PROGRAM SYSTEMS: THEORY AND APPLICATIONS

12+

 

Online Scientific Journal published by the Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Artificial Intelligence, Intelligence Systems, Neural Networks
Software and Hardware for Distributed Systems and Supercomputers
Mathematical Foundations of Programming
Information Systems in Culture and Education
Healthcare Information Systems
Methods for Optimal Control and Control Theory
Mathematical Modelling

Papers are accepted in the form of a PDF file

To view the PDF files, you will need Adobe Acrobat Reader

    

• Содержание выпуска •
• Artificial Intelligence, Intelligence Systems, Neural Networks •
• Software and Hardware for Distributed Systems and Supercomputers •
• Mathematical Foundations of Programming •
• Information Systems in Culture and Education •
• Healthcare Information Systems •
• Methods for Optimal Control and Control Theory •
• Mathematical Modelling •

Mathematical Modelling

Responsible for the Section: doctor of technical Sciences Vladimir Gurman, candidate of technical Sciences Sergei Amelkin

On the left: assigned number of the paper, submission date, the number of A5 pages contained in the paper, and the reference to the full-text PDF .

 

Article # 25_2018

14 p.

PDF

submitted on 24th Oct 2018 displayed on website on 05th Nov 2018

Ilya Starodumov, Peter Galenko, Nikolai Kropotin, Dmitri Alexandrov
On approximation of a periodic solution of the phase field crystal equation in simulations by the finite elements method

The paper presents a mathematical model of the phase field crystal (PFC), describing the evolution of the microstructure of matter during the crystallization process. Such a model is expressed by a nonlinear particle differential equation of the sixth order in space and the second in time, for the solution of which in recent years finite element computational algorithms have been developed and guarantee unconditional stability and second order of convergence. However, due to the periodic nature of the solution of the PFC problem, the accuracy of the approximation of a numerical solution can vary significantly with a change in the discretization parameters of the simulated system.
Taking into account the high computational complexity of the PFC problem in the three-dimensional formulation, the determination of the discretization criteria becomes an urgent practical issue. In this article, we study the influence of finite element sizes on the approximation of the solution of the PFC problem for cases of a flat and spherical crystallization front. It is shown that the excess of certain dimensions of the final element leads to significant qualitative changes in the numerical solution and, as a consequence, to a sharp decrease in the accuracy of the approximation. (In Russian).

Key words: crystal phase field method, numerical calculations, finite elements, approximation.

article citation

http://psta.psiras.ru/read/psta2018_4_265-278.pdf

DOI

https://doi.org/10.25209/2079-3316-2018-9-4-265-278

Article # 27_2018

11 p.

PDF

submitted on 09th Nov 2018 displayed on website on 17th Dec 2018

Artur Ovanesyan
About relationship between the need for medical care and the distribution of life expectancy

The article considers the possibility of forecasting the need for medical care of the population using the density distribution of life expectancy and the probabilistic dependence of the need for medical care by age. The relationship between the distribution of life expectancy and age distribution of patients is established. It is expressed by the average life expectancy.
An example of the distribution of life expectancy is given. It is presented in graphical form, showing the form of the found approximation together with the actual data. By approximation, the distribution of life expectancy is calculated.
The probability of dependence of the need for medical care by age is given in the article on the basis of statistical data, presented in graphical form. Since there is a relationship between this dependence and the distribution of patients by age, the forecasting of the need for medical care is realized. Examples of calculation for specific ages are given, the possibility of calculation for all ages is indicated.
As a result, the study identified the possibility of predicting the need for medical care on the basis of data on life expectancy. (In Russian).


Key words: relationship of distributions, life expectancy, age distribution, need for medical services.

article citation

http://psta.psiras.ru/read/psta2018_4_307-317.pdf

DOI

https://doi.org/10.25209/2079-3316-2018-9-4-307-317

• Artificial Intelligence, Intelligence Systems, Neural Networks •
• Software and Hardware for Distributed Systems and Supercomputers •
• Mathematical Foundations of Programming •
• Information Systems in Culture and Education •
• Healthcare Information Systems •
• Methods for Optimal Control and Control Theory •
• Mathematical Modelling •

 

Adress: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, PSTA Online Journal, 4 a Peter the First Street,
Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia
Phone: +7-4852-695-228.       E-mail: info@psta.psiras.ru.      Website: http://psta.psiras.ru

© Electronic Scientific Journal "Program Systems: Theory and Applications" 2010-2017
© Ailamazyan Program System Institute of RAS 2010-2018