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Abstract. The problem of automating the process of analyzing the open
states of channels on the membrane of a neuron of a living organism is considered.
Taking into account that the registration of the electrical activity of the cell was
made by the patch clamp method at various values of the applied potential,
a division into intervals with a constant potential is carried out. Further, to
eliminate noise, a notch filter, low-frequency and high-frequency Chebyshev filters
are applied to the data. A neural network is applied to the normalized data,
based on the results of which the data is changed and re-processed by the same
neural network. As a result of the algorithm, the dynamics of channel states
was obtained, which makes it possible to register up to several open channels
simultaneously.
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Introduction

In recent years, information technology has shown significant progress.
One of the breakthrough areas of their application is the development and
use of machine learning methods in microbiology [1–3]. The use of machine
learning allows making the procedures, which previously required a large
number of man-hours, very routine [4]. Machine learning and artificial
neural networks are actively used in fundamental science, in particular,
in neurobiology [5–7].

One of the applications of machine learning is the detection of open
states of ion channels on the membrane of excitable cells of animals (neurons,
cardiocytes, myocytes, etc.). The most common method of functional
registration of ion channels is the method of local fixation of the potential
(patch-clamp technique), which allows recording the electrical activity
of one cell, namely, the currents passing through its membrane [8]. The
main mechanism that forms the current of ions through the channels is the
electrochemical gradient.

The electrochemical gradient depends on the difference in ion concen-
trations outside and inside the cell, as well as on its membrane potential,
and the detection of an open channel in some cases becomes a nontrivial
task for the experimenter. In particular, at low values of the electrochemical
gradient, the amplitude of the current passing through the channel decreases,
which is accompanied by a deterioration in the signal-to-noise ratio. This
means that the false-positive detection of the open state of the channel by
the operator increases. In addition, the detection of open channel states is
a routine procedure that requires scrupulous review of long-term records,
which increases man-hours for analyzing the recorded data. In this regard,
the use of machine learning in this area of neuroscience is more than
justified. Here, various approaches and algorithms [9–12] are used to model
and analyze the states of ion channels. However, the best results of tracking
channel states on model data are shown by neural networks [13].

When registering ionic currents, interference of various nature also
occurs, requiring data processing and parameterization [14–16]. Therefore,
neural networks are applied after processing and normalizing the received
data.

In the present paper, we propose an algorithm for automating the
process of analyzing the open states of channels of a neuron of a living
organism using a neural network. The analyzed record lasting 552 seconds
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was obtained by the patch-clamp technique on a neuron of the brain of a
young rat at various values of the applied potential1. At the initial stage,
the record is divided into separate sections corresponding to constant
potential values and processed by filters to eliminate noise and unnecessary
frequency intervals. Then a neural network [13] was applied to the
processed data. Based on the results of the neural network, the original
data is transformed and re-processed by the same neural network.

Graphs are shown demonstrating the change in the detection results
at individual stages. The results obtained at the output showed the high
efficiency of the neural network. The code is hosted on GitHub2.

1. Ion channels and their registration

Ion channels are protein complexes on the cell membrane. Since
these complexes are involved in the transport of inorganic ions, they
are called ion channels. In terms of transport efficiency, ion channels
have a throughput capacity, so that up to 100 million ions can pass
through one open channel every second— at a rate almost 100 times
higher than the highest transport rate mediated by any known carrier
protein. However, channels cannot be connected to an energy source for
active transport, so the transport they mediate is always passive. The
main mechanisms that form the current of ions through the channels
are the concentration gradient associated with the difference in the
concentration of the ion outside and inside the cell, and the electrical
gradient determined by the difference in charges located on opposite
sides of the membrane. The combination of both gradients is called the
“electrochemical gradient”.

The characteristics of the electrochemical gradient determine the
excitable cell properties, that is, the possibility of describing the parameters
of the electrochemical gradient underlies our understanding of the functioning
of excitable cells in a living organism. The patch-clamp technique makes it
possible to register the electrical activity of one cell [13]. To do this,
a fragment of the cell membrane is isolated using a special glass micropipette
pressed against the membrane of a living cell. The resulting electrical
access to the cell allows to control the potential difference outside and
inside the cell, that is, to control and change the electrical gradient, and
hence the severity of the ion current through the channels.

1Measurements were made with the Axopatch 200B device.
2https://github.com/DCel567/Patch-clamp-neuron
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(a) current strength

(b) dynamics of potential values on the pipette

Figure 1. Synchronous recording of the dynamics of values

The controlled conditions of registration from a single cell make it
possible to measure the currents passing through its membrane, which
ultimately allows drawing conclusions about how ion channels respond to
electrical and chemical effects [17].

Registration of the activity of single channels is one of the configurations
of the patch-clamp technique. Electrical contact with the cell is carried out
only through open ion channels located on the membrane under the pipette.
The method of registration of ion channels is so sensitive that it allows
describing the behavior of individual, single channels, namely, the moments
and duration of their open state. At this moment, an electric current is
observed, the amplitude and direction of which are determined by the
electrochemical gradient of ions passing through the open channel.

2. Problem statement

From the obtained experimental data, containing the dynamics
of changes in current values at different potentials applied to the pipette
(external medium), it is necessary to determine the dynamics of opening
and closing of ion channels. The sampling rate of the signal is 10,000
measurements per second. Let us consider one of the records of such signals
with a duration of 552 seconds with a change in the value of the potential
difference. Thus, in total for this record we have 5,552,000 measurements.
Figure 1 shows the graphs of current values (top graph) and pipette
potential values (bottom graph) versus time. We will present a further
demonstration of the operation of the algorithm using this example.
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Table 1. An example of data: current and potential values
outside the cell

Current, pA Potential value, mV
-8.81347643116897 -49.9572765072571
-8.77075182243061 -49.8962413496429
-8.69750963602201 -49.9267589284500
-8.67919908941986 -49.9267589284500
-8.73413072922631 -49.9267589284500
-8.75854479136251 -49.8962413496429

Thus, we have records of the values of the current strength and the
applied potential. Table 1 shows a data fragment containing two columns:
current values measured in picoamps (10−9 amps) and potential values
measured in millivolts (10−3 volts).

Different potential values lead to different current amplitude values
under the same external conditions. Therefore, we separate the time
intervals with different potentials and consider them independently. We
exclude the data obtained during the change in potential values from
consideration, since it is impossible to reliably detect the opening or closing
of channels at an unstable voltage.

It should be noted that the data itself is quite noisy in certain frequency
ranges, so it is necessary to apply frequency filters to eliminate or smooth
out these noises.

3. Neural network for synthetic data detection

Convolutional Neural Network (CNN) layers are a powerful deep
learning component needed to extract patterns in complex datasets.
The most common application of 2D convolutional layers is in machine
vision [18,19]. An adaptation of a 2D CNN is a 1D CNN. The one-
dimensional variant was specially designed to use the capabilities of CNN
to classify time series [20]. The most commonly used architecture for time
series analysis is the deep learning architecture known as Recurrent Neural
Networks (RNN) [21]. The problem with classical RNN is that the model
starts to degrade when the output information depends on large time
scales due to the vanishing gradient phenomenon. The development of the
classical recurrent network was the emergence of a long-term memory
network (LSTM) [22].

In the architecture used, convolutional layers are combined with LSTM
blocks to improve the detection of long-term temporal relationships in time
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processing. With SKM one needs to identify closed and open state
levels and number of channels present. In the case of MDL there
is no pre-processing necessary and no parameters to set, but the
output is non-binary. Therefore, we ran a 50% event threshold
crossing method on this to output final open and closed calls.
These idealisations were all then compared to the “golden”
dataset with a Cohen’s kappa agreement script, Table 4. Also, we
fitted these data with a clustering and heatmap model in R, this
allows one to visually compare the agreement at each timepoint.

Discussion
Single molecule research, both FRET and patch-clamp electro-
physiology provide high resolution data on the molecular state
of proteins in real time, but their analyses are usually time
consuming and require expert supervision. In this report, we
demonstrate that a deep neural network, Deep-Channel, com-
bining recurrent and convolutional layers can detect events
in single channel patch-clamp data automatically. Deep-Channel
is completely unsupervised and thus adds objectivity to single
channel data analyses. With complex data, Deep-Channel also
outperforms traditional manual threshold crossing both in terms
of speed and accuracy. We find this method works with very high
accuracy across a variety of input datasets.

The most established single molecule method to observe single-
channel gating is patch-clamp recording2. Its development led to
the award of the Nobel Prize to Sakmann and Neher in 199134

and the ability to observe single channels gate in real time vali-
dated the largely theoretical model of the action potential
developed in the earlier Nobel Prize winning work of Hodgkin
and Huxley3. Whilst the power and resolution of single-channel
recording has never been questioned, it is well accepted to be a

technically difficult technique to use practically since the data
stream created requires laborious supervised analysis. In some
cases, where several single channels gate simultaneously, it
becomes impractical to analyse and data can be wasted. For
practical purposes, drug screening etc., where subtle changes in
channel activity could be crucial5, this means that the typical
method is to measure bulk activity from a whole-cell simulta-
neously. Average current can be measured which is useful, but
does not contain the detailed resolution that individual molecular
recording has14. Furthermore, new technologies are emerging
which can record ion channel data automatically15,35, but whilst
whole-cell currents are large enough to be analysed automatically,
there are currently no solutions to do the same with single-
channel events. Currently, it could be observed that automated
patch-clamp apparatus are not used a great deal for single-
channel studies and so automated analysis software are of little
value, however, we feel that the reverse is true; this equipment is
rarely used for single channel recording because no fully auto-
mated analysis exists. In this report we show that the latest
machine learning methods, that of deep learning, including
recurrent and CNN layers could address these limitations.

The fundamental limitation of applying deep learning to
classification of biological data of all kinds is the prerequisite for
training data. Deep learning is a form of supervised learning
where during the training phase, the network must be taught at
every single instant what the ground truth state is (it looks open,
but is it really open or closed?). We considered two possible
approaches to deal with this conundrum: to collect data from
easily analysable single molecule/patch clamp experiments and
get a human expert to idealise this (classify or annotate it). This
has two fundamental flaws that could be referred to as Catch-22.
Firstly, if you train a network only to detect easy to analyse data,
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Fig. 2 Deep-Channel model architecture. The input time series data were fed to the 1D Convolution layer (1D-CNN) which includes both 1D convolution
layers and max pooling layers. After this, data was flattened to the shape of the next network layer, which is an LSTM. Three LSTM layers were stacked and
each contains 256 LSTM units. Dropout layers were also appended to all LSTM layers with the value of 0.2 to reduce overfitting. This returned features
from the stacked LSTM layers. The updated features are then forwarded to a regular dense layer with a SoftMax activation function giving an output
representing the probability of each class (e.g., the probability × channels being open at each time step). In post-network processing, the most-likely
number of channels open at a given time is calculated simply as the class with the highest probability at a given instant (Argmax).
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Figure 2. Neural network architecture [13]

series data (Figure 2). The neural network consists of one convolutional
layer followed by a Flatten layer. The aligned data is fed to the input
of the LSTM layer; there are three such layers in total. Each LSTM
layer contains 256 LSTM cells. In addition, a dropout neural network
regularization method with a coefficient of 0.2 is applied to each LSTM
layer, which reduces the risk of model retraining. After three LSTM layers,
we have a set of attributes at the output, which, in turn, is fed to the input
of a fully connected layer with the SoftMax activation function. When
passing data through the final activation function, we obtain the values
of the probabilities of opening a certain number of channels. The last step
in running the model is to select the maximum probability value from the
list of obtained probabilities and to determine how many open channels
this probability corresponds to.

We will train the neural network on existing data [13] hosted on GitHub3.
It is possible to train the network to determine one, three or five possible
simultaneously open channels. Due to the specifics of real data, for
which the neural network is used in the present work, we will choose the

3https://github.com/RichardBJ/Deep-Channel.git
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option of opening up to five channels. In addition, the greater freedom
of the neural network in choosing the answer option will make it possible to
modify the results more widely. For two epochs, the model is trained to
accuracy = 0.9699, precision = 0.9700, recall = 0.9698, F1-score = 0.9699.

4. Data preprocessing

Before proceeding to the use of a neural network, the data must be
divided into continuous blocks corresponding to the same potential, and
then unnecessary frequency ranges and noise must be removed.

Let us describe an algorithm for partitioning data into segments with
the same potential values. Let us fix the number of points on the time
interval (frame), where the potential must be constant. We shift the
frame from left to right according to the data with a step equal to the
size of the frame, and if the swing in the frame turns out to be greater
than a certain value (the voltage changes), then we discard such a frame
and the signal points corresponding to it. If there are no strong voltage
swings inside the frame, then the data contained in it will be left for
further processing. Using such an algorithm, for a large frame size, one
can get a high processing speed of the entire data set, while losing a lot
of information in frames with voltage swings.

After the regions with changing potential difference are cut out, the
remaining separated regions are saved for further processing. Before
training the network, we normalize the data from zero to one and, as an
example, demonstrate the same section with a length of 6000 points, which
corresponds to the first 0.6 seconds of signal measurement.

In the following constructions, we will present figures each containing
two graphs. The upper blue graph is a demonstration of the data section for
which the neural network builds a “prediction” (the highest probability
of the state of ion channels: no open channels, one channel is open, two
channels are open, etc.). The lower, red graph shows the predictions
made by the neural network. The points of the red and blue graphs
correspond to each other in time, that is, the point with the ordinal number
n on the blue graph has a prediction on the red graph at the point with
the ordinal number n. The prediction is one of the numbers from zero to
five, corresponding to the expected number of open channels at a given
point in the upper graph.

The results of neural network processing show that most of the record
is represented by states 1 and 2, which corresponds to the open state
of one or, simultaneously, two ion channels. However, the probability
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(a) the normalized current strength values

(b) the dynamics of opening and closing of channels

Figure 3. The first 0.6 sec of the filtered record from Figure 1
after normalization

of opening ion channels on the neuron membrane is much lower, which
indicates an excessive detection of open states of ion channels by the neural
network. The reason for excessive detection is the presence of parasitic
fluctuations in current values (electromagnetic and power supply noises
during registration). To reduce their contribution, it is necessary to keep
the frequencies at which only changes in the states of ion channels are
recorded. To do this, we apply low-pass and high-pass Chebyshev filters
of the second kind to the data. Using a low-pass filter, we cut frequencies
above 1 kHz (the function in python is cheby2(4, 40, 1000, ’low’, 10000),
whereas using a high-pass filter, we cut frequencies below 5 Hz using the
function cheby2( 4, 40, 5, ’high’, 10000). Figure 3 shows the periodic ups
and downs of oscillations - these are standard noise pickups from 50 Hz
electrical appliances. To get rid of this noise, we use a 50 Hz notch filter,
implemented in python with the following code:

bnotcn, anotch = iirnotcn(10000, 30, 50)
filtfilt(bnotch, anotch, data).

Here data is filtered data with a base frequency of 10000 (Hz) and a quality
factor of 30.

Let us pass the filtered data through the neural network; the result is
shown in Figure 4. The blue graph shows the filtered data section in the
interval of 0–0.6 sec. The red graph is the predictions of the neural network
for this filtered signal. Comparing the lower graphs of figures 3 and 4, it is
easy to see that the frequency of opening and closing of the channels has
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(a) the filtered normalized current strength values

(b) the dynamics of opening and closing of channels

Figure 4. The first 0.6 sec of the filtered record from Figure 1
after normalization and a 50 Hz notch filter

become significantly smaller, which is primarily due to the removal of the
high-frequency spectrum.

From the viewpoint of microbiology, downward bursts in the upper
graphs of figures 3 and 4 can be interpreted as the opening of anion channels
[23]. We are primarily interested in cation channels [24], that is, areas
on the graphs with upward bursts. On the other hand, the neural network
is trained to process with cationic channels [13]. Therefore, for the correct
operation of the neural network and the interpretation of the results, it is
necessary to cut the current “downward” surges.

In fact, the bottom graph of Figure 4 clearly indicates that three
channels are unequivocally open (the three largest peaks). In this section,
it is required to detect three openings of the channel. The neural network
marked such openings with the level of five simultaneous openings, which is
not entirely true, but at least the openings were found.

5. Detection of ion channels in real data after preprocessing

For further data processing, we apply the following algorithm. We pass
the data of interest to us through the neural network, then, having received
predictions for this segment (red graph), we find the number of channels
for which the cell opens the most. For example, for the lower graphs
of Figure 3 and Figure 4, the maximum number of points has a value
of two, which means that for points on the graph that take this value,
we conditionally consider that the cell is inactive (does not have open
channels). Let us call this level the baseline.



300 Dmitrii N. Tumakov, Georgy V. Kannunikov, Marat G. Minlebaev

(a) the current strength values with the "anion currents" removed

(b) the dynamics of opening and closing of channels

Figure 5. The first 0.6 sec of the filtered record from Figure 1
after removing of the "anion currents"

Now let us remove the points below the baseline according to the
following algorithm. Having found the next range of points located below
the baseline, we replace each of them with the arithmetic mean of the values
of the two points that are the boundaries of this range. In this way, we are
guaranteed to change the values below the baseline to values that exceed
the values of the current on the baseline and remove information about
possible openings of anion channels.

Now that the normalized current values have been changed in accordance
with the requirements of the neural network for input data, we will send
the obtained current values to the neural network again. Let us decrease
the current values by subtracting the minimum value for the entire range
from all values so that the minimum value is zero, and we “lower” the
blue graph down in such a way so that the range of detected channel
openings is from zero, and not from the baseline level. The result of the
algorithm operation is shown in the upper graph of Figure 5. The lower
graph of Figure 5 shows the detected openings and closings of channels.

After “cutting off” the anion channels, it is necessary to normalize the
data by dividing the entire sample by two. In this case, it can be seen
that the values of the upper graphs decreased when moving from Figure 5
to Figure 6. As a result, the number of open channels also decreased - only
three ones remained. Note that the lower graph in Figure 5 in the vicinity
of the value of 4000 indicates that at first one channel opened, then, while
it was open, the second channel opened. From the lower graph of Figure 6,
we can conclude that in the same time range one channel opened and
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(a) the current strength values reduced to the requirements

(b) the dynamics of opening and closing of channels

Figure 6. The first 0.6 sec of the record from Figure 1 after
filtering to the requirements of the neural network

(a) the current strength values reduced to the requirements of the neural network

(b) the dynamics of opening and closing of channels

Figure 7. Filtered record from Figure 1 of the interval from
the 70th to the 77th second

closed, then the channel immediately opened again, that is, there was not
a simultaneous opening of two channels, but there was a sequential opening.
Expert opinions confirmed the correctness of the conclusions drawn.

Let us now consider another interval of the upper graph of Figure 1
with a duration of 7 seconds: from the 70th to the 77th second. After
processing the data, the normalized current values will take the form shown
in the upper graph of Figure 7. In this case, the neural network outputs
several open single channels and the simultaneous opening of two channels
near the value of 45000.
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6. Conclusion

The problem of determining the states of channels when recording
current values at different voltages by the patch-clamp technique was
considered. For channel detection, a neural network was used, which is
a joint use of CNN and LSTM networks [13]. The general algorithm for
processing and detecting data was divided into the following stages:

(1) Breaking down into intervals.

(2) Applying filters.

(3) Data normalization.

(4) Applying a neural network.

(5) Clipping data below the specified level. Multiplying by a factor.

(6) Reapplying the neural network.

The algorithm showed high stability to real data and accuracy of channel
states detection.
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