PROGRAM SYSTEMS: THEORY AND APPLICATIONS

12+

 

Online Scientific Journal published by the Organization of Russian Academy of Sciences Program Systems Institute of RAS (PSI RAS)

Home
Mathematical Modelling

Papers are presented in PDF format


• Содержание выпуска •
• Software and Hardware for Distributed Systems and Supercomputers •
• Mathematical Modelling •

Software and Hardware for Distributed Systems and Supercomputers

Responsible for the Section: Sergei Abramov, Dr. Phys.-Math.Sci., corresponding member of RAS

On the left: assigned number of the paper, submission date, the number of A5 pages contained in the paper, and the reference to the full-text PDF .

 

Article # 6_2022

31 p.

PDF

submitted on 18th Feb 2022 displayed on website on 04th Apr 2022

Yury V. Shevchuk
Memory-efficient sensor data compression

We treat scalar data compression in sensor network nodes in streaming mode (compressing data points as they arrive, no pre-compression buffering). Several experimental algorithms based on linear predictive coding (LPC) combined with run length encoding (RLE) are considered. In entropy coding stage we evaluated (a) variable-length coding with dynamic prefixes generated with MTF-transform, (b) adaptive width binary coding, and (c) adaptive Golomb-Rice coding. We provide a comparison of known and experimental compression algorithms on 75 sensor data sources. Compression ratios achieved in the tests are about 1.5/4/1000000 (min/med/max), with compression context size about 10 bytes. (In Russian)

Key words: LPC, linear predictive coding, DTN, delay tolerant network, Laplace distribution, adaptive compression, bookstack, MTF transform, RLE, RLGR, prefix code, Elias Gamma coding, Golomb-Rice coding, vbinary coding.

article citation

http://psta.psiras.ru/read/psta2022_2_3-33.pdf

DOI

https://doi.org/10.25209/2079-3316-2022-13-2-3-33

Article # 7_2022

29 p.

PDF

submitted on 18th Feb 2022 displayed on website on 04th Apr 2022

Yury V. Shevchuk
Memory-efficient sensor data compression

We treat scalar data compression in sensor network nodes in streaming mode (compressing data points as they arrive, no pre-compression buffering). Several experimental algorithms based on linear predictive coding (LPC) combined with run length encoding (RLE) are considered. In entropy coding stage we evaluated (a) variable-length coding with dynamic prefixes generated with MTF-transform, (b) adaptive width binary coding, and (c) adaptive Golomb-Rice coding. We provide a comparison of known and experimental compression algorithms on 75 sensor data sources. Compression ratios achieved in the tests are about 1.5/4/1000000 (min/med/max), with compression context size about 10 bytes. (In Russian)

Key words: LPC, linear predictive coding, DTN, delay tolerant network, Laplace distribution, adaptive compression, bookstack, MTF transform, RLE, RLGR, prefix code, Elias Gamma coding, Golomb-Rice coding, vbinary coding.

article citation

http://psta.psiras.ru/read/psta2022_2_35-63.pdf

DOI

https://doi.org/10.25209/2079-3316-2022-13-2-35-63

 

• Содержание выпуска •
• Software and Hardware for Distributed Systems and Supercomputers •
• Mathematical Modelling •

 

Personal Data Policy

Personal Data Privacy Policy

Adress: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, PSTA Online Journal, 4a Peter the First Street, Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia

Phone: +7-4852-695-228   E-mail:    Website: https://psta.psiras.ru

© Electronic Scientific Journal "Program Systems: Theory and  Applications" 2010-2025
© Organization of Russian Academy of Sciences Program Systems Institute of RAS (PSI RAS) 2010-2025