
ISSN 2079-3316 PROGRAM SYSTEMS: THEORY AND APPLICATIONS vol. 13, No 3(54), pp. 45–59

© Vinokurov I. V. 2022 CC-BY-4.0

Эта статья по-русски: http://psta.psiras.ru/read/psta2022_3_29-43.pdf

Research Article artificial intelligence, intelligent systems, neural networks

UDC 004.932.75’1+004.89

DOI 10.25209/2079-3316-2022-13-3-45-59

Using a convolutional neural network to recognize text
elements in poor quality scanned images

Igor Victorovich Vinokurov
Financial University under the Government of the Russian Federation, Moscow, Russia

igvvinokurov@fa.ru (learn more about the author on p. 59)

Abstract. The paper proposes a method for recognizing the content
of scanned images of poor quality using convolutional neural networks (CNNs).
The method involves the implementation of three main stages.

At the first stage, image preprocessing is implemented, which consists
of identifying the contours of its alphabetic and numeric elements and basic
punctuation marks.

At the second stage, the content of the image fragments inside the identified
contours is sequentially fed to the input of the CNN, which implements a multiclass
classification.

At the third and final stage, the post-processing of the set of SNA responses
and the formation of a text document with recognition results are implemented.

An experimental study of all stages was carried out in Python using the Keras
deep learning libraries and OpenCV computer vision and showed fairly good
results for the main types of deterioration in the quality of a scanned image:
geometric distortions, blurring of borders, the appearance of extra lines and spots
during scanning, etc.
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Introduction

The task of text recognition on scanned images is quite relevant
due to the need to automate the processing of various types of reports,
questionnaires, surveys, etc. However, in some cases, the quality of the
scanned image may be low due to the darkening of some areas of the image,
the presence of arbitrary handwritten marks on the scanned or original
images, etc. One possible approach to solving this problem is to use
data science methods, since the problem of image element recognition is
a typical multiclass classification problem that can be effectively solved
using CNN [1]. An example is handwritten digit recognition using a CNN
trained on the MNIST [2] dataset. A certain recognition efficiency is
achieved due to a large set of options for writing numbers and the presence
of CNN models that have proven their effectiveness for solving this and
similar tasks. However, as experimental studies have shown, CNNs trained
on MNIST do not allow us to recognize numbers on typewritten documents
with acceptable accuracy. The same applies to [3,4] alphabet letters.

An increase in recognition accuracy can be achieved either by using
different CNN models, as done in [5,6], by applying methods for processing
the original image: localization, blurring, segmentation and restoration [7,8],
additions source data [9] and use of various information processing methods
implemented in the libraries of modern programming languages. [10] Given
the lack of formalized methods for synthesizing CNNs in data science, it
seems inappropriate to limit ourselves to the selection of their models
for solving practical problems. The use of exclusively image processing
methods, implemented, among other things, in libraries of programming
languages, is also ineffective. Of particular practical interest may be the
combination of these two approaches proposed in this paper: identifying
the characteristic features of text elements using CNN, processing the
original image and recognition results.

The method proposed in this paper is based on the use of a CNN model
that implements the classification of selected fragments of a scanned image.
It should be noted that, in addition to CNN, other data science methods
can be used to solve the multiclass classification problem: decision tree
(DT), k-nearest neighbors (KNN), linear discriminant analysis (LDA),
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Gaussian naive Bayes method (GNB) and support vector machine (SVM)
[11]. However, as experimental studies have shown, it is the use of CNN
that gives greater efficiency in solving the classification problem due to the
selection of various models and data sets for their training. The study of all
CNN models in this work was carried out using a specialized software
system (PS) developed in Python using the Keras [12] deep learning
libraries, OpenCV [13] computer vision, and PIL [14] image processing
libraries.

1. Image Preprocessing

The main goal of this stage is to find the contours of text elements
on the scanned image: letters, numbers and basic punctuation marks. The
darkening of some areas and the presence of arbitrary handwritten marks
and lines that occur due to significant physical deformation of the storage
medium can lead to distortion of text elements on the scanned image.
In addition, documents may contain many unrecognizable elements, such as
vertical and horizontal table lines, decorations, and the like. As a result,
the stage of image preprocessing should consist in removing all unnecessary
elements from the scanned image and obtaining the cleanest and most
contrasting image, which allows detecting the contours of all text elements
for their subsequent classification using CNN.

One way to increase the contrast of a scanned image is to convert it to
grayscale and then apply a Gaussian blur and a threshold function to the
resulting image. These actions in Python are implemented by sequentially
calling the functions cvtColor() , GaussianBlur() and threshold() of the
OpenCV[15] library and allow you to lighten dark areas to a certain extent
and remove all low-contrast extra elements from the scanned image.

Extra lines (mostly horizontal and vertical) can be removed by searching
for structural elements of the image and then applying morphological
operations with the detection kernels of the corresponding line types:
functions getStructuringElement() and morphologyEx() OpenCV
libraries respectively [15]. The result of applying the above OpenCV
functions to brighten the scanned image and remove horizontal and vertical

https://www.geeksforgeeks.org/python-opencv-cv2-cvtcolor-method/
https://www .geeksforgeeks.org/python-image-blurring-using-opencv/
https://www.geeksforgeeks.org/python-thresholding-techniques-using-opencv-set-1 -simple-thresholding/
https://www.geeksforgeeks.org/text-detection-and-extraction-using-opencv-and-ocr/
https://www.geeksforgeeks.org/python-opencv-morphological-operations/
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(a) extra lines removing

(b) contours of text elements

Figure 1. Good quality image processing

lines in a tabular presentation of information is shown in Figure 1a. The
settings for these functions are determined by the quality of the original
document and the scanning process.

The image obtained in this way makes it possible to obtain the contours
of all text elements for their classification using CNN, Figure 1b.

The findContours() function of the OpenCV [13] library was used to
find the contours of text elements.

However, the removal of a straight or curly line passing through the
text element of the image leads to distortion or segmentation of the latter,

https://www.geeksforgeeks.org/find-and-draw-contours-using-opencv-python/
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(a) line passing through text removing

(b) contours of segmented text elements

Figure 2. Poor quality image processing

which makes it difficult to further classify it, as we see on Figure 2.
It is the presence of segmented text elements that determined the

choice of CNNs capable of classifying fragmented images with sufficiently
high accuracy based on stable features of the latter. The paper considered
elements of the text with a fragmentation of no more than 10–15%.
Immediately prior to CNN classification, all segmented text element outlines
are converted into a single 20×25 pixel outline using PIL [13] functions.
In addition, in some cases, it is possible to restore fragmented images as
a result of their skeletonization by calling the functions erode() and
dilate() of the OpenCV [15] library, which improves classification accuracy,
see Figure 3.

https://www.geeksforgeeks.org/python-opencv-cv2-erode-method/
https://www.geeksforgeeks.org/erosion-and-dilation-morphological-transformations-in-opencv-in-cpp/
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Figure 3. Contour content of text elements for their classifi-
cation on CNN

Figure 4. CNN organization

2. CNN Model

The formation of almost any CNN model is heuristic in nature and
consists in choosing its parameters, structure, and data sets for training
and testing.

As noted above, the Keras [12,16] deep learning library was used to
create a CNN model. As a result of experimental studies, the following CNN
structure was chosen: 3 convolutional layers (Conv2D ), 3 pooling layers
(MaxPooling2D ), 1 linearizing layer (Flatten ) and 2 fully connected
layers (Dense ), see Figure 4.

The description of the CNN layers is shown in Figure 5.
The activation functions of all CNN neurons are «sigmoid» . Compila-

tion and training parameters are chosen as standard for multiclass classifi-
cation: optimizer «adam» , loss function «categorical-crossentropy» ,
metric «accuracy» .

According to the requirements of Keras, the preparation of datasets for
the implementation of a multiclass classification CNN consists in the
formation of images of text elements and their correlation with the
corresponding image classes [16]. The number of image classes in this work
was chosen to be 42, namely: 10 classes for numbers from 0 to 9, 30 classes
for the letters of the Russian alphabet, with the exception of the compound
letters «ё», «й», «ы» and 2 classes for the main punctuation marks «.» and
«,». For each class of digital images, 10 and 5 training and testing images

https://keras.io/api/layers/convolution_layers/convolution2d/
https://keras.io/api/layers/pooling_layers/max_pooling2d/
https://keras.io/api/layers/reshaping_layers/flatten/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/activations/
https://keras.io/api/optimizers/adam/
https://keras.io/api/losses/
https://keras.io/api/metrics/accuracy_metrics/
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conv2d_input

InputLayer

input:

output:

[(None, 25, 20, 3)]

[(None, 25, 20, 3)]

conv2d

Conv2D

input:

output:

(None, 25, 20, 3)

(None, 25, 20, 64)

max_pooling2d

MaxPooling2D

input:

output:

(None, 25, 20, 64)

(None, 12, 10, 64)

conv2d_1

Conv2D

input:

output:

(None, 12, 10, 64)

(None, 12, 10, 128)

max_pooling2d_1

MaxPooling2D

input:

output:

(None, 12, 10, 128)

(None, 6, 5, 128)

conv2d_2

Conv2D

input:

output:

(None, 6, 5, 128)

(None, 6, 5, 256)

max_pooling2d_2

MaxPooling2D

input:

output:

(None, 6, 5, 256)

(None, 3, 2, 256)

flatten

Flatten

input:

output:

(None, 3, 2, 256)

(None, 1536)

dense

Dense

input:

output:

(None, 1536)

(None, 84)

dense_1

Dense

input:

output:

(None, 84)

(None, 12)

Figure 5. CNN layers
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(a) for training

(b) for testing

Figure 6. Sample images for learning

were formed, for letter images, 20 and 10, respectively. Lowercase and
uppercase letters belong to the same class.

A small number of images is explained by the uniformity of the
elements of typewritten documents when using basic fonts. In addition, the
presence in the Keras library of the image batch generator ImageDataGen-
erator allows you to get different variations of images through the use
of transformations compression, stretching, tilting, etc. .

For the formation of training images, fonts were chosen that implement
all the main features of displaying text elements: Times.ttf, Calibri.ttf,
Arial.ttf, Bahnschrift.ttf, Cambria.ttc, RockwellNova.ttf, Framd.ttf,
Tahoma.ttf, Corbel. ttf and Micross.ttf. The test images are generated
by the fonts Times.ttf, Segoeuil.ttf, Georgia.ttf, Lucon.ttf and Cour.ttf.
For example, the contents of the training and test sets of images for the
number «9» are shown in Figure 6.

Before the CNN training process, all images from the training and test
sets are resized by the resize() function of the OpenCV library to a size
of 20×25.

Dependences of the accuracy of the model and its loss function for all
training epochs are shown in Figure 7.

Figure 8 shows the resulting values of the loss and accuracy functions
for the test data set with 50 training epochs and a data batch size (batch)
of 10 were 0.1334 and 0.9653 respectively.

https://machinelearningknowledge.ai/keras-imagedatagenerator-for-image-augmentation/?ysclid=l63czf65ke165003237
https://machinelearningknowledge.ai/keras-imagedatagenerator-for-image-augmentation/?ysclid=l63czf65ke165003237
https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/
https://www.geeksforgeeks.org/image-resizing-using-opencv-python/
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Figure 7. CNN model accuracy and loss
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Figure 8. Values of loss and accuracy functions for test
images

Figure 9. CNN predictions of some test images

The classification results for some images from a fairly small test set
are shown in Figure 9. For an incorrectly classified image, its title is
displayed in red.

3. Image Fragment Recognition with CNN

The purpose of this final step is to recognize CNN text elements whose
contours were revealed during the pre-processing of the scanned image. Its
implementation consists in recognizing the contents of all the contours
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Figure 10. Text elements recognition results

Figure 11. Setting the parameters of the preprocessing step

of the text elements identified at the previous stage, in other words, in their
correlation with one of the 42 image classes.

As experimental studies have shown, the use of a CNN of any structure
does not allow one to recognize the scanned text with 100% accuracy. As
a result, at the final stage, depending on the content, the numbers are
replaced with letters and vice versa and the resulting text is compared with
the results of its recognition using Tesseract OCR from Google [17]. The
results of recognition of poor quality image content with their subsequent
correction are shown in Figure 10. Recognition errors are highlighted in red.

Based on the results of the research, a specialized PS was developed.
Python was chosen as the programming language because it implements
many libraries for data processing [18]. PS allows you to set the parameters
of image preprocessing (Figure 11), CNN model compilation options,
(Figure 12), post-processing options (Figure 13), and visualize all the
main stages of work (Figure 14).

The developed PS is currently used in the branch of the Federal State
Budgetary Institution «FKP Rosreestra» in the Kaluga Region to automate



56 Igor V. Vinokurov

Figure 12. Configuring CNN model compilation options

Figure 13. Setting up the post-processing step

Figure 14. Visualization of classification stages

the processing of scanned documents with the coordinates of land plots and

capital construction projects.
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Conclusion

Based on the mathematical and experimental studies carried out,
a software system was developed that implements the recognition of text
elements on scanned images of poor quality. PS implements the work
of the CNN model, correlating the selected fragments of the original image
with the classes of the main elements of the text: letters, numbers and
punctuation marks. The selected CNN model, its compilation parameters,
pre-processing of the scanned image and processing of the classification re-
sults made it possible to obtain a sufficiently high recognition accuracy
of about 96% for text elements with fragmentation within 10-15%.
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