: RLGR with Bout = 256

Let us return to the algorithm RLGR (subsection 3.3) and test it with
output buffer limitation: Bout = 256 bytes. For the test to pass, a small
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parameter correction was needed as the original RLGR starts with k = 2 and
for 10 sources (№№ 2, 3, 4, 18, 19, 20, 30, 32, 34, 43 in Table 4) crashes,
unable to handle a large r soon after the start:

⌈bitlength(GR(r, k))/8⌉ > Bout.

The correction is to start with k = 10; then the test RLGR′ does pass and
(surprise!) the results show no inconsistencies that we saw in the test RLGR.
Why?

The algorithm still gets into “tight places”, but the consequences
of that are limited by the space available in the current output buffer. Once
in a “tight place”, the algorithm quickly uses up the space in the current
output block and switches to a new block — which involves algorithm
re-initialization and thereby automatic escape from the “tight place”. This
pop-up solution is hard to call elegant, and its efficiency decreases for larger
Bout. Nevertheless, the test has passed and demonstrated an improvement
for 42 sources as compared to e4. This means we can learn from RLGR.
(1) Adaptive Golomb-Rice coding turns out more efficient than expo-

nential codings (Elias γ, Elias ω) which contain full suffix length
information in the prefix. Dynamic prefix coding in algorithms
e1. . . e5 is akin to adapting k in RLGR, and yields a comparable
effect.

(2) “run”—“no run” mode switching improves compression for data with
few runs, which are much less compressible (sources №№ 1, 2, 15,
16, 29, 30 in Table 4). At the same time, for sources with sparse
values among runs (№№ 36, 38, 40, 42) RLGR’ also outperforms the
nearest competitors by 14–36%.

(3) Run length encoding in RLGR is defined algorithmically [24]; essentially
the length is also encoded in adaptive Golomb-Rice coding GR(k2),
but with an interesting quirk: the adaptation procedure for k2 is
called not after the codeword generation, but after outputting every
bit of the prefix. This way, when encoding large R with small k2,
the adaptation of k2 occurs in the middle of codeword generation.
This improves efficiency of encoding large R with small k2 at the
cost of extra CPU usage, but does not help in the case of small
R with large k2. A large R after a long silence will be encoded
efficiently, but then the algorithm will needlessly stay in “run mode”
for a long time while k2 slowly adapts down to zero.

(4) The “backward adaptation” principle works well for fine k adjustments,
but cannot prevent generating “superlong” codewords for large
r when k is small. It could be solved by introducing a signaling
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“no run” mode

Cd(fimap(ri))

encoded ri

Cd(ESC) Ce(∆k)

signal to increase k in Cd(k) by ∆k

Cd(ESC2) Cr(R)

“run” {ri . . . ri+R−1} = {0 . . . 0} and switching to “run” mode

“run” mode

Cr(R) Cd(fimap(ri+R))

“run” {ri . . . ri+R−1} = {0 . . . 0},
then encoded ri+R

Cr(R) Cd(ESC) Ce(∆k) Cd(fimap(ri+R))

“run” {ri . . . ri+R−1} = {0 . . . 0},
then a signal to increase k in Cd(k) by ∆k,
then encoded ri+R

Figure 6. Codewords used by algorithm e10. Cd — data
coding (GR(k)), Cr — coding for RLE counter R (Elias ω), Ce

— escape increment coding (vbinary2x(1,2,3x))

method for increasing k instantly before encoding a sudden large r.
With such a method in hand, we can dispose of the doubtful rule
of quick upward adaptation which is the source of the “tight place”
problem in RLGR.

4.12. Algorithm e10

Algorithm e10 is the final in a series of experimental algorithms derived
from RLGR. Like RLGR, e10 has “run” and “no run” modes, and switches
between them using a backward adaptation rule. The list of codewords
used by e10 is shown at Figure 6.

Residuals r are encoded in Golomb-Rice coding

Cd(r) = GR(fimap(r), k).

Parameter k adapts slowly, synchronously in coder and decoder. The
function fimap maps the set of r (integers) to the domain of GR (non-
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negative integers), and also reserves two ESC-values for signaling. Signaling
is not expected to be used frequently, therefore the codewords allocated for
ESC-values are not the shortest codewords available.

When r is too large to be [nearly] optimally encoded with current k,
the coder sends the signal ESC to increase k to kopt = ⌈log2(fimap(r)/2)⌉,
followed by optimally encoded r: Cd(r) = GR(fimap(r), kopt). The
algorithm continues with k = kopt, following the usual backward adaptation
rule. The condition “too large” is examined only in the coder and can be
varied for implementation convenience without changes to the decoder.

When a “run” {ri. . .ri+R−1} = {0 . . . 0} is encountered by the coder,
the coder can do either of:
(1) encode the run verbatim {Cd(ri). . .Cd(ri+R−1)}. This variant can

be better when R is small;
(2) send the mode switch signal ESC2, then the encoded run length

Cr(R), where Cr is a coding suitable to encode arbitrary non-negative
integers. Then the algorithm switches to “run” mode.
In “run” mode, every Cd(ri, k) is preceded by a counter of zero r values

that precede ri, encoded in Cr (subsubsection 4.12.2). The counter can be
0 if there was no preceding run. The algorithm returns to “no run” mode
(synchronously in both coder and decoder) if there were no preceding runs
for T = 4 subsequent r values.

For the coding Ce used for encoding ∆k, the best results were obtained
with vbinary2x(1,2,3x) (Appendix 1).

4.12.1. Adaptation in e10

The condition of Golomb-Rice coding optimality [36] can be rewritten
as ⌊2k−1⌋ ⩽ r < 2k+1 + 2k. When the condition is true, the length of the
codeword GR(r, k) is minimal.

The adaptation algorithm for Cd coding changes k as follows:8

ki+1 =


ki, ⌊2k⌋ ⩽ r < 2k+1 + 2k

ki + 0.75, r ⩾ 2k+1 + 2k

ki − 0.25, r < ⌊2k⌋

As we already have seen on Figure 2, the rate of upward adaptation
is higher than the rate of downward adaptation because the efficiency
of Golomb-Rice coding with k > kopt does not suffer as much as it does
with k < kopt.

8calculations yield fractional values that will be rounded down before use: GR(r, ⌊k⌋)
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Figure 7. Comparative efficiency of RLE counter candidate
codings for algorithm e10

4.12.2. Choosing coding for RLE counter in e10

We will look for Cr such that Cr(R = 0) = min = 1 to minimize the
overhead of being in “run” mode for ri not preceded by runs.

Another requirement for Cr is to encode a large range of values
efficiently, say [0, 106], so Golomb-Rice codes are not suitable. The
candidates considered were exponential codings Elias γ and Elias ω.
The choice falls on Elias γ because it has better efficiency for lower R:
R ∈ {4, . . . , 7} ∪ {16, . . . , 63}). Elias ω coding is better than Elias γ for
R ⩾ 128 (Figure 7), but it does not matter as RLE with big length yields
compression by orders of magnitude better than is in principle possible
in entropy encoding mode, with either of the codings. Thus, Elias γ gives
slightly better result consistency.

4.12.3. Final notes on algorithm e10

Algorithm e10 is safe from the “tight places” of RLGR thanks to the
method of instant upward adaptation with ESC signaling. There is no
method for instant downward adaptation because coding unexpected
small r with large k does not result in superlong codewords: for r < 2k

bitlength(GR(r, k)) = k + 1.
Using exponential coding for run lengths and the short timeout for

“run” mode in the absence of runs provide for efficient coding in the case
of infrequent long runs. Encoding short runs with exponential Cr could be
less efficient than with adaptive Golomb-Rice used by RLGR, but this effect
did not show up for test data. The compression ratio for runs in “run”
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mode will not be worse than

K = S0/Sc = mR/(G+ bitlength(γ(R+ 1))),

where G < T is the number of steps with R = 0 between steps with R > 0.
In the worst case of short runs (R = 1) with small input data width m = 8

and G = T − 1 = 3 steps we will get K = 8/(3 + 3) = 1.25.
Test results of e10 as compared to RLGR′ are better for 69 of 75 sources,

worse for 5 sources, and the same for 1 source.
Test results of e10 as compared to e4 are better for 64 sources, worse

for 10 sources, and the same for 1 source.

4.13. Algorithm comparison criterion

Comparing the algorithms directly by data from Table 4 is awkward as
every algorithm’s performance is represented by a vector of 75 values.
А term-by-term vector comparison is only applicable in rare cases where
algorithm A is better than algorithm B for every source. To range
algorithms by merit, we need a scalar metric calculated from the vector.

Table 5 shows common distribution metrics calculated from vectors
for each algorithm: minimum minK, maximum maxK, arithmetic
mean avgK, and median medK. The need to estimate the maximum
communication delay that a sensor node can tolerate given the number of
data sources and compression ratio for each source requires each algorithm
to be attributed with its mean compression ratio. However, arithmetic mean
it not good for this role as it is strongly affected by large maximum values
present in current experimental data. The median is insensitive to large
maximum values but can be far from the mean for skewed distributions.

The desired mean is given by

K =

∑︁n
i=1 S0i∑︁n
i=1 Sci

,

where S0i is a size of uncompressed data received from source i Sci is a size
of data received from source i after compression, n is the number of sources
in the mix. The vector (S01, . . . , S0n) gives relative source intensity (size
of data sample and sampling frequency).

By compression ratio definition,

Sci = S0i/Kij ,
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Table 5. Algorithm comparison metrics. Rows sorted by
harmonic mean H(K) descending

Background color: hors concours best in column worst in columnworst in column

Algorithm minK maxK avgK medK H(K)

z22 3.61 10000 218.1 6.85 6.98
z1 3.04 10000 201.1 4.96 5.15

e10 1.53 8.8e58.8e5 1181711817 4.19 3.79

e4 1.481.48 1.0e61.0e6 1374813748 3.953.95 3.543.54
RLGR′ 1.521.52 6.0e56.0e5 80368036 3.853.85 3.483.48

e5 1.401.40 1.0e61.0e6 1374713747 3.893.89 3.483.48
e1 1.431.43 9.9e59.9e5 1326313263 3.953.95 3.463.46
DD 1.461.46 1.1e61.1e6 1425614256 3.823.82 3.453.45
e2 1.501.50 9.9e59.9e5 1326813268 3.683.68 3.433.43
e3 1.501.50 9.9e59.9e5 1326713267 3.683.68 3.423.42
EG 0.970.97 9.4e59.4e5 1259312593 3.193.19 2.922.92

F256 1.081.08 16.7016.70 4.1004.100 2.912.91 2.922.92
EW 1.101.10 1.1e6 14807 2.912.91 2.822.82

F16 1.061.06 8.008.00 3.553.55 2.642.64 2.642.64
RLGR 0.0010.001 7.2e57.2e5 96469646 2.252.25 0.040.04

where Kij—compression ration for source i by algorithm j (data from
Table 4). Consequently,

Kj =

∑︁n
i=1 S0i∑︁n

i=1 S0i/Kij
.

Source intensity data are only available when considering specific
applications; for general algorithm comparison we will assume equal
intensity (equal data volume from each source)

S01 = S02 = · · · = S0n.

Then

Kj =

∑︁n
i=1 S01∑︁n

i=1 S01/Kij
=

∑︁n
i=1 1∑︁n

i=1 1/Kij
,

which matches the well-known harmonic mean formula:

H(x1, . . . , xn) =
n

1/x1 + · · ·+ 1/xn
.

Harmonic mean values for data mix of all 75 test data sources are
shown in the column H(K) of Table 5. We adopt harmonic mean as the
main algorithm comparison criterion.
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5. Conclusion

We have empirically treated a number of known and experimental
scalar sensor data compression algorithms, using small amounts of RAM
and working in streaming mode with no uncompressed data buffering. All
algorithms are based on differential coding, which is the simplest form of
classical linear predictive coding (LPC); the article deals with techniques
for efficient residual coding. We evaluated encoding residuals using variable
length codes with dynamic prefixes obtained by MTF transform, adaptive
width binary coding, adaptive Golomb-Rice coding. The evaluation used
datasets from 75 real-world sensor data sources. The best compression
ratios achieved are about 1.5/4/1000000 (min/median/max) with RAM
usage of 256 bytes for the output compressed data buffer, and about 10
bytes for the algorithm state. The large maximum compression ratios are
achieved for constant data sources thanks to the streaming compression
mode.

We have observed that the compression ratio for slowly changing data
can suffer from small amplitude random noise that inhibits the use of
the efficient RLE compression mode. Applying a simple hysteretic noise
reduction algorithm prior to compression improved the compression ratio
for these sources by a factor of 11–20. Applying noise reduction to quickly
changing data did not improve compression.

By compression ratio comparison, the best candidates for practical use
are the algorithms e10 (best compression) and e4 (simpler to implement).
Algorithms are primarily intended for use in sensor network nodes, but can
also be useful in other cases where a compression algorithm with small
RAM usage is needed, e.g. on a server receiving sensor data from a very
large number of sources.

Test datasets used in the article, coder prototypes and the test
framework are freely available (https://github.com/yysizif/sencomp ).

Author is grateful to editorial staff of “Program Systems: Theory
and Applications” and personally to Prof. S. V. Znamensky for insightful
comments that enabled significant improvement of section 4.13.

https://github.com/yysizif/sencomp
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Appendix 1. Codings used in the article

dec binary expbinary Elias γ Elias ω GR(3) vbinary2x vbinary2x1x vbinary2x(1,2,3x)
0 0 — — — 0000 00 00 00
1 1 пусто 1 0 0001 01 01 010
2 10 0 010 10 0 0010 10 10 011
3 11 1 011 11 0 0011 1100 110 1000

4 100 00 00100 101 00 0 0100 1101 1110 1001
5 101 01 00101 101 01 0 0101 1110 11110 1010
6 110 10 00110 101 10 0 0110 111100 111110 1011
7 111 11 00111 101 11 0 0111 111101 1111110 11000

8 1000 000 0001000 111 000 0 10000 111110 11111110 11001
9 1001 001 0001001 111 001 0 10001 11111100 111111110 11010

10 1010 010 0001010 111 010 0 10010 11111101 <10 bits> 11011
11 1011 011 0001011 111 011 0 10011 11111110 <11 bits> 11100

12 1100 100 0001100 111 100 0 10100 <10 bits> <12 bits> 111010
13 1101 101 0001101 111 101 0 10101 <10 bits> <13 bits> 111011
14 1110 110 0001110 111 110 0 10110 <10 bits> <14 bits> 1111000
15 1111 111 0001111 111 111 0 10111 <12 bits> <15 bits> 1111001

16 10000 0000 000010000 101001 0000 0 110000 <12 bits> <16 bits> 1111010
17 10001 0001 000010001 101001 0001 0 110001 <12 bits> <17 bits> 1111011
18 10010 0010 000010010 101001 0010 0 110010 <14 bits> <18 bits> 11111000
19 10011 0011 000010011 101001 0011 0 110011 <14 bits> <19 bits> 11111001

20 10100 0100 000010100 101001 0100 0 110100 <14 bits> <20 bits> 11111010
21 10101 0101 000010101 101001 0101 0 110101 <16 bits> <21 bits> 11111011
22 10110 0110 000010110 101001 0110 0 110110 <16 bits> <22 bits> 11111100
23 10111 0111 000010111 101001 0111 0 110111 <16 bits> <23 bits> 111111010

24 11000 1000 000011000 101001 1000 0 1110000 <18 bits> <24 bits> 111111011
25 11001 1001 000011001 101001 1001 0 1110001 <18 bits> <25 bits> 1111111000

. . . . . . . . . . . . . . . . . . . . . . . . . . .
100 1100100 100101 0000001100100 10110 1100100 0 <16 bits> <68 bits> <100 bits> <30 bits>
101 1100101 100110 0000001100101 10110 1100101 0 <16 bits> <68 bits> <101 bits> <30 bits>
102 1100110 100111 0000001100110 10110 1100110 0 <16 bits> <70 bits> <101 bits> <31 bits>
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1000 1111101000 111101001 0000000001111101000 111001 1111101000 0 <129 bits> <668 bits> <1001 bits> <275 bits>
1001 1111101001 111101010 0000000001111101001 111001 1111101001 0 <129 bits> <668 bits> <1002 bits> <275 bits>
1002 1111101010 111101011 0000000001111101010 111001 1111101010 0 <129 bits> <670 bits> <1003 bits> <276 bits>

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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