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Local competing in interpolation problems

Abstract. A simple example illustrates the insufficiency of the known approaches
to interpolation in the problem of recovering a function from a few given specific
values that clearly convey the form.

A local choice between polynomial and rational local interpolants, which
minimizes the local interpolant’s errors at the nearest external nodes from one or
different sides, complements the known approaches. It combines the extreme
computational simplicity of local interpolants with the thorought selection of
them.

The principles of constructing the algorithm are formulated in general terms
for mappings of metric spaces. They provide accurate (with rare exceptions)
reconstruction of mappings that locally coincide with some of the given possible
interpolants.

In the one-dimensional case, the two-stage algorithm guarantees the continuity
of the interpolant and accurately reconstructs

(1) polynomials of small degree,
(2) simple rational functions with a linear denominator,
(3) broken lines of long links with knots at the ends

when these requirements do not contradict each other. An additional parameter
allows you to replace the exact restoration of polylines with the required
smoothness of interpolation.

Key words and phrases: polynomial interpolation, rational interpolation, spline interpolation,
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Introduction

Various variants of the following formulation of the interpolation
problem have been studied and used for centuries:
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Figure 1. Problem areas of the graphs of various interpolants

Problem 1. Given a set y = f |X of values of the unknown function
f : X → Y on a finite subset X ⊂ X .

Assume that the values convey the character of the local behavior of the
function on X . Reconstruct f qualitatively without involving additional
information.

The incompleteness of the modern theory of interpolation within the
framework of the problem formulated is highlighted by an example of a
simple task of recovering lost intermediate data. Figure 1 illustrates the
inapplicability of well-known interpolation methods with an intuitively
obvious solution.

Polynomial of minimal degree wrongly oscillates at the edges. The
oscillations unacceptably overestimate the value at node 0. For local
polynomial splines, the effect is weaker but persists.

For a natural polynomial spline, the effect can be suppressed by
the right choice of the boundary condition. Still, the valley between
the two hills is wavy for all polynomial splines, except those that
preserve monotonicity or convexity.

The loss of monotonicity and convexity during polynomial
interpolation has caused a stream of studies on shape-preserving
splines, see for example [2,5–7].

Monotonicity preserving is effective only when the extrema are
located precisely at the nodes. This condition forces the spline not
to increase or decrease, to be constant on the segment [4,6], so
sharply underestimates the value at node 5.
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Convexity preserving is only useful when all inflection points are
precisely at the nodes. Here this condition requires linear interpolation
on [2,4] and on [6,8] (convexity and concavity are joined), and the
linearity overestimates the values at points 3 and 7. Any linear
portion of the function graph in the figure generates not shown sharp
bends at the bottom or both ends.

Rational interpolation is applicable in the absence of discontinuities.
Continuous rational interpolant of minimal degree may not exist.
The choice of the rational interpolant of the excess degree can be
ambiguous.

Note that neither values of extrema or inflection points nor other information
about the function are assumed to be available. The figure shows that the
known approaches to interpolation can not reproduce the function’s easily
visible features, such as segments of monotonic increase or monotonic
decrease. This inability prevents an acceptable recovery of lost values.
When the data being recovered does not have periodic repetitions, there is
no known effective interpolation alternative for this task [8].

A generally accepted solution to the interpolation problem by minimizing
the error energy in the space of square-summable functions is presented, for
example, in [1]. This way, the optimal solution is implemented by a linear
operator, which gives a polynomial B-spline with unwanted edge effects.

Similar formulations of the interpolation problem (see, for example, [9])
differ in the choice of the objective functional (norm) and come to
completely different optimal solutions for the same given values. In
practical formulations of the interpolation problem, grounds for clear choice
of the target functional are not always visible. In such situations, it turns
out that there are many solutions, and the choice of the correct one is not
defined. As a result, with few nodes, careful use of drawing patterns today
often guarantees a better graph than any available algorithm. Hence, more
accurate algorithms are possible.

Note that the simplicity of expressions is characteristic of fundamental
natural-scientific laws, and the graphs of simple elementary functions look
flawless. Probably the best way to evaluate the quality of interpolation
algorithms is to check the most easily computing expressions’ reconstruction
errors and exact reconstruction of the most simple of them. The quality of
interpolation is uniquely characterized by the set of precisely reconstructed
functions.
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Unpredictable poles of the simplest rational interpolants on the
interpolation segment are the main obstacle to the simplest rational
functions’ exact interpolation. A special kind of interpolant (for example,
[2,3]) and interpolation with fixed poles (for example, [4]) allows avoiding
the poles simply. The score is the heavy loss of precision on continuous
simplest rational functions reconstruction.

What is required is an exact reconstruction of just simple rational
functions on segments of continuity.

R. Schaback [10] was the first to understand and implement this. He
constructed a spline that interpolates monotonic sets of values with a
rational function with a linear denominator and non-monotonic ones
with a polynomial one and showed plots of exponential interpolation and
probability density functions that effectively illustrate shape retention and
multiple precision improvements.

Shchabak’s work did not become widespread due to an unsuccessful
selection criterion: the polynomial interpolant was used only in the absence
of monotonicity. For example, when restoring the function y = x2 from its
values at positive points, instead of quadratic polynomials, fractions with
non-degenerate denominators were used.

Purpose of the article is to construct a continuous interpolation that
accurately locally restores both simple polynomials and simple continuous
rational functions and uses the locally closest such function to interpolate
any data.

First consider the more generic task of finding a common efficient way
to combine competing local interpolation procedures into a global one.

Long time ago, drawing patterns (french curve sets, see Figure 2) have
naturally been associated with graphs of simple expressions for functions
that may include numeric parameters. This association is mentioned in
some early works on interpolation [11,13] and either in modern ones on
anti-aliasing [12].

There is a non-trivial technique of using drawing patterns for plotting
graphs by points not reflected in computer literature. The pattern and
position are selected so that several given points named drawn (falling on
the drawn area) points precisely fall on the curve, and several others named
refining (close to those drawn) are expected to be as possible closer to the
curve. This technique combines the selection of pattern with the selection
of drawn and refining points to ensure a perfect fit. Deep difference from
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Figure 2. Best pattern position for BC, optimal fit is one-sided here

the techniques previously implemented in interpolation algorithms is the
selection of used nodes set sometimes only from better side.

Figure 2 shows the position of the pattern is selected to draw a section
of the curve between the points B and C. We see that B is the inflection
point of the curve being drawn, and therefore using the point A instead
of D will give a significantly worse result with convexity upward. This
pattern’s orientation to both A and D with the equal power can also
degrade the result.

The example clarifies that when building interpolants between the
nearest nodes, it happens to be preferable to use additional nodes on only
one side of the area being drawn. When working with drawing patterns,
this situation often arises when one node is close to the inflection point or a
singular point of an algebraic function.

This technique poses two new independent problems:
(1) Calculate the parameters of the interpolants that minimize errors in

the refining nodes at exact values in the drawn nodes.
(2) Model the relation between local interpolation error, choice of nodes

and the errors in the refining nodes.

The first problem is discovered below for the interpolant classes used
in [10].

To solve the second problem, a model is constructed based on an
estimate of the interpolation error of the minimum degree polynomial.
Estimation in the form of a product of distances to knots made it possible
to formalize the described technique in general terms of abstract metric
spaces.

When convex combinations of functions of the interpolant class are
defined, the interpolation operator can be constructed continuous and,
as expected, more accurate. Combinations are calculated with weights
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that are inverse to the error. A special conflict zone of exact interpolants
is highlighted by setting the error’s threshold value, below which the
interpolants are considered to be approximately equivalent. This way
excludes division by zero.

A two-stage sampling algorithm focused on the construction of smooth
interpolants and reasonable depreciation of the jump in the next derivative
completes the article. For a long time, at the first stage, short sections of
the graph (germs) were outlined by human or program in the vicinity of
given values, and then the germs were connected independently at each
segment. This two-stage feature has been inherited by the algorithms in
[13] half a century ago. The calculated values of the derivatives at the
nodes complete the germs.

1. Formalization of competitive pattern selection

The described technique of using patterns is based only on minimizing
distances. This allows it to be formulated in general terms of metric spaces.

For arbitrary metric spaces (X , ρX ) and (Y, ρY), consider the generic
problem of interpolation over a finite set of nodes X ⊂ X with the given
values y(x), x ∈ X. Suppose that only a finite set of available competing
local interpolants ϕj is known, given in closed subdomains Mj ⊂ X , j ∈ J ,
and the problem is to optimally choose an interpolant for a particular
point xc ∈ M. This point can for example, to be the center of the set Mc

— a particular simplex or cell into which the space is divided; the case
Mc = {xc} is also allowed. The problem is to choose the optimal local
interpolant for Mc.

The appropriate choice needs modeling of unknown relation between
interpolation error and sets of nodes.

1.1. Dependence of the interpolation error on the location of nodes

A simple formula appears for one-dimensional polynomial interpolation:

Theorem 1. The magnitude of one-dimensional polynomial inter-
polation error in the simplest case is proportional to the product of the
distances to the interpolation nodes.

Proof. Let interpolation by k nodes be considered. Then the
polynomials of degree below k are interpolated exactly and it is necessary
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to consider the error of interpolation for the polynomial of degree k. This
error is a polynomial of degree k and vanishes at the interpolation nodes.
Therefore, it has the form ck

∏︁k
i=1(x− xi). �

Unfortunately, no simple convincing analogs of this theorem are
foreseen for other formulations of interpolation problems. In the absence of
alternatives, we can only rely on this simple formula heuristically.

1.2. Simple objective function

Let’s exclude from consideration unsuitable local interpolants for which
Mc 6⊂ MJ or ϕj(x) 6= y(x) for some node x ∈ X ∩Mc. If there are no
candidates left, then the problem has no solution.

Denote Xj = {x ∈ X ∩Mj : ϕj(x) = y(x)} and X ′
j = X ∩Mj \Xj .

Define the degree d(ϕj) of the interpolants ϕj in terms of the cardinality of
the set of coinciding values by the formula

d(ϕj) = max
B⊂Mj , B∩X′

j=∅
|B ∩Xj |.

We leave only the interpolants with the highest degree.
If Xr = B ∩X ′

j = {x} consists of a single node, then in accordance
with the theorem 1 the target function is

δj,x = ρY (ϕj(x), y(x))
∏︂

xi∈Xp

ρX (xi, xc)

ρX (xi, x)
.(1)

If xc coincides with one of the nodes, then the zero factor in the
numerator should be excluded, since in this case we are not talking about
the node itself, but about nearby points with a constant small distance.

If there are several nodes in Xr, then it is reasonable to consider their
contributions independent and apply an unbiased error estimate:

δj,Xr =
1

|Xr|
∑︂
x∈Xr

δj,x.(2)

Thus, the optimal local interpolants are calculated by simple enumera-
tion using the target formula 2.

If the probability of zero error is vanishingly small, then such an
algorithm guarantees locally exact reconstruction of the interpolant from
the used family in the absence of conflicts between them.
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1.3. Refinement for linear space

A finite set of interpolants forces unintended essential differences
between possible interpolants. If, for example, there are approximately
equivalent polynomial and rational interpolants, then the choice between
them is not sufficiently justified and, by analogy with independent
measurements, averaging may look like a more reasonable alternative. The
possibility of such averaging appears when all ϕj(x) lie in the ambient
linear space Φ.

Let ε > 0 — a positive number less than the error of the initial
interpolation data. If only one of the interpolants is accurate enough,
then the result should be approximately it. These considerations can be
combined with averaging with the weights wj = 1

/︁
|δj,xj |+ ε, inversely

proportional to errors in the refining nodes.
If all local interpolants have significant errors, then the weighted sum

can be used as the value of the local interpolant

ϕ(x) =

∑︁
xj∈Xr

wjϕj(x)∑︁
xj∈Xr

wj
(3)

The only accurate interpolant will be restored exactly.
In the one-dimensional case, all linear functions are usually included in

the set of basic interpolants. So any piecewise linear function with singular
points at sufficiently sparse nodes will be reconstructed almost exactly.

Among the well-known one-dimensional interpolation algorithms, only
linear interpolation has such a useful quality.

It should be noted that the described choice of the best interpolant
defined in Mc is aimed exclusively at minimizing the error near xc.

2. Polynomial-rational interpolation

We denote

Pd — the set of all polynomials of one variable degree at most d on
the segment;

Rdnom,dq — the set of all fractions with a polynomial of degree at most
dnom in the numerator and no more than dq in the denominator; in
this case, the piece Rdnom,dq

[a,b] is the subset consisting of all rational
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continuous on [a, b] functions with the specified limitation on the
degree.

In the special case of one-dimensional rational interpolants, the
standard deviation with weight is traditionally used. The weight function
in this case is the modulus of the denominator q(x) of the fraction ϕ(x),
normalized by the unit leading coefficient.

BRd:q (Xp, Xr, y, ϕ) =
∑︂
x∈Xr

q2(x)(ϕ(x)− y(x))2.(4)

This linearizes the problem and makes it possible to dramatically simplify
the calculation of the optimal interpolant.

Let further S = (Rdnom,dq

M , Xp, Xr, y) — local formulation of the
interpolation problem on the segment M ⊂ X = [a, b] ⊂ R and dnom+dq = d.
Denote dp = |Xp|−1, ds = dnom−dp−1, Np = {0, . . . , dp}, Nr = {0, . . . , dr},
Ns = {0, . . . ,ds} and Nq′ = {0, . . . ,dq − 1}. For simplicity, we restrict
ourselves to the case dp + dq 6 dnom.

Theorem 2. Let dp 6 dnom − dq. Then the optimal solution ϕ = C(S)
in the estimate (4) has the form

ϕ(x) = p(x) +
ω(x)s(x)

q(x)
,(5)

where p is a polynomial of degree dp that interpolates over nodes Xp,
polynomial ω(x) =

∏︁
xi∈Xp

(x− xi), and the coefficients of the polynomials

s(x) =
∑︁
l∈Ns

slx
l degree ds and q(x) =

∑︁
l∈Nq′

qlx
l of degree dq, normalized by

qdq = 1, are determined by the system of linear equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i∈Nq′

qi
∑︁

x∈Xr

(p(x)− y(x))ω(x)xi+l

+
∑︁
i∈Ns

si
∑︁

x∈Xr

ω2(x)xi+l = 0, l ∈ Ns,∑︁
i∈Nq′

qi
∑︁

x∈Xr

(p(x)− y(x))2xi+l

+
∑︁
i∈Ns

si
∑︁

x∈Xr

(p(x)− y(x))ω(x)xi = 0, l ∈ Nq′ ,

where ω(x) =
∏︁

xi∈Xp
(x− xi).
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Proof. For the function (5) from the statement of the theorem, the
right-hand side (4) takes the form∑︂

x∈Xr

((p(x)− y(x))q(x) + ω(x)s(x))2.(6)

Equating the derivatives of this expression with respect to the coefficients s
and by the coefficients q to zero and canceling the common factors, we
obtain a system of linear equations for the coefficients:⎧⎪⎨⎪⎩

0 =
∑︁

x∈Xr

((p(x)− y(x))q(x) + ω(x)s(x))ω(x)xl, l ∈ Ns,

0 =
∑︁

x∈Xr

((p(x)− y(x))q(x) + ω(x)s(x))(p(x)− y(x))xl, l ∈ Nq′ .

By substituting the representations s and q, a system of equations is
obtained from this system under the conditions of the theorem. The
existence and uniqueness of the solution is determined by the correctness of
the statement of the problem S. �

Corollary 1. Let S = (Pd
M , Xp, Xr, y) be a local statement of the

interpolation problem. Then the optimal solution ϕ = C(S) in the estimate
(4) has the form

ϕ(x) = p(x) + ω(x)s(x),

where p is an interpolation polynomial over the nodes Xp, and the coefficients
of the polynomial s(x) =

∑︁
j∈Nr

sjx
j are determined by the system of linear

equations∑︂
i∈Nr

si
∑︂
x∈Xr

ω2(x)xi+j =
∑︂
x∈Xr

(y(x)− p(x))ω2(x)xj , j ∈ Nr.(7)

3. Two Stage Polynomial Rational Interpolation

Let in the notation of the previous section there are exactly two nodes
x1 < x2, but in addition to the values of the interpolated function, the
values of its derivatives up to the order lm > 0 inclusive, m = 1, 2. In this
case, both of the higher derivatives specified at each node are assumed
to be approximations, and the remaining lm − 1 give exact values for
interpolation. Consider an arbitrary auxiliary polynomial f , whose values
and derivatives at the nodes x1 and x2 coincide with the given ones, and
denote

ω(x) = (x− x1)
l1(x− x2)

l2 .
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Then the linearizing estimate (4) of the function (5) is replaced by the
estimate

B′
Rdnom:1(x1, x2, l1, l2, y, ϕ)

=

2∑︂
m=1

(︄
∂lm

∂xlm

(︂(︁
p(x)− f(x)

)︁
q(x) + ω(x)s(x)

)︂⃓⃓⃓⃓
x=xm

)︄2

(8)

by the values of the higher derivatives of y under the condition

0 =
∂l

∂xl

(︂(︁
p(x)− f(x)

)︁
q(x) + ω(x)s(x)

)︂⃓⃓⃓⃓
x=xm

∀l<lm∀m=1,2,(9)

equivalent by virtue of the Leibniz formulas for differentiating the product
as required

ϕ(l)(xm) = y(l)(xm) ∀l<lm∀m=1,2,

and convenient for calculations

p(l)(xm) = y(l)(xm) ∀l<lm∀m=1,2.(10)

Theorem 3. Under the assumptions under consideration, for dq = 0, 1,
the optimal solution ϕ = C(S) in the estimate (8) has the form

ϕ(x) = p(x) + ω(x)r(x),

where p is the Hermite polynomial in exactly given values of the function
and lower derivatives,

r(x) =

⎧⎨⎩s0 + s1x, dq = 0,
s0

q0 + x
, dq = 1;

s0 =

⎧⎪⎪⎨⎪⎪⎩
BxCx −BxxC

BxxB −B2
x

, dq = 0,

AxC −ACx

AB − C2
, dq = 1;

s1 =
BCx −BxC

BxxB −B2
x

, q0 =
AxB − CxC

AB − C2
;

A = δ21 + δ22 , Ax = δ21x1 + δ22x2,

B = b21 + b22, Bx = b21x1 + b22x2,
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Bxx = b21x
2
1 + b22x

2
2,

C = δ1b1 + δ2b2, Cx = δ1b1x1 + δ2b2x2;

δm = p(lm)(xm)− y(lm)(xm), m = 1, 2;

bm = lm!(xm − x˜︁m)l˜︂m , m = 1, 2;˜︁m = 3−m.

Proof. Expanding the right-hand side (8), taking into account the
zero lowest derivatives of the function ω(x) and the identity (10), we
reduce it to the form

2∑︂
m=1

(︂(︁
p(lm)(x)− y(lm)(xm)

)︁
q(xm) + ω(lm)(xm)s(xm)

)︂2
.

Taking into account the equality ω(lm)(xm) = lm!(Xm−x˜︁m)l˜︂m , substituting
expressions for q and for s, and ω(lm)(xm) = lm!(xm−x˜︁m)l˜︂m , differentiating
the obtained equality for unknown coefficients and equating the derivatives
to zero, we obtain a system of equations for these coefficients. For dq = 0,
by definition q(x) ≡ 1, and this system has the form{︄

0 = (δ1 + b1(s0 + s1x1))b1 + (δ2 + b2(s0 + s1x2))b2,

0 = (δ1 + b1(s0 + s1x1))b1x1 + (δ2 + b2(s0 + s1x2))b2x2.

that is, it is a linear system on s0 and s1 of the form,

{︄
0 = C +Bs0 +Bxs1,

0 = Cx +Bxs0 +Bxxs1.
(11)

For dq = 1, the function s is constant, q1 = 1, and the system has the form{︄
0 = (δ1(q0 + x1) + b1s0)δ1 + (δ2(q0 + x2) + b2s0)δ2,

0 = (δ1(q0 + x1) + b1s0)b1 + (δ2(q0 + x2) + b2s0)b2,

or {︄
0 = Ax +Aq0 + Cs0,

0 = Cx + Cq0 +Bs0.
(12)

�
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4. Sketch of a for polynomial-rational interpolation algorithm

Polynomial-Rational interpolation Algorithm

Purpose of the algorithm

The algorithm approximately reconstructs the unknown mapping

f : X → R.

If tout = 0, then on each Mi as an interpolant the simple function closest to
the specified values is chosen:
• or a polynomial of degree d
• or a continuous rational function with a numerator of degree d− 1 and a

linear (dq = 1) denominator of the form x− c so as to ensure
(1) matching values at nodes with smoothness m in case m > 0,
(2) exact local recovery of each continuous function of the interpolant class

on the convex hull of any d + 2 nodes if the data allows.
For tout > 0, the output family is one, but the optimization uses both families
of local interpolants.

Initial data

X = [a, b] ⊂ R — interpolation segment;
X = {a = x0 < · · · < xn = b} ⊂ X — a discrete set of nodes,

dividing [a, b] into n segments Mi = [xi−1, xi];
y : X → R — values specified in nodes;
d > 1 — degree of interpolation;
tout — type of interpolant at output:
tout = 0 — polynomial and rational,
tout = 1 — only polynomials,
tout = 2 — only rational (for d < 4 this entails preserving monotonicity).

σ 6= 0 if you really need superior smoothness bd−1
2

c, otherwise the smooth-
ness remain max(0, bd−3

2
c);

ε > 0 — lower error estimate;

When calculating germ in a node, the values in this and no more than d + 1 nearest
nodes on each side are used.

Local calculations using short formulas based on separated differences, avoiding need
for high precision arithmetic.
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Divided differences and Newton’s polynomials

 For (For (For ( l = 0, . . . , d  ){){){  For (For (For ( i = 0, . . . , n− l  ){){){ PRaPRaPRa

 If (If (If ( l == 0  )))  Then {Then {Then {κi,i := yi;  }}}  Else {Else {Else {κi,i+l :=
κi,i+l−1 − κi+1,i+l

xi − xi+l

 }}}  }}}  }}} PRa1aPRa1aPRa1a

 FunctionFunctionFunction ωi,j(x)
def
=  {{{  Return (Return (Return (

j∏︁
l=i

(x− xl)  )))  }}} PRbPRbPRb

 FunctionFunctionFunction pi,j(x)
def
=  {{{  If (If (If ( i == j  )))  ////// the Newton’s polynomial on [xi, xj ] PRcPRcPRc

 Then {Then {Then {  Return (Return (Return (xi  )))  }}} PRc1aPRc1aPRc1a

 Else {Else {Else {  Return (Return (Return (pi,j−1(x) + κi,j ωi,j−1(x)  )))  }}}  }}} PRc1bPRc1bPRc1b

 For (For (For ( i = 0, . . . , n  ){){){  ////// sequential enumeration of nodes is easy
 ////// to parallelize, the locality radius is d + 1

 PRdPRdPRd

Stage 1. Calculate derivatives at all the nodes

Differentiation of Newton’s polynomial pl,j(xi)

 For (For (For (ν = 0, . . . ,m  ){){){  ////// derivative order in node xi ∈ [xl, xj ], j − l < d PRd1PRd1PRd1

 For (For (For ( l = max(0, i− d), . . . ,min(n, i+ d)  ){){){ PRd1aPRd1aPRd1a

 If (If (If (ν == 0  )))  Then {Then {Then {p
(0)
l,l (xi) := y(xj)  }}}  Else {Else {Else {p

(ν)
l,l (xi) := 0  }}} PRd1a1PRd1a1PRd1a1

 For (For (For (j = l + 1, . . . ,min(n, l + d)  ){){){ PRd1a2PRd1a2PRd1a2

ω
(ν)
l,j (xi) := ω

(ν)
l,j−1(xi)(xi − xj) + νω

(ν−1)
l,j−1 (xi), PRd1a2aPRd1a2aPRd1a2a

p
(ν)
l,j (xi) := p

(ν)
l,j−1(xi) + κl,jω

(ν)
l,j−1(xi)  }}}  }}}  }}} PRd1a2bPRd1a2bPRd1a2b

For a competitive definition of a germ in xi through the weighted sum of germs of
test interpolants from successive sets of nodes containing xi, we initialize

Dν
± := 0;  ////// one-side derivatives being defined at xi node PRd2PRd2PRd2

n± := 0;
 ////// the number of terms in the weighted sum or
 ////// minus the number of error-free trial interpolants

 PRd3PRd3PRd3

W± := 0;
 ////// the total weight of the one-way derivative or
 ////// minus the sum of error-free terms

 PRd4PRd4PRd4
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Loop over [xj , xj+d+1] trial segments of d + 1 nodes

 For (For (For (j = max(0, i− d− 1), . . . ,min(n− d− 1, i− d− 1)  ){){){ PRd5PRd5PRd5

Determine the degree dp of the polynomial p in (5) and the numbers of the beginning
of the drawn segment jp and the refining (far) node

 If (If (If ( |xj − xi| == |xj+d+1 − xi|  )))  Then {Then {Then {dp := d− 1  }}}  Else {Else {Else {dp := d;  }}} PRd5aPRd5aPRd5a

 If (If (If ( |xj − xi| < |xj+d+1 − xi|  )))  Then {Then {Then {jp := j, jr := j + d + 1;  }}} PRd5bPRd5bPRd5b

 Else {Else {Else {jp := j + 1; jr := j;  }}} PRd5b2PRd5b2PRd5b2

ξ := xjr ;  ////// the refining node PRd5cPRd5cPRd5c

sign := sign(2jp + dp + 1− 2i);  ////// sign of the offset of the node set relative to xi PRd5dPRd5dPRd5d

Weighted sums of one-sided derivatives of trial interpolants

Let’s start with test interpolants of the form p(x) + s(x)ω.

 If (If (If (d == dp  )))  ////// if the node farthest from xi in the set is qualifying PRd5ePRd5ePRd5e

 Then {Then {Then {  ////// then we use Newton’s interpolant for other nodes, PRd5e1PRd5e1PRd5e1

err :=

⃓⃓⃓⃓
(y(ξ)− pjp,jp+d(ξ))ωjp,jp+d(ξ)

ωjp,i−1(ξ)ωi+1,jp+d(ξ)

⃓⃓⃓⃓
;  }}}  ////// i.e. s(x) ≡ 0 PRd5e2PRd5e2PRd5e2

 Else {Else {Else {

 ////// otherwise the distant nodes are equidistant and the optimality condition

 ////// (7) takes the form
{︃
A0s0 +B0s1 = C0

A1s0 +B1s1 = C1
, where jp = j + 1, PRd5e3PRd5e3PRd5e3

A0 := ω2
jp,j+d(xj) + ω2

jp,j+d(ξ);

A1 := ω2
jp,j+d(xj)xj + ω2

jp,j+d(ξ)ξ; B0 := A1;

B1 := ω2
jp,j+d(xj)x

2
j + ω2

jp,j+d(ξ)ξ
2;

C0 := (y(xj)− p(xj))ω
2
jp,j+d(xj) + (y(ξ)− p(ξ))ω2

jp,j+d(ξ);

C1 := (y(xj)− p(xj))ω
2
jp,j+d(xj)xj + (y(ξ)− p(ξ))ω2

jp,j+d(ξ)ξ;

 PRd5e4PRd5e4PRd5e4

s0 := B1C0−B0C1
A0B1−A1B0

; s1 := A1C0−A0C1
A0B1−A1B0

; PRd5e5PRd5e5PRd5e5

err :=
√︃ ∑︁

x∈{xi,xj}

(︁
y(x)− pjp,j+d(x)− ωj+1,j+d(x)(s1x+ s0)

)︁2  }}} PRd5e6PRd5e6PRd5e6

 If (If (If (err > ε  )))  Then {Then {Then {w := 1
/︁
err;  }}}  Else {Else {Else {w := −1  }}} PRd5fPRd5fPRd5f
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Averaging the derivatives of trial polynomial interpolants

 For (For (For (ν = 1, . . . ,m  ){){){ PRd5gPRd5gPRd5g

order of the weight-averaged derivative

 If (If (If (d == dp  )))  Then {Then {Then {Dν := pνjp,jp+d(xi)  }}} PRd5g1PRd5g1PRd5g1

 Else {Else {Else {Dν := pνj+1,j+d(xi) + (s0 + s1xi)ω
ν
j+1,j+d(xi) + s1ω

(ν−1)
j+1,j+d(xi);  }}} PRd5g1bPRd5g1bPRd5g1b

 If (If (If (sign 6 0  )))  Then {Then {Then {  ////// weighted sum for the derivative on the left PRd5g2PRd5g2PRd5g2

 If (If (If (n− > 0  )))  Then {Then {Then { PRd5g2bPRd5g2bPRd5g2b

 If (If (If (w > 0  )))  Then {Then {Then {Dν
− += wDν

; W− += w; n−++;  }}} PRd5g2b2PRd5g2b2PRd5g2b2

 Else {Else {Else {Dν
− := Dν

; W− := 1; n− := −1;  }}}  }}} PRd5g2b2bPRd5g2b2bPRd5g2b2b

 Else {Else {Else {  If (If (If (w < 0  )))  Then {Then {Then {Dν
− += Dν

; W− += 1; n− += −1;  }}}  }}}  }}} PRd5g2b3PRd5g2b3PRd5g2b3

 If (If (If (sign > 0  )))  Then {Then {Then {  ////// weighted sum for the derivative on the right PRd5g3PRd5g3PRd5g3

 If (If (If (n+ > 0  )))  Then {Then {Then {  If (If (If (w > 0  )))  Then {Then {Then {Dν
+ += wDν

; W+ += w; n+++;  }}} PRd5g3bPRd5g3bPRd5g3b

 Else {Else {Else {Dν
+ := Dν

; W+ := 1; n+ := −1;  }}}  }}} PRd5g3b2bPRd5g3b2bPRd5g3b2b

 Else {Else {Else { PRd5g3b3PRd5g3b3PRd5g3b3

 If (If (If (w < 0  )))  Then {Then {Then {Dν
+ += Dν

; W+ += 1; n+ += −1;  }}}  }}}  }}}  }}} PRd5g3b4PRd5g3b4PRd5g3b4

A trial rational interpolant of the form(5)

p(x) + s0
ω(x)

x− c
, dq = 1, q0 = −c, q1 = 1

 If (If (If (d == dp  )))  Then {Then {Then {  ////// pure interpolation over d + 1 nodes PRd5hPRd5hPRd5h

 ////// from pjp+1,jp+d(x) +
s0ωjp+1,jp+d(x)

x−c
= y(x) for x ∈ {xjp , ξ}

 ////// coefficients are determined by the system
{︃
ωjs0 + δjc = xjδj
ω′s0 + δ′c = xj+dδ

′ , where
 PRd5h2PRd5h2PRd5h2

ωj := ωjp+1,jp+d(xj), δj := y(xj)− pjp+1,jp+d(xj),

ω′ := ωjp+1,jp+d(xj+d), δ′ := y(xj+d)− pjp+1,jp+d(xj+d),
 PRd5h3PRd5h3PRd5h3

s0 :=
δ′xjδj−δjxj+dδ

′

ωjδ′−ω′δj
, c :=

ω′xjδj−jxj+dδ
′

ωjδ′−ω′δj
; PRd5h4PRd5h4PRd5h4
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err :=
⃓⃓⃓
y(ξ)− pjp,jp+d(ξ)−

s0ωjp,jp+d(ξ)

ξ−c

⃓⃓⃓
 }}} PRd5h5PRd5h5PRd5h5

 Else {Else {Else {

 ////// otherwise the far nodes are equidistant and the optimality condition
 ////// interpolants of the form (5) from the Theorem 2

 ////// is written by the system of equations
{︃
A0s0 +B0c = C0

A1s0 +B1c = C1
, where

 PRd5h6PRd5h6PRd5h6

A0 := −ω2
j+1,j+d(xj)− ω2

j+1,j+d(ξ);

A1 := (pj+1,j+d(xj)− y(xj))ωj+1,j+d(xj)

+ (pj+1,j+d(ξ)− y(ξ))ωj+1,j+d(ξ);

 PRd5h7PRd5h7PRd5h7

B0 := A1;

B1 := (pj+1,j+d(xj)− y(xj))
2 + (pj+1,j+d(ξ)− y(ξ))2;

 PRd5h8PRd5h8PRd5h8

C0 := (pj+1,j+d(xj)− y(xj))ωj+1,j+d(xj)xj

+ (pj+1,j+d(ξ)− y(ξ))ωj+1,j+d(ξ)ξ;

C1 := (pj+1,j+d(xj)− y(xj))
2xj + (pj+1,j+d(ξ)− y(ξ))2ξ;

 PRd5h9PRd5h9PRd5h9

s0 :=
B1C0 −B0C1

A0B1 −A1B0
; c :=

A1C0 −A0C1

A0B1 −A1B0
;  }}} PRd5h10PRd5h10PRd5h10

 If (If (If (c /∈ [xj , ξ]  )))  Then {Then {Then {  ////// only if pole outside interpolation segment PRd5iPRd5iPRd5i

err :=

√︄ ∑︁
x∈{xi,xj}

(︃
y(x)− pjp,j+d(x)− s0

ωj+1,j+d(x)

x− c

)︃2

 PRd5i2PRd5i2PRd5i2

 If (If (If (err > ε  )))  Then {Then {Then {w := 1
/︁
err;  }}}  Else {Else {Else {w := −1  }}} PRd5i3PRd5i3PRd5i3

 For (For (For (ν = 1, . . . ,m  ){){){  ////// order of the weighted derivative PRd5i4PRd5i4PRd5i4

Dν := pνjp+1,jp+d(xi)− s0

ν∑︂
l=0

ν!

l!
ω

(l)
jp+1,jp

(xi)(c− x)l−1−ν PRd5i4aPRd5i4aPRd5i4a

 If (If (If (sign 6 0  )))  Then {Then {Then {  ////// weighted sum for the derivative on the left PRd5i4bPRd5i4bPRd5i4b

 If (If (If (n− > 0  )))  Then {Then {Then { PRd5i4b2PRd5i4b2PRd5i4b2

 If (If (If (w > 0  )))  Then {Then {Then {Dν
− += wDν

; W− += w; n−++;  }}} PRd5i4b2bPRd5i4b2bPRd5i4b2b

 Else {Else {Else {Dν
− := Dν

; W− := 1; n− := −1;  }}}  }}} PRd5i4b2b2PRd5i4b2b2PRd5i4b2b2

 Else {Else {Else {  If (If (If (w < 0  )))  Then {Then {Then {Dν
− += Dν

; W− += 1; n− += −1;  }}}  }}}  }}} PRd5i4b2cPRd5i4b2cPRd5i4b2c

 If (If (If (sign > 0  )))  Then {Then {Then {  ////// weighted sum for the derivative on the right PRd5i4cPRd5i4cPRd5i4c

 If (If (If (n+ > 0  )))  Then {Then {Then {  If (If (If (w > 0  )))  Then {Then {Then {Dν
+ += wDν

; W+ += w; n+++;  }}} PRd5i4c2PRd5i4c2PRd5i4c2

 Else {Else {Else {Dν
+ := Dν

; W+ := 1; n+ := −1;  }}}  }}} PRd5i4c2b2PRd5i4c2b2PRd5i4c2b2

 Else {Else {Else { PRd5i4c2cPRd5i4c2cPRd5i4c2c
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 If (If (If (w < 0  )))  Then {Then {Then {Dν
+ += Dν

; W+ += 1; n+ += −1;  }}}  }}}  }}}  }}}  }}} PRd5i4c2dPRd5i4c2dPRd5i4c2d

Dν
i+ :=

Dν
+

W+
; Dν

i− :=
Dν

−

W−
;  ////// the derivatives PRd5jPRd5jPRd5j

 If (If (If (σ > 0  )))  Then {Then {Then {Dν
i− :=

Dν
i−W− +Dν

i+W

W− +W+
; Dν

i+ := Dν
i−  }}}  }}} PRd5kPRd5kPRd5k

 If (If (If ( i == 0  )))  Then {Then {Then {  Next (Next (Next (PRd )))  }}} ↑ PRd6PRd6PRd6

Calculate interpolant between nodes

Justification: Explicit strict analogs of finite difference formulas for multiple
Hermite interpolation over two nodes of arbitrary degree were not found in
the literature.

Let us directly derive them from linear relations

p̂(−1)(x) ≡ 0,

p̂(2ν+1)(x) = p̂(2ν−1)(x)

+ (x− xi)
ν(x− xi−1)

ν(Aν(x− xi−1) +Bν(x− xi)).

From the last Aν =
Dν

i+ − p̂
(ν)
(2ν−1)

(xi)

ν!(xi − xi−1)ν+1
and Bν =

p̂
(ν)
2ν−1(xi−1)−Dν

i−
ν!(xi − xi−1)ν+1

,

and its differentiation gives direct formulas for the derivatives of order j > ν

at nodes i− 1 and i, into which the separated differences go when the nodes merge:

p̂
(j)
(2ν+1)

(xi−1) := p̂
(j)
(2ν−1)

(xi−1)

+
ν!(xi−1 − xi)

2ν−j

(2ν − j − 1)!

(︃
(j − ν)(Aν +Bν) +

Bν

2ν − j

)︃
,

p̂
(j)
(2ν+1)

(xi) := p̂
(j)
(2ν−1)

(xi)

+
ν!(j − ν)

(2ν − j − 1)!
(xi − xi−1)

2ν−j(Aν +Bν)

+
ν!

(2ν − j)!
(xi − xi−1)

2ν−j−1Aν(xi − xi−1).

Derivatives at nodes and coefficients of the Hermite interpolant

p̂
(ν)

(−1)± := 0,  ////// start of array 2× (m+ 1)× (m+ 1) PRd7PRd7PRd7

 For (For (For (ν = 0, . . . ,m  ){){){ PRd8PRd8PRd8

Aν :=
Dν

i+ − p̂
(ν)

(2ν−1)+

ν!(xi − xi−1)ν+1
, Bν :=

p̂
(ν)

(2ν−1)− −Dν
i−

ν!(xi − xi−1)ν+1
, PRd8aPRd8aPRd8a

 If (If (If (ν < m  )))  Then {Then {Then { PRd8bPRd8bPRd8b
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 For (For (For (ν′ = ν, . . . , 2ν − 1  ){){){ PRd8b2PRd8b2PRd8b2

p̂
(j)

(2ν+1)− := p̂
(j)

(2ν−1)−

+
ν!(j − ν)

(2ν − j − 1)!
(xi−1 − xi)

2ν−j(Aν +Bν)

− ν!

(2ν − j)!
(xi−1 − xi)

2ν−j−1Bν(xi − xi−1)

 PRd8b2aPRd8b2aPRd8b2a

p̂
(j)

(2ν+1)+
:= p̂

(j)

(2ν−1)+

+
ν!(j − ν)

(2ν − j − 1)!
(xi − xi−1)

2ν−j(Aν +Bν)

+
ν!

(2ν − j)!
(xi − xi−1)

2ν−j−1Aν(xi − xi−1)  }}}  }}}  }}}

 PRd8b2bPRd8b2bPRd8b2b

Selection of local interpolant ϕi on the segment [xi−1, xi]

 If (If (If (dmod 2 == 1  )))  Then {Then {Then {
 ////// If d = 2l + 1 is odd, then one
 ////// of two Hermite interpolants:

 PRd9PRd9PRd9

 If (If (If (tout 6= 2  )))  Then {Then {Then {  ////// or polynomial interpolant, PRd9bPRd9bPRd9b

the local Hermite polynomial p̂(2ν+1), calculated by the analog of Newton’s formula
for Hermite polynomials:

ϕ(p)i(x)
def
= p̂(2l+1)(x)

def
=

∑︁l
ν=0(x−xi)

ν(x−xi−1)
ν(Aν(x−xi−1)+Bν(x−

xi))
 PRd9b2PRd9b2PRd9b2

 If (If (If (tout == 1  )))  Then {Then {Then { ϕi
def
= ϕ(p)i  }}} PRd9b3PRd9b3PRd9b3

 Else {Else {Else {δ(p)i :=

√︄ ∑︁
j∈{i−1,i}

⃓⃓⃓
ϕ

(l)

(p)i(xj)−Dl
j

⃓⃓⃓2
 }}}  }}} PRd9b3bPRd9b3bPRd9b3b

 If (If (If (tout 6= 1  )))  Then {Then {Then {  ////// or a rational interpolant of the form PRd9cPRd9cPRd9c

ϕ(r)i(x)
def
= p̂d−2(x) + s0

((x−xi)(x−xl−1))
l−1

x−c
,  ////// calculate s0 and c. PRd9c2PRd9c2PRd9c2

The system of equations ϕ
(l)
(r)i

(xj) = Dl
j , j ∈ {i− 1, i} is reduced to linear ;

 For (For (For (j ∈ {i− 1, i}  ){){){  ////// its coefficients PRd9c3PRd9c3PRd9c3

Aij := ((xj − xi)(xj − xl−1))
l−1, Cij := xjD

l
j − p̂d−2(xj)  }}} PRd9c3aPRd9c3aPRd9c3a

s0 :=
Dl

i−1C0−Dl
iC1

A0D
l
i−1−A1D

l
i

; c := A1C0−A0C1

A0D
l
i−1−A1D

l
i

; PRd9c4PRd9c4PRd9c4
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 If (If (If (tout == 2  )))  Then {Then {Then { ϕi
def
= ϕ(r)i  }}} PRd9c5PRd9c5PRd9c5

 Else {Else {Else {δ(r)i :=

√︄ ∑︁
j∈{i−1,i}

⃓⃓⃓
ϕ

(l)

(r)i(xj)−Dl
j

⃓⃓⃓2
 }}}  }}} PRd9c5bPRd9c5bPRd9c5b

 If (If (If (tout == 0  )))  Then {Then {Then {  ////// choice of two interpolants PRd9dPRd9dPRd9d

 If (If (If (δ(r)i > δ(p)i  )))  Then {Then {Then { ϕi
def
= ϕ(p)i  }}} PRd9d2PRd9d2PRd9d2

 Else {Else {Else { ϕi
def
= ϕ(r)i  }}}  }}}  }}} PRd9d2bPRd9d2bPRd9d2b

 Else {Else {Else {  ////// d = 2l is even and the least squares method works PRd9ePRd9ePRd9e

 If (If (If (tout 6= 2  )))  Then {Then {Then {  ////// the polynomial interpolant has the form PRd9fPRd9fPRd9f

ϕ(p)i(x)
def
= p̂(2l−1)(x) + s0((x− xi)(x− xi−1))

l; PRd9f2PRd9f2PRd9f2

 ////// Here the coefficient s0 minimizing the squared error

 ////// δ2
(p)i

=
∑︁

j∈{i−1,i}

(︂
ϕ
(l)
(p)i

(xj)−Dl
j

)︂2
→ min, is determined from (δ2

(p)i
)′s0 = 0,

 ////// where ϕ
(l)
(p)i

(xi) = p̂
(l)
(2l−1)

(xi) + l!S0(x− xi−1)
l, by the formula

s0 :=
p̂
(l)

(2l−1)(xi) + (−1)lp̂
(l)

(2l−1)(xi−1)

2l!(xi − xi−1)l
; PRd9f3PRd9f3PRd9f3

 If (If (If (tout == 1  )))  Then {Then {Then { ϕi
def
= ϕ(p)i  }}} PRd9f4PRd9f4PRd9f4

 Else {Else {Else {δ(p)i :=

√︄ ∑︁
j∈{i−1,i}

⃓⃓⃓
ϕ

(l)

(p)i(xj)−Dl
j

⃓⃓⃓2
 }}}  }}} PRd9f4bPRd9f4bPRd9f4b

 If (If (If (tout 6= 1  )))  Then {Then {Then {  ////// the rational interpolant is PRd9gPRd9gPRd9g

ϕ(r)i(x)
def
= p̂2l−3(x) + (s0 + s1x)

((x− xi)(x− xl−1))
l−1

xc
, PRd9g2PRd9g2PRd9g2

 ////// where s0, s1 and c solve a problem similar to minimizing (4):

 //////

⎧⎪⎨⎪⎩
∑︁

j∈{i−1,i}

(︂
((xj − c)ϕ(r)i(xj))

(l) − (xj − c)Dl
j + lDl−1

j

)︂2
→ min,

((xc)ϕ(r)i(x))
(l−1)|x=xj = (xc)Dl−1

j + (l − 1)Dl−2
j , j ∈ {i− 1, i}.

 ////// In this conditional extremum problem
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 //////
((x− c)ϕ(r)i(x))

(ν)(x) = p̂
(ν−1)
2l−3 (x) + (x− c)p̂

(ν)
2l−3(x)

+ s1(((x− xi)(x− xl−1))
l−1)(ν−1)

+ (s0 + s1x)(((x− xi)(x− xi−1))
l−1)(ν),

 ////// and the Lagrange multiplier method yields a system of five
 ////// equations with five unknowns, but it can be simpler.

 ////// From the conditions

 //////

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p̂
(l−1)
2l−3 (xi)(xi − c) + (l − 1)!(S0 + s1xi)(xi − xi−1)

l

= Dl−1
i (xi − c) + (l − 1)Dl−2

i

p̂
(l−1)
2l−3 (xi−1)(xi−1 − c) + (l − 1)!(s0 + s1xi−1)(xi−1 − xi)

l

= Dl−1
i−1(xi−1 − c) + (l − 1)Dl−2

i−1
 ////// express the coefficients of linear dependences s0 = Ac+B and
 ////// s1 = Cc+ E

F := (l − 1)!(Xi − xi − 1)l((−1)lxi−1 − xi) PRd9g3PRd9g3PRd9g3

A :=
(︂
p̂
(l−1)
2l−3 (xi)−Dl−1

i − p̂
(l−1)
2l−3 (xi−1) +Dl−1

i−1

)︂
/F PRd9g4PRd9g4PRd9g4

B :=
(︂
xi

(︂
p̂
(l−1)
2l−3 (xi)−Dl−1

i

)︂
− (l − 1)Dl−2

i

− xi−1

(︂
p̂
(l−1)
2l−3 (xi−1)−Dl−1

i−1

)︂
−Dl−2

i−1

)︂
/F

 PRd9g5PRd9g5PRd9g5

C :=
(︂
xi−1

(︂
p̂
(l−1)
2l−3 (xi)−Dl−1

i

)︂
− xi

(︂
p̂
(l−1)
2l−3 (xi−1)−Dl−1

i−1

)︂)︂
/F PRd9g6PRd9g6PRd9g6

E :=
(︂
xi−1

(︂
xi

(︂
p̂
(l−1)
2l−3 (xi)−Dl−1

i

)︂
− (l − 1)Dl−2

i

)︂
− xi

(︂
xi−1

(︂
p̂
(l−1)
2l−3 (xi−1)−Dl−1

i−1

)︂
+Dl−2

i−1

)︂)︂
/F

 PRd9g7PRd9g7PRd9g7

 ////// Substitution of found expressions for s0 and s1 reduces the problem

 ////// ∑︁
j∈{i−1,i}

(︂
((xj − c)ϕ(r)i(xj))

(l) − (xj − c)Dl
j + lDl−1

j

)︂2
→ min

 ////// to (A1c− E1)2 + (A2c− E2)2 → min, i.e. to the linear equation
 ////// (A2

1 +A2
2)c = A1E1 +A2E2

A1 := (l − 1)!(A+ Cxi−1 + Cxil)(xi − xi−1)
l−2)) +Dl

i − p̂
(l)
2l−3(xi), PRd9g8PRd9g8PRd9g8

A2 := (l − 1)!(A+ Cxi + Cxi−1l)(xi − xi−1)
l−2)) +Dl

i−1 − p̂
(l)
2l−3(xi−1), PRd9g9PRd9g9PRd9g9

E1 = xiD
l
i − lDl−1

i − p̂
(ν−1)
2l−3 (xi) + xip̂

(ν)
2l−3(x)

+ (l − 1)!(xi − xi−1)
l−1(E +Bl + Elxi)

 PRd9g10PRd9g10PRd9g10

E2 = xi−1D
l
i − lDl−1

i−1 − p̂
(ν−1)
2l−3 (xi−1) + xi−1p̂

(ν)
2l−3(x)

+ (l − 1)!(xi−1 − xi)
l−1(E +Bl + Elxi−1)

 PRd9g11PRd9g11PRd9g11
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c :=
A1E1 +A2E2

A2
1 +A2

2

, s0 := Ac+B, s1 := Cc+ E PRd9g12PRd9g12PRd9g12

δ(r)i :=

√︄ ∑︁
j∈{i−1,i}

⃓⃓⃓
ϕ

(l)

(r)i(xj)−Dl
j

⃓⃓⃓2
; PRd9g13PRd9g13PRd9g13

 If (If (If (tout == 2  )))  Then {Then {Then {Result: ϕi = ϕ(r)i  }}}  }}} PRd9g14PRd9g14PRd9g14

 If (If (If (tout == 0  )))  Then {Then {Then {  ////// Best choice of two interpolants PRd9hPRd9hPRd9h

 If (If (If (c /∈ [xi − 1, xi] andandand δ(r)i < δ(p)i  ))) PRd9h2PRd9h2PRd9h2

 Then {Then {Then {Result: ϕi = ϕ(r)i  }}}  Else {Else {Else {Result: ϕi = ϕ(p)i  }}}  }}}  }}}  }}} PRd9h2aPRd9h2aPRd9h2a

4.1. On numerical testing of the algorithm

The construction of the algorithm guarantees for tout = 0 exact
reproduction of quadratic and linear-fractional functions by a sufficient
number (n > d + 1) of values in interpolation nodes, regardless of the
values of other parameters. This quality significantly distinguishes it from
well-known interpolation algorithms. In particular, any fractional linear
function is reproduced by this algorithm more accurately than by the
algorithms of polynomial interpolation or interpolation by polynomial
splines.

In addition, if smoothness is not required (σ = 0), then the function
y =

√
x2 = |x| is exactly reconstructed for a sufficient number of given both

positive and negative values, and therefore , reproduced more accurately
than rational interpolation.

The construction gives reason to expect that the quality of interpolation
in the examples considered by Shchabak will be as high as in the presented
in his work graphs.

On the other hand, a random polynomial of degree n will be accurately
reconstructed by polynomial interpolation from n+ 1 value, but not by the
described algorithm.

Thus, the demonstration of selected examples does not provide
meaningful information about the possibilities of using the algorithm. The
ultimate way to obtain useful information is to consider a representative
independent sample. In our settings, such a sample can be formed by sets
of prime mathematical functions from common programming languages
with sufficiently representative sets of meshes. The proposed continuation
naturally requires a separate publication.
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Conclusion

The basic ideas of the algorithm for interpolation of metric mappings,
which exactly locally restores mappings of classes of interpolants, are
substantiated and formulated.

A general algorithm is preliminary described that exactly reconstructs
simple polynomials, continuous rational functions with a linear denominator,
and some piecewise smooth functions.

Reasons are shown to expect a significant improvement in the quality
of recovery of elementary functions by a few values that convey the nature
of the dependence.
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