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Abstract. Using the integral-equation-based in-house guaranteed-convergence
numerical code, we study the effect of a circular air hole on the frequency,
threshold gain and directionality of emission of the whispering-gallery modes of a
two-dimensional model of circular-disk microcavity laser. It is shown that a small
hole can enhance the directionality greatly and leave the threshold gain intact, if
the disk‘s refractive index is large enough and the hole‘s location is chosen
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form of a hot spot called a photonic jet.
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Introduction

In the visible and infrared light ranges, dielectric microsize scatterers
represent examples of scatterers with configurations exhibiting both
geometric-optical (beam-like) and mode effects. The best known such
scatterers are lenses of various shapes. In particular, a circular-cylindrical
rod and a spherical dielectric particle can concentrate a field of an incident
plane wave into a narrow elongated focal spot, usually called a Photonic
Jet (PJ) [1,2], on the shadow side. Similarly to any focusing effect, PJ
is broadband (i.e. not resonant) and has a geometric-optical origin [3].
Moreover, if the frequency or radius of a sphere or rod increases, the PJ
region decreases, while the maximum field amplitude in this region linearly
increases. However, in addition to the PJ effect, in confined dielectric
structures eigenmode resonances are usually easy to notice. In particular,
circular dielectric rods and spheres are known to support whispering gallery
(WG) modes, which have ultra-high Q-factors that grow exponentially with
the mode azimuthal index and radius. When a WG mode is excited by
a plane wave, the near-field diagram exhibits azimuthally periodic hot
spots along the cavity rim, in addition to the focal region of PJ. Therefore,
WG modes corrupt the focus at discrete frequencies.

According to the reciprocity theorem of the electromagnetic field
theory, if a point source is placed at the point of maximum field amplitude
of PJ, “the inverse PJ effect” can take place. This implies that in a
direction opposite to the direction of the plane wave propagation in the
scattering configuration, an intense lobe of radiation arises [4,5]. This
“inverse” effect is also broadband, and the said intense radiation lobe
is sharpened, if the optical size of the scatterer increases. At discrete
frequencies, however, the beam collimation effect is destroyed by the
excitation of WG modes. This occurs because of many equally intense
lobes flaring out in the far-field diagram.

It is known that the PJ appears outside the circular scatterer, if the
refractive index ν value is smaller than 2. In the opposite case, when ν

is large enough, the focal region shifts inside the scatterer [1–3]. This
observation suggests that placing small scatterers in the maximum field
of the focal region of a high refractive index microdisk laser can be used to
enhance the directivity of radiation of WG modes.



Modeling of unidirectional radiation 141

Thin circular microdisk lasers mounted on a pedestal or lying on a
low-index substrate are known as microdimensional sources because of their
ultra-low WG mode thresholds [6]. They are usually made of high-index
materials such as GaAs (ν = 3.4). However, their directivity is low because
of the large number (twice the azimuthal mode index) of identical lobes
in the far-field diagram. This disadvantage of circular microdisk lasers
prompted a search for the best shape possible. Among the most promising
shapes considered were limacon, serpentine and spiral [7–9]. To date,
there is a consensus that deviations from the circular shape should not
be significant so as not to kill the high Q-factors of WG modes. In this
sense, a sharp step on the rim of the spiral cavity kills the Q-factor, which
outweighs the improvement in directivity. Nevertheless, it should be
emphasized that almost all publications (with the exception of the snake
shape case [8]), devoted to the optimal shape search, were based on the
analysis of modes in the passive resonator, for which the presence of the
active region was ignored.

In the present paper, we are interested in controlling the character-
istics of WG modes with the use of a small circular hole. We expect
that the hole can improve the directivity of WG modes and keep the
generation thresholds low, as it was first proposed in [10]. Our robust
computational tool is a set of Muller boundary integral equations (BIE)
in a two-dimensional microcavity laser model, whose geometry is shown
in Figure 1. It is considered in the framework of the Lasing Eigenvalue
Problem (LEP) proposed for dielectric cavities with active material
without loss elements [11], as well as with loss elements [12]. In the
LEP framework, the eigenvalues are modified in such a way that each
represents a pair of real numbers being, respectively, the frequency and
threshold of radiation generation. Using Galerkin’s discretization method
with a trigonometric basis for Muller’s BIE [13] and considering the
presence of a symmetry line [14], we obtain an algebraic eigenvalue problem.
The convergence of this numerical method with respect to the matrix
truncation number is fully justified mathematically, see [15]; the details
of the algorithm are presented in [16,17].

Preliminary results, significantly more fully disclosed in this paper,
were reported at a scientific conference and published in its proceedings
[18].
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Figure 1. Geometry of a two-dimensional circular dielectric
microresonator with a hole

1. Eigenvalue Problem for a Microresonator with a Hole

Following [8], let us formulate the eigenvalue problem for a two-
dimensional dielectric circular microresonator with a hole. Let the refractive
index in the region Ω1 (see Figure 1) bounded by the contour Γ1 be known
and positive, which we denote by νo > 0. Let the resonator region Ω2 be the
active region bounded by contours Γ1 and Γ2. The refractive index in the
active region is νi = αi − iγ, where αi > 0, γ > 0 is the threshold gain.
The refractive index of the outer unbounded region Ω3 = R2 \ Ω1 ∪ Ω2 is
equal to the refractive index of the environment νo > 0.

We assume that the boundaries Γ1 and Γ2 are two continuously
differentiable closed curves not touching each other. We denote the unit
vector of the external normal to the boundary Γi by ni, i = 1, 2. Next,
we denote by the symbol U the space of all complex-valued functions
continuous in Ω1, Ω2 and Ω3, and twice continuous differentiable in the
open regions Ω1, Ω2 and Ω3.

Let the value of the parameter γ > 0 be fixed. The nonzero func-
tion u ∈ U will be called the eigenfunction of the problem corresponding
to the eigenvalue k > 0, if one satisfies the following relations, which
include the Helmholtz equations:

∆u+ k2ou = 0, x ∈ Ω1(1)

∆u+ k2i u = 0, x ∈ Ω2,(2)
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∆u+ k2ou = 0, x ∈ Ω3,(3)

conjugation conditions:

u− = u+, ηo
∂u−

∂n1
= ηi

∂u+

∂n1
, x ∈ Γ1,(4)

u− = u+, ηi
∂u−

∂n2
= ηo

∂u+

∂n2
, x ∈ Γ2,(5)

and the Sommerfeld radiation condition:(︂ ∂

∂ρ
− iko

)︂
u = o

(︂ 1
√
ρ

)︂
, ρ → ∞.(6)

Here kj = kνj is the wave number in the corresponding region; ηj = ν−2
j

in the case of H-polarization and ηj = 1 in the case of E-polarization;
j = i, o; u−(u+) are the limit values of the function u from inside (outside)
the contour Γi; i = 1, 2.

Following [19], p. 68, we assume that the limit values of the (proper)
normal derivative

∂u±

∂ni
(x) = lim

h→+0
(ni(x), gradu(x± hn(x))), x ∈ Γi, i = 1, 2,(7)

exist uniformly along x on Γi, i = 1, 2.

We will search for nontrivial solutions of the problem (1)–(6) in the space
of complex-valued functions U . At a fixed value of the parameter γ > 0, the
nonzero function u satisfying the Sommerfeld radiation condition will be
called the eigenfunction of the eigenvalue problem for a circular dielectric
microresonator with a hole, corresponding to the eigenvalue κ > 0, if the
conditions (1)–(5) are satisfied.

2. System of Muller Boundary Integral Equations

Let us fix some value of the parameter γ > 0. If u is an eigenfunc-
tion of the problem (1)–(6) corresponding to the eigenvalue k then, as
proved in [16], the following integral representations are valid:

(8) u = −
∫︂
Γ1

(︂∂Go(k;x, y)

∂n1(y)
u−(y)−

−Go(k;x, y)
∂u−(y)

∂n1(y)

)︂
dl(y), x ∈ Ω1,
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(9) u =

∫︂
Γ1

(︂∂Gi(k, γ;x, y)

∂n1(y)
u+(y)−Gi(k, γ;x, y)

∂u+(y)

∂n1(y)

)︂
dl(y)−

−
∫︂
Γ2

(︂∂Gi(k, γ;x, y)

∂n2(y)
u−(y)−Gi(k, γ;x, y)

∂u−(y)

∂n2(y)

)︂
dl(y), x ∈ Ω2,

u =

∫︂
Γ2

(︂∂Go(k;x, y)

∂n2(y)
u+(y)−Go(k;x, y)

∂u+(y)

∂n2(y)

)︂
dl(y), x ∈ Ω3,(10)

where Gj(x, y) = (i/4)H
(1)
0 (kj |x − y|), j = i, o, H(1)

0 is a Hankel func-
tion of order zero.

Using the conjugation conditions (4) and (5), we define the functions

uj = u+ = u−, x ∈ Γj , j = 1, 2,(11)

v1 =
ηi + ηo
2ηo

∂u+

∂n1
=

ηi + ηo
2ηi

∂u−

∂n1
, x ∈ Γ1,(12)

v2 =
ηi + ηo
2ηi

∂u+

∂n2
=

ηi + ηo
2ηo

∂u−

∂n2
, x ∈ Γ2.(13)

Let us add term by term the limit values of the integral representations
(8)–(10) and their normal derivatives on both sides of the contours Γ1, Γ2,
using the well-known properties of simple and double layer potentials
(see, e.g., [19], p. 47). Thus, we obtain a homogeneous system of Muller
boundary integral equations with respect to the functions u and v:

(14) u1(x) +

∫︂
Γ1

u1(y)K
1,1
1 (x, y)dl(y) +

∫︂
Γ1

v1(y)K
1,2
1 (x, y)dl(y)+

+

∫︂
Γ2

u2(y)K
1,3
1 (x, y)dl(y) +

∫︂
Γ2

v2(y)K
1,4
1 (x, y)dl(y) = 0, x ∈ Γ1

(15) v1(x) +

∫︂
Γ1

u1(y)K
2,1
1 (x, y)dl(y) +

∫︂
Γ1

v1(y)K
2,2
1 (x, y)dl(y)+

+

∫︂
Γ2

u2(y)K
2,3
1 (x, y)dl(y) +

∫︂
Γ2

v2(y)K
2,4
1 (x, y)dl(y) = 0, x ∈ Γ1,
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(16) u2(x) +

∫︂
Γ1

u1(y)K
3,1
2 (x, y)dl(y) +

∫︂
Γ1

v1(y)K
3,2
2 (x, y)dl(y)+

+

∫︂
Γ2

u2(y)K
3,3
2 (x, y)dl(y) +

∫︂
Γ2

v2(y)K
3,4
2 (x, y)dl(y) = 0, x ∈ Γ2,

(17) v2(x) +

∫︂
Γ1

u1(y)K
4,1
2 (x, y)dl(y) +

∫︂
Γ1

v1(y)K
4,2
2 (x, y)dl(y)+

+

∫︂
Γ2

u2(y)K
4,3
2 (x, y)dl(y) +

∫︂
Γ2

v2(y)K
4,4
2 (x, y)dl(y) = 0, x ∈ Γ2,

where the kernels of the integral equations have the form

K1,1
1 =

∂Go(x, y)

∂n1(y)
− ∂Gi(x, y)

∂n1(y)
, x ∈ Γ1, y ∈ Γ1,(18)

K1,2
1 =

2ηo
ηi + ηo

Gi(x, y)−
2ηi

ηi + ηo
Go(x, y), x ∈ Γ1, y ∈ Γ1,(19)

K1,3
1 =

∂Gi(x, y)

∂n2(y)
, x ∈ Γ1, y ∈ Γ2,(20)

K1,4
1 = −2ηoGi(x, y)

ηo + ηi
, x ∈ Γ1, y ∈ Γ2,(21)

K2,1
1 =

∂2Go(x, y)

∂n1(x)∂n1(y)
− ∂2Gi(x, y)

∂n1(x)∂n1(y)
, x ∈ Γ1, y ∈ Γ1,(22)

K2,2
1 =

2ηo
ηo + ηi

∂Gi(x, y)

∂n1(x)
− 2ηi

ηo + ηi

∂Go(x, y)

∂n1(x)
, x ∈ Γ1, y ∈ Γ1,(23)

K2,3
1 =

∂2Gi(x, y)

∂n1(x)∂n2(y)
, x ∈ Γ1, y ∈ Γ2,(24)

K2,4
1 = − 2ηo

ηo + ηi

∂Gi(x, y)

∂n1(x)
, x ∈ Γ1, y ∈ Γ2,(25)

K3,1
2 = −∂Gi(x, y)

∂n1(y)
, x ∈ Γ2, y ∈ Γ1,(26)

K3,2
2 =

2ηoGi(x, y)

ηo + ηi
, x ∈ Γ2, y ∈ Γ1,(27)

K3,3
2 =

∂Gi(x, y)

∂n2(y)
− ∂Go(x, y)

∂n2(y)
, x ∈ Γ2, y ∈ Γ2,(28)
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K3,4
2 =

2ηi
ηi + ηo

Go(x, y)−
2ηo

ηi + ηo
Gi(x, y), x ∈ Γ2, y ∈ Γ2,(29)

K4,1
2 = − ∂2Gi(x, y)

∂n1(y)∂n2(x)
, x ∈ Γ2, y ∈ Γ1,(30)

K4,2
2 =

2ηo
ηo + ηi

∂Gi(x, y)

∂n2(x)
, x ∈ Γ2, y ∈ Γ1,(31)

K4,3
2 =

∂2Gi(x, y)

∂n2(x)∂n2(y)
− ∂2Go(x, y)

∂n2(x)∂n2(y)
, x ∈ Γ2, y ∈ Γ2,(32)

K4,4
2 =

2ηi
ηo + ηi

∂Go(x, y)

∂n2(x)
− 2ηo

ηo + ηi

∂Gi(x, y)

∂n2(x)
, x ∈ Γ2, y ∈ Γ2.(33)

3. Galerkin Method

Let the contours Γ1 and Γ2 have the form of circles of radii a1 and
a2, respectively. We obtain explicit expressions for the matrix elements
of Galerkin’s method. In (14)–(17), let us perform the substitutions

w1(t) = a1u1(t), w2(t) = a1v1(t), w3(t) = a2u2(t), w4(t) = a2v2(t).

We will search for approximations to functions wk(t) in the form of Fourier
series segments of the form

wk(t) =

n∑︂
m=µ

w(k)
m φm(t), k = 1, 2, 3, 4,(34)

where µ = 0, if φm(t) = cos(mt), m = 0, . . . , n, are used as basis functions
and µ = 1, if φm(t) = sin (mt), m = 1, . . . , n are used as basis functions.
We define the scalar product as

(u, v) =
1

2π

2π∫︂
0

u(τ)v(τ)dτ, u, v ∈ L2.(35)

Applying Galerkin’s method, we obtain a system of linear algebraic
equations

(36)
1

a1
w

(1)
l +

n∑︂
m=µ

h
(1,1)
lm w(1)

m +

n∑︂
m=µ

h
(1,2)
lm w(2)

m +

n∑︂
m=µ

h
(1,3)
lm w(3)

m +
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+

n∑︂
m=µ

h
(1,4)
lm w(4)

m = 0, l = µ, . . . , n,

(37)
1

a1
w

(2)
l +

n∑︂
m=µ

h
(2,1)
lm w(1)

m +

n∑︂
m=µ

h
(2,2)
lm w(2)

m +

n∑︂
m=µ

h
(2,3)
lm w(3)

m +

+

n∑︂
m=µ

h
(2,4)
lm w(4)

m = 0, l = µ, . . . , n,

(38)
1

a2
w

(3)
l +

n∑︂
m=µ

h
(3,1)
lm w(1)

m +

n∑︂
m=µ

h
(3,2)
lm w(2)

m +

n∑︂
m=µ

h
(3,3)
lm w(3)

m +

+

n∑︂
m=µ

h
(3,4)
lm w(4)

m = 0, l = µ, . . . , n,

(39)
1

a2
w

(4)
l +

n∑︂
m=µ

h
(4,1)
lm w(1)

m +

n∑︂
m=µ

h
(4,2)
lm w(2)

m +

n∑︂
m=µ

h
(4,3)
lm w(3)

m +

+

n∑︂
m=µ

h
(4,4)
lm w(4)

m = 0, l = µ, . . . , n.

The Galerkin method matrix is a second-order block matrix. The
elements of the upper left block have the form

h
(i,j)
lm =

σl

π

∫︂ 2π

0

∫︂ 2π

0

Ki,j
1 (t11, τ

1
1 )φm(τ11 )φl(t11)dτ

1
1 dt

1
1, m, l = µ, . . . , n,

where i, j = 1, 2.
The elements of the upper right block have the form

h
(i,j)
lm =

σl

π

∫︂ 2π

0

∫︂ 2π

0

Ki,j
1 (t12, τ

2
2 )φm(τ22 )φl(t11)dτ

2
2 dt

1
1, m, l = µ, . . . , n,

where i = 1, 2, j = 3, 4.
The elements of the lower left block have the form

h
(i,j)
lm =

σl

π

∫︂ 2π

0

∫︂ 2π

0

Ki,j
2 (t21, τ

1
1 )φm(τ11 )φl(t22)dτ

1
1 dt

2
2, m, l = µ, . . . , n,

where i = 3, 4, j = 1, 2.
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The elements of the lower right block have the form

h
(i,j)
lm =

σl

π

∫︂ 2π

0

∫︂ 2π

0

Ki,j
2 (t22, τ

2
2 )φm(τ22 )φl(t22)dτ

2
2 dt

2
2, m, l = µ, . . . , n,

where i, j = 3, 4. Here σl = 1/2, if l = 0, and σl = 1, if l ̸= 0.

Let the distance between the centers of the circles Γ1 and Γ2 be d,

and the radii of the circles be a1 and a2, respectively. Then the matrix

elements of Galerkin’s method, according to [20], have the form:

h
(1,1)
ll =

iπ

2
koJl(koa1)H

(1)′

l (koa1)−
iπ

2
kiJl(kia1)H

(1)′

l (kia1),

h
(1,2)
ll =

iπηo
ηi + ηo

Jl(kia1)H
(1)
l (kia1)−

iπηi
ηi + ηo

Jl(koa1)H
(1)
l (koa1),

h
(1,3)
lm =

iπσl

2
kiH

(1)′

m (kia2)
(︁
Jm−l(kir)Jl(kia1)(−1)(m−l)+

+ Jm+l(kir)J−l(kia1)(−1)(m+l+µ)
)︁
,

h
(1,4)
lm = − iπηoσl

ηo + ηi
H(1)

m (kia2)
(︁
Jm−l(kir)Jl(kia1)(−1)(m−l)+

+ Jm+l(kir)J−l(kia1)(−1)(m+l+µ)
)︁
,

h
(2,1)
ll =

iπk2o
2

J
′

l (koa1)H
(1)′

l (koa1)−
iπk2i
2

J
′

l (kia1)H
(1)′

l (kia1),

h
(2,2)
ll =

1

a1
+

iπηo
ηi + ηo

kiJl(kia1)H
(1)′

l (kia1)

− iπηi
ηi + ηo

koJ
′

l (koa1)H
(1)
l (koa1),

h
(2,3)
lm =

iπσl

2
k2iH

(1)′

m (kia2)
(︁
Jm−l(kir)J

′

l (kia1)(−1)(m−l)+

+ Jm+l(kir)J
′

−l(kia1)(−1)(m+l+µ)
)︁
,

h
(2,4)
lm = − iπηoσl

ηi + ηo
kiH

(1)
m (kia2)

(︁
Jm−l(kir)J

′

l (kia1)(−1)(m−l)+

+ Jm+l(kir)J
′

−l(kia1)(−1)(m+l+µ)
)︁
,

h
(3,1)
lm = − iπσl

2
kiJ

′

m(kia1)(Hl(kia2)Jm−l(kir)

+ (−1)µH−l(kia2)Jm+l(kir)),
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h
(3,2)
lm =

iπηoσl

ηi + ηo
Jm(kia1)

(︁
Hl(kia2)Jm−l(kir)

+ (−1)µH−l(kia2)Jm+l(kir)
)︁
,

h
(3,3)
ll =

iπ

2
kiJl(kia2)H

(1)′

l (kia2)−
iπ

2
koJl(koa2)H

(1)′

l (koa2),

h
(3,4)
ll =

iπηi
ηi + ηo

Jl(koa2)H
(1)
l (koa2)−

iπηo
ηi + ηo

Jl(kia2)H
(1)
l (kia2),

h
(4,1)
lm = − iπσl

2
k2i J

′

m(kia1)
(︁
H

(1)′

l (kia2)Jm−l(kir)+

+ (−1)µH
(1)′

−l (kia2)Jm+l(kir)
)︁
,

h
(4,2)
lm =

iπηoσl

ηi + ηo
kiJm(kia1)

(︁
H

(1)′

l (kia2)Jm−l(kir)+

(−1)µH
(1)′

−l (kia2)Jm+l(kir)
)︁
,

h
(4,3)
ll =

iπ

2
k2i J

′

l (kia2)H
(1)′

l (kia2)−
iπ

2
k2oJ

′

l (koa2)H
(1)′

l (koa2),

h
(4,4)
ll =

1

a2
+

iπηi
ηi + ηo

koJl(koa2)H
(1)′

l (koa2)−

− iπηo
ηi + ηo

kiJ
′

l (kia2)H
(1)
l (kia2),

where m, l = µ, . . . , n, σl = 1/2, if l = 0, and σl = 1, if l ̸= 0.

4. Numerical Results

Our classification of modes, (m,n, e/o), is related to the symmetry
(even, e) and antisymmetry (odd, o) of the mode field in a homogeneous
circular dielectric resonator relative to the x axis. In this classification,
we count the number of field spots 2m and n along the azimuthal and
radial directions, respectively. Each eigenvalue is continuously dependent
on the parameters. That is, on the plane (κ, γ), where κ is the normalized
wave number (along the radius of the microdisk) and γ is the threshold
of radiation generation, the dependences of the eigenvalue pairs on the
parameter d (distance between the centers of the resonator and the hole
normalized along the resonator radius) have appearances of continuous
curves or branches. Therefore, in the case of arbitrary d, we continue to
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(a) D in H-polarization (b) γ in H-polarization

(c) D in E-polarization (d) γ in E-polarization

Figure 2. Dependences of directivity D and radiation genera-
tion threshold γ on d

denote each mode by the same indices as in the limiting case d = 0. Note
that for larger values of d, these notations may become less obvious.

In our calculations, we investigate the behavior of H- and E-polarized
quasi-WG modes, for which the normalized frequencies at d = 0 differ
in the 3rd place for the H-polarization case, and in the 2nd place for the
E-polarization case. Namely, in the case of H-polarization we have the
following initial points at d = 0 : κ = 9.9924, γ = 6.07232× 10−7 and
κ = 9.9948, γ = 2.01306× 10−11 for doubly degenerate modes (17, 2) and
(21, 1) respectively. In the case of E-polarization at d = 0 : κ = 9.6112, γ =

5.01117× 10−7 and κ = 9.6239, γ = 2.13596× 10−11 for the same (17, 2)

and (21, 1) modes, respectively. The hole radius normalized to the radius
of the microdisk is fixed at r = 0.03. We are interested in obtaining the
maximum radiation directivity D accompanied by a relatively small value
of the generation threshold γ (see Figure 2).
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(a) for mode (17, 2) in H-polarization (b) for mode (21, 1) in H-polarization

(c) for mode (17, 2) in E-polarization (d) for mode (21, 1) in E-polarization

Figure 3. Dependences of the angle β of maximum directivity
on d

The definition of D is given in [13] (see equation (46)). The Figure 3
help control the direction of the main lobe in the far-field diagrams (see
right panels in Figure 4. The blue markers in Figure 2 and Figure 3
correspond to the first and second mode directional maxima (21, 1, e),
whereas the red markers correspond to similar mode maxima (17, 2, e). For
detailed analysis, we select the first D mode (21, 1, e) maxima, see Figure 4
in the case of H-polarization and Figure 5a in the case of E-polarization.
In the case of H-polarization, at d = 0.51 we have the greatest directivity
for the (21, 1, e) mode, accompanied by a relatively small threshold γ.
The threshold of this mode is the lowest among all four studied modes,
and their normalized frequencies differ in the third sign. In the case
of E-polarization at d = 0.599 the normalized frequencies of the studied
modes differ in the second sign, and the mode (21, 1, e) has the greatest
directivity, but the threshold of the mode (21, 1, o) is lower than that of the
mode (21, 1, e).
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(a) (17, 2, e), k = 9.9927, log10(γ) = −4.9457, D = 9.51

(b) (17, 2, o), k = 9.9929, log10(γ) = −4.7586, D = 5.50

(c) (21, 1, e), k = 9.9948, log10(γ) = −7.6640, D = 11.83

(d) (21, 1, o), k = 9.9948, log10(γ) = −7.5550, D = 5.90

Figure 4. Field diagrams in the near and far zones at d =
0.51 in the case of H-polarization
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(a) (17, 2, e), k = 9.6229, log10(γ) = −3.9864, D = 8.21

(b) (17, 2, o), k = 9.6138.5, log10(γ) = −5.1499, D = 4.25

(c) (21, 1, e), k = 9.6313, log10(γ) = −2.9738.5, D = 9.23

(d) (21, 1, o), k = 96241., log10(γ) = −6.3621, D = 4.47

Figure 5. Field diagrams in the near and far zones at d =
0.599 in the case of E-polarization
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(a) κ in H-polarization (b) γ in H-polarization

(c) κ in E-polarization (d) γ in E-polarization

Figure 6. Normalized frequency κ and emission threshold γ

vs. hole offset d

Both in the case of H-polarization at d = 0.51 and in the case
of E-polarization at d = 0.599, we obtain quasi-singular radiation for each
of the modes of even type. Odd-type modes have two equally intense
lobes at a smaller value of the directivity coefficient D. Increasing d, we
obtain the κ(d) and γ(d) plots shown in Figure 6. The right panels for γ(d)
represent an increase in the [0.5, 0.7] and [0.5, 0.75] segments of right panels
of Figure 2 for H- and E-polarizations, respectively. Note that the values
d = 0.51 and d = 0.599 lie before the “avoided resonance crossing” effects
for the corresponding polarizations.

When the frequencies of the (17, 2, e) and (17, 2, o) modes begin to
grow and approach the frequencies of the (21, 1, e) and (21, 1, o) modes,
respectively, we observe the “avoided resonance crossing” effect in Figure 6.
More precisely, the frequencies of modes avoid crossing, but the γ

generation thresholds do actually cross (see right panels of Figure 6).

Let us consider in detail the points at which the frequencies avoid
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intersection. For H-polarization: d = 0.566 and d = 0.592 (see Figure 6a
and Figure 6b), whereas for E-polarization: d = 0.688 (see Figure 6c
and Figure 6d). For each two-component eigenvalue (κ, γ), we have
two orthogonal eigenmodes (odd and even). In [21], it was suggested
that “pseudo lattice modes” appear if eigenvalues of two or more modes
belonging to different azimuthal families approach each other (in frequency)
in the (Re κ, Im κ) plane. The same can be expected in the LEP analysis
as well, in the (κ, γ) plane. It is also known that when two eigenvalues
are close to each other and an “avoided resonance crossing” effect is
observed, hybridization of the mode fields occurs [22]. Indeed, for H-
polarization there is hybridization of the mode fields (17, 2, o) and (21, 1, o)

at d = 0.566 (see Figure 7a) and hybridization of the mode fields (17, 2, e)

and (21, 1, e) at d = 0.592 (see Figure 7). Similarly, for E-polarization there
is hybridization of the (17, 2, e) and (21, 1, e) mode fields at d = 0.688 (see
Figure 7). In further investigation, we observe that the field diagrams
in the near zone of the pairs of quasi-embodied modes in the strong
coupling region (controlled by the hole displacement parameter, d) acquire
shapes approximately equal to the sum and difference of fields of the two
considered modes.

Our goal is to achieve quasi-single-directional emission, but we
see that the modes under study acquire new properties as a result
of hybridization. We call them PJ enhanced WG modes, because of the
specific patterns of the near-field diagrams.

Namely, bright spots of the field do not bypass the perturbed
region (hole), but concentrate around it. The nature of this phenomenon,
which we observe for even modes having field maxima near the hole, can be
explained using the PJ effect. In Figure 6b, we see that the thresholds
of the (17, 2, o) and (21, 1, o) modes intersect at d = 0.566. Note that the
(21, 1, e) mode does not participate in hybridization, although its frequency
is close to the frequencies of the hybridized modes, since it belongs to the
orthogonal symmetry class. Similarly, for E-polarization at d = 0.688 (see
Figure 6d), the thresholds of the (17, 2, e) and (21, 1, e) modes cross, and
the (21, 1, o) mode does not participate in hybridization. The hybridizing
modes turn into the sum and difference of two quasi-WG modes.

In the case of H-polarization, at the first point d = 0.566 the odd modes
begin to transform into rhomboid and triangular modes (see Figure 7a),



156 I. V. Ketov, A.O. Spiridonov, A. I. Repina, E.M. Karchevskii

(21, 1, o) − (17, 2, o),
κ = 9.9950, log10(γ) = −4.8057

(21, 1, o) + (17, 2, o)
κ = 9.944, log10(γ) = −4.8291

(a) case of H-polarization, d = 0.566

(21, 1, e) − (17, 2, e),
κ = 9.9949, log10(γ) = −4.2858

(21, 1, o) + (17, 2, o),
κ = 9.9946, log10(γ) = −4.2099

(b) case of H-polarization, d = 0.592

(21, 1, e) − (17, 2, e)
κ = 9.6250, log10(γ) = −3.3909

(21, 1, e) + (17, 2, e),
κ = 9.6227, log10(γ) = −3.4406

(c) case of E-polarization, d = 0.688

Figure 7. Field diagrams in the near zone of hybridized
modes
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whereas at the second point d = 0.592 the even modes begin to transform
into square modes (see Figure 7b). In the case of E-polarization at d = 0.688,
the even modes begin to transform into hexagonal modes (see Figure 7c).
In figures 7b, 7c we observe the penetration of the field into the inner
region, the field maxima do not bypass the hole. At all three points where
the frequencies avoid intersection, the threshold of one of the modes drops
sharply, while the other increases (see Figure 6).

At the points where the frequencies avoid intersection, there is an
exchange of fields between the corresponding modes. After the exchange
of fields for the H-polarization of PJ, the amplified WG modes (17, 2, o) and
(21, 1, o) become rhomboid-shaped (see Figure 8) and triangular-shaped
(see Figure 8d). Around the second point for H-polarization, we observe an
exchange of fields for even modes (17, 2, e) and (21, 1, e). Similarly, for
E-polarization near the point d = 0.688 we observe an exchange of fields
between the even modes (17, 2, e) and (21, 1, e). After the exchange of fields,
the (17, 2, e) and (21, 1, e) modes become rhomboid-shaped (see Figure 9a)
and hexagonal (see Figure 9c). Even modes have higher directivity values;
in addition, their radiation is quasi-single-directional, which is confirmed by
normalized field diagrams in the far zone.

We investigate the eigenvalues and directivity of radiation after the
exchange of the mode fields (see Figure 8a for H-polarization and Figure 9
for E-polarization). As a result of our study for H-polarization, we can
conclude that the even mode (17, 2, e) (see Figure 8a) has the maximum
directivity at the minimum value of the generation threshold at d = 0.694.
In the case of E-polarization, the even mode (21, 1, e) (see Figure 9c)
has maximum directivity at d = 0.72, but the threshold of the mode
(21, 1, o) (see Figure 9d) is less than that of the (21, 1, e) mode. The high
directionality of the (21, 1, e) mode is due to the inverse effect of PJ.

Conclusion

The results of our numerical experiments, performed with a carefully
tested software complex, confirm the assumptions of [21,22] that the
threshold gain and directivity characteristics of a microdisk laser can
be controlled with a small hole. Namely, we found that a small hole
drilled in the inner focal region of a high refractive index microdisk laser
leads to enhanced directivity of the emission of WG modes, while the



158 I. V. Ketov, A.O. Spiridonov, A. I. Repina, E.M. Karchevskii

(a) (17, 2, e), k = 9.9943, log10(γ) = −6.1656, D = 6.58

(b) (17, 2, o), k = 9.9948, log10(γ) = −6.0355, D = 4.88

(c) (21, 1, e), k = 9.9973, log10(γ) = −4.4054, D = 4.08

(d) (21, 1, o), k = 10.0211, log10(γ) = −3.4314, D = 5.53

Figure 8. Field diagrams in the near and far zones at d =
0.694 in the case of H-polarization
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(a) (17, 2, e), k = 9.6229, log10(γ) = −3.9864, D = 8.21

(b) (17, 2, o), k = 9.6134, log10(γ) = −5.1499, D = 4.25

(c) (21, 1, e), k = 9.6313, log10(γ) = −2.9734, D = 9.23

(d) (21, 1, o), k = 9.6241, log10(γ) = −6.3621, D = 4.47

Figure 9. Field diagrams in the near and far zones at d =
0.72 in the case of E-polarization
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threshold of emission generation remains small. In contrast to [21,22], this
conclusion is based on classical full-wave electromagnetic field theory and
does not use the billiard theory or the concept of wave chaos. Thus, it
provides a simple and clear engineering rule for the hole placement.
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