ПРОГРАММНЫЕ СИСТЕМЫ: ТЕОРИЯ И ПРИЛОЖЕНИЯ

12+

Электронный научный журнал Института программных систем имени А.К. Айламазяна Российской академии наук

Титульная страница
О журнале
Редакция
Процесс публикации
Научная этика
Авторам
Выпуски журнала
Архив выпусков

Статьи представлены в формате PDF

Для чтения файлов в формате PDF рекомендуется
программа Adobe Reader

 


• Содержание выпуска •
• Искусственный интеллект, интеллектуальные системы, нейронные сети •
• Методы оптимизации и теория управления •
• Программное и аппаратное обеспечение распределенных и суперкомпьютерных систем •
• Информационные системы в медицине •

Искусственный интеллект, интеллектуальные системы, нейронные сети

Ответственные за рубрику: д.т.н. Хачумов В.М., к.т.н Куршев Е.П.
Слева для каждой статьи показаны: присвоенный статье порядковый номер; дата поступления статьи в редакцию; количество страниц статьи в формате А5; ссылка на полный текст статьи в формате PDF .

 

5

Поступила в редакцию 27.04.2019

Подписана в печать 26.06.2019

29 с.

PDF

К. В. Пушкарев
Глобальная оптимизация на основе нейросетевой аппроксимации инверсных зависимостей с эволюционным управлением параметрами
(англ.)

Представлен гибридный метод глобальной оптимизации НАИЗ-PSO на основе нейросетевой аппроксимации инверсных зависимостей (координат от значений целевой функции) и метода роя частиц, служащий для нахождения глобального минимума непрерывной целевой функции многих переменных в области, имеющей вид многомерного параллелепипеда. Целевая функция рассматривается как абстрактная вычислительная процедура («чёрный ящик»).
Метод использует группы пробных точек, движущихся как в методе роя частиц. Одна из возможных целей движения определяется через отображение пониженных значений целевой функции в координаты посредством модифицированных дуальных обобщённо-регрессионных нейронных сетей, конструируемых по пробным точкам.
Параметрами процесса управляет эволюционный алгоритм. В алгоритме управления популяция состоит из эволюционирующих правил, заключающих в себе наборы параметров. Для оценки приспособленности особи используются две числовые характеристики: краткосрочная (очарование) и долгосрочная (достоинство). По очарованию правила отбираются для размножения и применения. Достоинством определяется выживание особи при формировании новой популяции. Двойная оценка правил решает проблему вымирания потенциально полезных особей при краткосрочном изменении ситуации. Преимущество эволюционного управления над случайным изменением параметров НАИЗ-PSO в процессе поиска, а также тенденция к уменьшению погрешности при повторном использовании базы правил показаны на тестовых задачах с целевыми функциями 100 переменных.


Ключевые слова:
глобальная оптимизация, эвристические методы, эволюционные методы, нейронные сети, установка параметров, управление параметрами, метод роя частиц.

Ссылка на статью обязательна

http://psta.psiras.ru/read/psta2019_2_3-31.pdf

цифровой идентификатор статьи DOI

https://doi.org/10.25209/2079-3316-2019-10-2-3-31

6

Поступила в редакцию 27.04.2019

Подписана в печать 26.06.2019

33 с.

PDF

К. В. Пушкарев
Глобальная оптимизация на основе нейросетевой аппроксимации инверсных зависимостей с эволюционным управлением параметрами

Представлен гибридный метод глобальной оптимизации НАИЗ-PSO на основе нейросетевой аппроксимации инверсных зависимостей (координат от значений целевой функции) и метода роя частиц, служащий для нахождения глобального минимума непрерывной целевой функции многих переменных в области, имеющей вид многомерного параллелепипеда. Целевая функция рассматривается как абстрактная вычислительная процедура («чёрный ящик»).
Метод использует группы пробных точек, движущихся как в методе роя частиц. Одна из возможных целей движения определяется через отображение пониженных значений целевой функции в координаты посредством модифицированных дуальных обобщённо-регрессионных нейронных сетей, конструируемых по пробным точкам.
Параметрами процесса управляет эволюционный алгоритм. В алгоритме управления популяция состоит из эволюционирующих правил, заключающих в себе наборы параметров. Для оценки приспособленности особи используются две числовые характеристики: краткосрочная (очарование) и долгосрочная (достоинство). По очарованию правила отбираются для размножения и применения. Достоинством определяется выживание особи при формировании новой популяции. Двойная оценка правил решает проблему вымирания потенциально полезных особей при краткосрочном изменении ситуации. Преимущество эволюционного управления над случайным изменением параметров НАИЗ-PSO в процессе поиска, а также тенденция к уменьшению погрешности при повторном использовании базы правил показаны на тестовых задачах с целевыми функциями 100 переменных.


Ключевые слова:
глобальная оптимизация, эвристические методы, эволюционные методы, нейронные сети, установка параметров, управление параметрами, метод роя частиц.

Ссылка на статью обязательна

http://psta.psiras.ru/read/psta2019_2_33-65.pdf

цифровой идентификатор статьи DOI

https://doi.org/10.25209/2079-3316-2019-10-2-33-65

 

• Содержание выпуска •
• Искусственный интеллект, интеллектуальные системы, нейронные сети •
• Методы оптимизации и теория управления •
• Программное и аппаратное обеспечение распределенных и суперкомпьютерных систем •
• Информационные системы в медицине •

 

Адрес редакции: 152021, Ярославская обл., Переславский район, село Веськово, ул. Петра Первого, д. 4 "а"
Тел.: (4852) 695-228.       E-mail: info@psta.psiras.ru.      Сетевой адрес издания: http://psta.psiras.ru

© Электронный научный журнал «Программные системы: теория и приложения» (дизайн) 2010-2017
© Институт программных систем имени А.К. Айламазяна РАН  2010-2018