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ABSTRACT. In numerical modeling tasks that use surface meshes, remeshing is
often required. However, while remeshing, distortion can occur. The accumulation
of distortions can lead to the collapse of the solution. Smoothing algorithms are
used to maintain the quality of the mesh during the calculation. When performing
smoothing using methods that shift the mesh nodes, the border nodes are usually
fixed to avoid distortion. However, simply fixing the nodes can lead to more
severe distortion. This paper presents methods for working with boundary nodes
to control such nodes during the smoothing process. Algorithms for working with
pseudo-3D surface meshes, which are of particular interest, are also considered.

Key words and phrases: computational geometry, smoothing, triangular mesh, numerical
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Introduction

This article discusses computational geometry problems concerning
surface unstructured triangular meshes. Such meshes are often used in
issues of numerical modeling and computational geometry.

In the process of developing programs for numerical modeling, a
problem arises: mesh smoothing techniques (Laplace, Taubin smoothing [1],
methods that preserve mesh features [2-4]), turn out to be unsuitable for
working with meshes that are not closed surfaces. Boundary nodes move
towards the body, causing uncontrolled compression of the surface. This
feature is unacceptable since the task of preserving the boundaries of the
mesh and its geometric features is critical.

The work was done in JSCC RAS within the framework of the state assignment on the
topic 0580-2021-0016.
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FIGUuRE 1. Iterative remeshing

1. Smoothing methods

Smoothing surface meshes are used to improve the quality of the mesh.
A high-quality mesh should describe the surface of the body well and at
the same time consist of high-quality faces.

In some numerical modeling tasks, such as calculating body icing [5] or
calculating thermal expansion [6], an iterative rebuilding of the surface
occurs (Figure 1).

While remeshing, as the nodes move, their clusters arise. In some
places, the mesh becomes sparse, and in others, it becomes denser. This
grid configuration negatively affects the subsequent iterations of the
calculation. Various smoothing methods are used to maintain the mesh
quality throughout the computation.

There are many techniques for smoothing surface meshes. This article
discusses triangular meshes and methods that use node shift. In numerical
modeling using the finite element method, it is necessary to preserve the
mesh topology.

The task of moving a node can be formulated as follows:
(1) pi < Di +Apj,

where p;, p, € R3, A € R — displacement factor.
Classic Laplace smoothing is

1

/

P = (pj — pi),
|Ni| Z J

p; EN;

where N; = {p; : (pi,p;) € E} and E — set of mesh edges.
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1.1. Null-space smoothing

Null Space Smoothing (NSS) [7] is used to smooth surface meshes in
case volume is preserved. The null space is a tangent plane for smooth
mesh regions, a tangent line for edges, and an empty set for corners. These
spaces are formed proceeding from the analysis of the eigenvectors obtained
by the spectral decomposition of the matrix formed for each grid node:

A=NTWN.

Here N is a matrix of size m x 3 containing normals of faces adjacent to
the node, m is a number of faces adjecent to the node, W is a diagonal
matrix of weights of size m x m, where W;; is a weight, corresponding to
the i-th face.

Since A is a symmetric positive definite matrix, there is a spectral
decomposition

A=VAVT,
where A is a diagonal matrix, containing eigenvalues of A. The eigenvectors
e; correspond to A; = Ay; form the columns of matrix V.

As a result, for each node we have three eigenvalues \; > Ay > A3.
Take some threshold X' (it becomes user-defined parameter), we compare
with it eigenvalues we obtained and choose those that exceed it. Having
chosen some threshold value A’ (it becomes a tunable parameter), we
compare the existing eigenvalues with it and select those that exceed it.

The primary space

me’m = {ei | A > )\/}
is formed from eigenvectors that correspond to the following eigenvalues.

The orthogonal complement to this space is null space.

Depending on the dimension k of the primary space, the nodes belong
to one of three classes: a node either lies in a plane, lies on edge, or a
corner node. Spectral decomposition allows us to determine the spatial
configuration of the neighborhood of the node.

Null-space is formed the next way

{62,63}7 ifk=1
Vnull = {63}, ifk =2
a, if k=3,
where V1 is a null-space and k is the dimensionality of the primary space.
Shift vector of the node
" wjc;
2) do = 2L,
D1 W
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is calculated over a number m of adjacent faces, a non-negative weight
w; € R of j-th face, and a centroid c; of j-th face.
Project shift vector dv on the null-space:

r_ ) Z§:k+1(dv e)e;, fk=1lork=2
o, if k= 3,

here s; > 0 € R is a regulation of magnitude of shift and e; is an eigenvector.

1.2. Fuzzy Vector Median-Based Surface Smoothing

Laplace smoothing, Taubin smoothing, and similar methods do not
preserve the geometric features of mesh [8]. In a volume conservation task,
it is necessary to maintain all possible geometric features, such as corners
and edges, while allowing the nodes to move only along the surface.

The Fuzzy Vector Median (FVM) [9] smoothing method consists of
filtering face normals and then moving the mesh nodes according to the
updated normals. Filtering is done using median filter.

A median normal is a normal from a set of face’s normals that deviates
at the smallest angle from all other normals;

N
Typm = arg 511618; |z — 4],
where () is a set of faces, N = ||, x; is a normal of the i-th face. This
movement leads to severe distortion at the edges of the mesh, which can
destroy the solution.

The smoothed face’s normal f is computed using the weighted average

of all median normals adjacent to f.
Zﬁil T p (Ti, Ty )

TFVM =
Ei]\il 2 (331‘733VM>

Here pg(u,v) is a Gaussian membership function

pe(u,v) = e7lvmelli2,

where 0 > 0 € R — spread parameter.

The nodes are shifted to minimize the difference between the current
face normal and the resulting normal

JjEI* fEF;;

using the set i* = {j : {i,j} € E}, faces F;; adjoin with the edge (i, j),
normal ny to the face f, and i-th node x; of the grid.
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FI1GURE 2. Application of fuzzy vector median-base surface
smoothing
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>

FI1GURE 3. Mesh structure before and after smoothing with
volume preserving

Figure 2 shows an example of applying the fuzzy vector median-based
method to a surface mesh. Arrows indicate face normals. Random noise
was introduced into the nodes of the original mesh. The method restores
the original surface in 20 iterations.

2. Formulation of the problem

Figure 3 shows the original mesh structure near the border before and
after smoothing using the NSS algorithm. This uniform mesh structure
often occurs when triangulating a pseudo-3D surface, such as a wing profile
of particular interest.

Since a node must move in the direction of the mean of centroids
of adjacent faces, even if all other nodes in the mesh stop moving during
the smoothing process, the border nodes still move along the edge. The
nodes have more adjacent faces in one direction, and those faces are pulling
them off. This movement leads to severe distortion at the edges of the
mesh, which can destroy the solution.
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FIGURE 4. An example of mesh distortion after 10 iterations of
null-space smoothing

3. Triangular mesh quality criterion

A common criterion for the quality of triangular meshes is the coefficient
a €10,1] [10]:

4/34;
[|[PLP2|[2 + || P2 Psl|2 + || Ps Py |2

Q; =

depending on a square A; of i-th face and coordinates Py, P, P3 of face’s
nodes.

For an equilateral triangle a = 1. The geometric mean ,cqn and the
minimal value a,,;, are used to estimate the entire surface.

4. Methods of controlling boundary nodes

In smoothing the surface of a mesh, it is crucial to preserve its area
and geometric shape. For the nodes to move only along the body’s surface,
the previously described smoothing methods preserving the volume are
applied. These methods are effectively applied to grids with a closed volume
(watertight). However, if the mesh is not closed and there are border nodes
in it, then any of the methods using the shift of nodes will change the
border of the mesh (Figure 4). Therefore, boundary nodes are often fixed.
Fixing the boundary leads to distortion if, for example, the nodes in the
middle of the mesh are actively shifted. The challenge is to keep the
boundary nodes moving without changing the mesh boundaries or making
user-controlled changes. It is also necessary to maintain acceptable mesh
quality.
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Let’s introduce the notation for the nodes (Figure 5).

Inner — node that doesn’t have boundary edges.
Boundary — node that is adjacent to boundary edge.
Corner — boundary node, that is fixed on the current iteration
of smoothing.
Mobile — boundary, but not corner.
In order to control the boundaries of the mesh in the process of
smoothing by methods with the preservation of volume, the following
technique is proposed.

4.1. Boundary nodes move along edges only

Let’s fix the movement of a mobile node only along an adjacent
boundary edge. We represent two of its adjacent boundary edges in the
form of unit vectors e; and ey (Figure 6),

0<60<2 6eR.

Having received the displacement vector of the node, we calculate its
projection onto e; or es and choose a larger value to allow the node not to
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/ Mesh

\?_ . Boundary node

Ficure 7. Example of unsuccessful arrangement of adjacent
faces. The centroids of adjacent faces are marked in red. Black -
the vector of displacement of the boundary node

move towards the body and keep its boundaries:

ei(p;-e1), ifp;-e1>pi-es
Di ’ . .
ea(pl - e2), in opposite case.

/

4.2. Fixing nodes

Corner nodes, even when moving along the edges, significantly change
the surface area of the mesh. Therefore, we introduce the coefficient 6 € R,
which determines the rigidity of fixation of such nodes.

The user defines a relation that controls the permissible projection
length of e; on ey. The coefficient 6§ determines whether the algorithm will
fix the node p; to conserve area.

The node p; stays fixed:

p2:0<:>61-6229—1~

The larger the 6 parameter, the more the algorithm tends to define the
node as a corner and fixes its position. Figure 5 shows two grids. The mesh
on the left has four corner nodes; all the rest can be moved along the
boundary edges for smoothing. The faces on the right are more extensive,
and the smoothing algorithm will tend to move the nodes to the right to
align the sizes of the triangles. All boundary nodes are corner nodes on the
right grid and are therefore fixed during the smoothing process.

4.3. Weight function for centroids

Consider the case when adjacent faces for the boundary node are
located as shown in Figure 7.

If a similar configuration is maintained throughout the entire boundary
of the body (Figure 3), then the nodes will move at each iteration, following
the direction of displacement, which will lead to distortions.
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NSS

FIGURE 8. Mesh distorting in movable nodes

To exclude such a movement, the weights are used when calculating
node offset to neutralize the effect of adjacent faces whose centroids located
close to the border of the body.

Consider the boundary node p;. There are various methods for setting
the w; weight for the j-th adjacent face in the formula (2). This work use
the following setting of weights

1 —|cos(gj)|, if p; — mobile node
’LUj = : .
1, otherwise,

where ¢; — angle in radians between the vector from p; to the centroid of
face 7 and an boundary edge, adjacent with this node, as shown in Figure 7.

The closer the angle ¢ to 7/2, the larger weigths the face j gets. Thus,
the node moves along the boundary with a smaller step.

4.4. Limiting the magnitude

For user control, it makes sense to artificially underestimate the
magnitude of movement of the movable node. Let’s define coefficient 5 in
the formula (1) so that § < A:

;i p; + Ap}, if i — inner node
’ p; + Bp;, otherwise.

4.5. Application of FVM when smoothing a pseudo-3D profile

Applying NSS to pseudo-3D profiles produces distortion, especially
at the edges. These distortions arise due to many factors including the
features of NSS algorithm, as well as the methods presented. Figure 8
shows an example of such a distortion.

The resulting distortion of the grid can negatively affect the calculation
process in the future. During the next iteration of smoothing, the defect
can only increase. Over time, such problems will accumulate, and the
calculation process may end up with an error.
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F1cUure 9. Example of FVM smoothing

To solve such problems, FVM was applied. Its expected effect on the
pseudo-3D profile is to smooth out the arising irregularities and return the
mesh to the pseudo-3D state. To save resources, it may seem attractive
to perform smoothing only on moving nodes - where distortions occur.
However, experiments show that there are so many special cases in the
geometry of grids that the positive effect of the saved computational
resources is lost. Distortion can occur at various locations in the mesh, and
therefore the optimal strategy is to smooth the entire mesh.

Fuzzy vector medians and normals obtained on their basis contain
information about the shape of the surface. Thus, the nodes move to the
plane of adjacent faces (Figure 9).

Despite the fact that FVM smoothing affects the volume, the algorithm
parameters allow you consider the shape of the mesh. For example,
when working with pseudo-3D profiles, it makes sense to use the set
{f; : f; N fi € V'} for the face of interest : f;, since usually more than half
of neighboring faces lie in the same plane with the face in question. This
makes its vector median equal to the prevailing normal among neighboring
faces, and therefore the algorithm aligns the node’s position in a single
plane.

5. Experimental results

Consider the results of applying the methods presented in 4.1 - 4.4 to
the mesh from Figure 4. The smoothing algorithm is NSS.

As you can see from the Figure 10, the presented technique allows
obtaining high-quality mesh smoothing.

The color shows the value of the quality metric . The combination of
the presented methods allows you to preserve the grid’s boundaries while
aligning the size of the faces. Weight function for the centroids and fixing
of the nodes does not increase the quality of this mesh.
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(@) Laplace () nodes move  (¢) node fixation, (d) weight function
smoothing only, only along edges, 0=0.2, for the centroids
Amean = 0.672,  amean = 0.770,  Qmean = 0.877, and fixing of the

Qmin = 0.366 amin = 0.014 omin = 0.79 nodes

F1cure 10. Consistent application of the proposed methods

2 77 Z
7 2

7 2 A
G777
i //////;%//

7
7

.
,
.
7
7z

Ficure 11. Example of FVM smoothing. 50 iterations,
o =0.1,A = 0.05. Arrows show the places where nodes align

Figure 11 shows an example of applying the presented methods and

smoothing based on fuzzy medians to a large mesh. FVM removes post-NSS
distortion. This allows the mesh to return to a pseudo-3D state.

Conclusion

The article discusses working with the boundary nodes of an unstruc-

tured triangular mesh when smoothing the mesh. The proposed methods
are based on the analysis of the mutual arrangement of the surface mesh
elements and allow the user to control the behavior of the boundary nodes.

The smoothing method based on fuzzy vector medians allows you to
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eliminate distortions when working with a pseudo-3D mesh. This type
of meshes has its own characteristics and is often found in problems of
numerical modeling.

The results obtained allow us to conclude that the using proposed
methods will allow avoiding the loss of geometric features of the mesh
during the smoothing process. At the same time, boundary nodes can move
and participate in the smoothing process, in contrast to the traditional
approach, which consists of simply fixing them.

The proposed methods were applied in the problem of modeling the
process of ice accretion n the surface of an aircraft wing. The mesh requires
iterative rebuilding to reflect the shape of the accumulated ice. The
proposed methods make it possible to control the boundary nodes and
obtain a mesh of acceptable quality, which requires manual adjustment and
control of the proposed parameters.
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