
PROGRAM SYSTEMS: THEORY AND APPLICATIONS ISSN 2079-3316

© Kuzminsky M. B. 2024 CC-BY-4.0

hardware and software for distributed and supercomputer systems

UDC 004.272+004.382.2+004.8+004.43
DOI 10.25209/2079-3316-2024-15-2-139-473

New generation of GPGPU and related hardware:
computing systems microarchitecture and performance

from servers to supercomputers

Mikhail Borisovich Kuzminsky
Zelinsky Institute of Organic Chemistry of RAS, Moscow, Russia

kus@free.net

Abstract. An overview of the current state of GPGPUs is given, with orientation towards
their using to traditional HPC tasks (and less to AI). The basic GPGPUs in the review include
Nvidia V100 and A100. Nvidia H100, AMD MI100 and MI200, Intel Ponte Vecchio (Data
Center GPU Max), as well as BR100 from Biren Technology are considered as new generation
GPGPUs. The important for HPC and AI tasks microarchitecture and hardware features of these
GPGPUs, as well as the most important additional hardware for building computer systems with
GPGPUs, that are CPUs specialized (albeit only possible for the initial period of their use) for
working with the new generation of GPGPUs and interconnects— are analyzed and compared.
Brief information is given about the servers (including multi-GPUs) using them, and new
supercomputers (using these GPGPUs), where data on the achieved performance when working
with GPGPUs was obtained.

The SDK of GPGPU manufacturers and software (including mathematical libraries) from
other firms are briefly reviewed. Examples are given that demonstrate the tools of widely
used programming models that are important for achieving maximum performance, while
contributing to the non-portability of program codes to other GPGPU models.

Particular attention is paid to the possibilities of using tensor cores and their analogues
in modern GPGPUs from other companies, including the possibility of using calculations with
reduced (relative to the standard for HPC FP64 format) and mixed precision, which are relevant
due to the sharp increase of the achieved performance when using them in GPGPU tensor cores.
Data is analyzed on their “real-world” performance in benchmarks and applications for
HPC and AI. The use of modern batch linear algebra libraries in GPGPU, including for HPC
applications, is also briefly discussed.
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Introduction

A widespread feature of modern computing systems, from servers to
supercomputers, is the use of a heterogeneous construction of servers and
cluster nodes, very often containing not only processors (CPUs), but also
accelerators, primarily GPUs, areas of use of which are rapidly expanding.
Here we mean GPGPU, but in what follows the abbreviation GPU will be used.

Relevance of GPUs and areas of their using. Currently GPUs are actively
used for a wide range of very important tasks, including high-performance
computing (HPC) and AI (AI tasks in this review also include all tasks
of any type of machine learning, but the use of GPUs is especially relevant
for deep learning). In addition, the use of multiple GPUs in one server
(multi-GPU) is expanding. All this is connected with the main direction
of growth in the performance of computing systems, mainly due to the
strong increase in the number of cores and, accordingly, parallelization
on them. The increasing importance of power efficiency over time also
contributes to the focus on the use of GPUs, which contain many more
functionally simpler cores than in the CPU, but with a reduced frequency.
Thus, of the 50 leading supercomputers on the Green500 list for June
2023, only four did not use a GPU. Moreover, two of them— the Japanese
supercomputers NA-J2 and MN-3— used specialized rarely used multi-core
processors (coprocessors), and the other two were based on multi-core
ARM processors Fujitsu A64FX [1]. Another important advantage of GPUs
is the achievement of high-density packaging of large computing resources,
which is especially evident in servers containing several GPUs (multi-GPU).

As for the often cited use of GPUs in data centers, the term data center
has now practically replaced the previously used term computer center,
which can also be considered [2] as one of the parts of the data center.
In reality, data centers often assume the use of GPUs for the above HPC
and AI tasks, and the term data center itself is focused primarily on the
use of cloud technology. Further in the text, references to data centers
refer specifically to cloud technology, the tasks of which are not discussed
in the review— specific benchmarks and applications for HPC and AI are
considered here. Although GPUs began to be noted as the main accelerator
in other areas, for example, sorting when working with databases [3].
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To illustrate the widespread use of modern GPUs, we can use the
Top500 supercomputer list, as it provides interesting statistics (see, for
example, [4]). In the Top500, the world’s performance leaders have been
using GPUs for a long time. A notable exception to this rule in recent years
was the Japanese supercomputer Fugaku, whose nodes were homogeneous
and contained only the CPUs— the A64FX. He topped this list for more
than two years. Probably, such a success of Fugaku was facilitated by the
rather large number of cores (48 computing) in the A64FX [5]. However, in
2022, a new Chinese supercomputer Sunway appeared (the successor to the
Sunway TaihuLight, which ranks 7th in the Top500, and in [6] classified as
“pre-exascale”), containing heterogeneous 260-core SW26010 processors
in its nodes— without a GPU. As another not very widely used alternative
GPU option, we can mention the huge, specialized for AI tasks, Cerebras
WSE-2 processors, containing 850 thousand cores [7]. But WSE-2 does not
support greater precision than FP32, and the Andromeda supercomputer
based on them [8] is accordingly absent from the Top500 list.

Statistics from the June 2020 Top500 list [9] indicated the use
of accelerators in 26.6% of Top500 supercomputers (20.2% of supercomputers
used Nvidia V100). In the June 2023 list, accelerators were used in 32.4%
of all supercomputers (13% used Nvidia V100, 15.6% used Nvidia A100,
2.2% used AMD MI250X and MI210, 2% used Nvidia H100) [4]. The
unambiguous modern leadership in the Top500 GPUs from Nvidia is obvious
today and predictable for the near future. All data presented later in this
review refers to the June 2023 Top500 list, and by default the Top500 list
below refers to this June list.

Features of the next expected GPUs. Integration of CPU and GPU in one
die is now becoming possible. For personal computers with conventional
graphics processors, similar integration with the CPU has long been known,
for example, in the form of the AMD APU (Accelerated Processing Unit),
but here we mean the integration of the server CPU with the GPU. AMD
expects such integration into the APU in the MI300 [10]. Intel talked
about its plan to combine x86 chiplets together with GPU chiplets called
Falcon Shores back in 2022 [11,12], but its implementation will take more
than one year. In a certain sense, a similar development from Nvidia,
Grace Hopper [13–15], appears on the market earlier. But this whole
direction is a possible way to intensify the use of the GPU itself.
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Limitations and difficulties of using GPU. It must be kept in mind
that GPUs are installed in only 32.4% of all supercomputers from the
Top500 [4] (in the June 2022 list it was 30.2%). Performing calculations
exclusively on GPUs is associated with the use of high-speed memory,
but having a fixed and not very large capacity compared to the possible
memory size of the servers or certain input data of applications (research
objects), this may cause inefficiency on the GPU altogether. Therefore, for
example, in the manual for specialized parallelization tools on Nvidia GPUs,
CUDA [16], there is a section dedicated to exceeding the required memory
capacity of the memory available on the GPU. In modern versions of GPU
CUDA also provides the ability to work with virtual memory [16]. However,
it is clear that actually working with virtual memory can lead to severe
performance losses.

GPU computing involves the use of applications that are highly
parallelized across a large number of cores. A classic example of this is
molecular dynamics tasks and, especially, AI area. But this may not hold
true for certain applications or even HPC areas. Therefore, in the tuning
guide for applications using CUDA (for the Nvidia Ampere architecture used
in the A100) [17], the first point of recommendations is to find a way
to parallelize sequential code, which may mean the need to create new,
improved algorithms that allow parallelization where in the “natural”
algorithm it might be missing. It may also not meet the expectations
of specialists in the relevant HPC fields, who may often be programming
applications for this field themselves.

Since effective use of GPUs requires a very high level of parallelization
scalability, this also requires the use of SDKs specialized for GPUs, and
possibly an increase in the size of source code. Many HPC applications did
not natively respond to this level of parallelism. Additionally, optimizing to
the high expected level of GPU performance often requires many manual
work, which is especially difficult when porting code from one type of GPU
to another. All this complicates the work of programmers and can cause
them some rejection.

The situation is simplified to a certain extent in cases where there are
small parts of the program that limit performance (in the GPU world they
become program kernels), which are often typical mathematical problems.
And over time, more and more HPC applications are becoming capable
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of running on GPUs. For example, quantum chemical software systems that
have been running on supercomputers for a long time are also moving
in this direction. But for the most widespreads of the modern methods
used there (without explicit non-empirical computations of electronic
correlation), too long execution times can be associated with several
mathematically different types of calculations (and not always related to
those that are widespread in mathematical area; This is especially true for
the use of gaussian basis functions), which requires a correspondingly
much larger programming. For calculation by the widely used quantum
chemical DFT method in a plane wave basis, a demonstration of the possible
execution times of various parts of the program is given, for example,
in [18].

Other important characteristics of using GPUs are cost indicators. If the
goal is not to achieve an acceptable execution time at any cost (which is
perhaps achievable only with the use of a GPU), then the relevant question
becomes how much the cost of a computer increases when adding a GPU to
it, and how much the application performance increases.

As an illustration, we indicate the acceleration data when calculating
with the well-known Quantum Espresso software package, which is focused
on calculations in the basis of plane waves using the quantum chemical
DFT method. An illustration using the application of quantum chemistry,
rather than the popular molecular dynamics on GPUs, was chosen here
specifically— problems of quantum chemistry have long been performed
on supercomputers, but the possibilities of quantum chemical calculations
on GPUs began to appear later than in classical molecular dynamics— it is
more difficult to implement, and the speedups achieved often smaller.
Calculations by Quantum Espresso 6.5 were performed on a server with an
18-core Intel Xeon E5-2697 v4 (2.3 GHz), and adding V100 gave speedup
in the range of 1.4-3.7 times [19]. The achieved acceleration naturally
depends on the object being calculated. But we must keep in mind that
this Xeon model began to be produced by Intel back in early 2016, and the
calculation time was compared using only one processor.

As for the prices for new generation GPUs— this naturally applies to
boards with a GPU (for example, an OAM module), they are not discussed
in the review, since the corresponding “official” (for example, recommended
by the manufacturer) prices for such new equipment are usually not
available. But keep in mind that GPUs often provide greater power efficiency
while requiring a relatively small square, so it’s best to use total cost
of ownership (TCO) rather than just price when evaluating GPUs.
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Modern realities of growing GPU use. All of the above possible
difficulties are gradually being resolved by creating new calculation methods
and algorithms, new programming models for the SDK, as well as by
improving GPU hardware. Naturally, this is reflected in the growing number
of applications running on GPUs. The GPU application area is constantly
growing, which, naturally, is most clearly demonstrate with Nvidia GPUs
and was convincingly demonstrated at the latest GTC 34 (2022) and 35
(2023) conferences.

As time goes on, the number of supercomputers with GPUs included
in the Top500 increases— with a GPU it is easier to obtain high performance
in the HPL benchmark. The most powerful (as measured with the HPL)
supercomputers in the world typically use GPUs. In the first twenty leaders
of the Top500, only three supercomputers do not use GPUs (although the
Chinese Tianhe-2A, which closes the top ten, also uses the Matrix-2000
accelerator, but this is not a GPU); The percentage of GPU utilization
decreases further when considering a larger number of supercomputers.

But all this becomes weakly significant compared to the growing use
of AI, which is covering more and more new areas of using— this primarily
determines the requirements for GPUs (the HPC market is negligibly small
compared to AI). Modern supercomputers included in the Top500 are also
becoming AI-focused.

A review of the current global GPU market by renowned Chinese
electronics industry analyst Chen Lizhong also suggests continued growth
in the industry [20].

Relevance of the review, selection of GPUs under consideration
and areas of their analysis. As general modern overview of different
types of accelerators, including GPUs, can be considered [21] from the
famous European BPG (Best Practice Guide) series. But today GPUs
are characterized by ultra-fast development, and we can already talk
about the emergence of a new generation of GPUs. In this review, GPU
performance analysis focuses primarily on HPC tasks. There are publications
that implement the fusion of traditional HPC fields with AI, for example,
quantum molecular dynamics (QMD) and AI [22], or computational fluid
dynamics and AI [23]. But currently combining traditional HPC tasks with
AI methods may not be necessary (for example, for QMD— see [24]).
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However, currently there is also an integration of HPC, AI tasks and
processing of large volumes of data (as an example of work in the last 2
years, we can cite [25–30]), and benchmarks for this area have already
appeared [31]. As an illustration of the active progress of work in this
direction, we can note the consolidation of the well-known HPC developers
of mvapich2 parallelization tools into new teams at Ohio University (US),
where software tools running on top of mvapich2 are now being created—
High-Performance Deep Learning (HiDL) [32] and High-Performance Big
Data (HiBD) [33].

Given the potentially widespread use of AI in the commercial area, and
the corresponding increased AI focus of modern GPUs [34], this review
considers AI tasks for performance evaluations, although the paper is aimed
primarily at traditional HPCs. The relevance of the analysis of modern GPUs
is even increasing due to the emergence of the latest GPUs with higher
performance (with their use, EFLOPS-level supercomputers are being
created and are expected to be created) and the need for their optimal
selection for the acquisition and use of appropriate hardware and software.
To date, GPUs have come a very long way in the development of their
architectures and performance indicators. Conventionally, the Nvidia V100
and A100 are classified as the modern “basic” generation in this review.
This was chosen both because the V100 was the first to use tensor cores,
and because of the breadth of use of these GPUs on modern supercomputers
and servers. This GPUs review data are based on the V100 and A100 [21].

With the V100 and A100, this review will compare new generation GPUs—
AMD Instinct (Radeon Instinct) MI100 and the MI200 family, Nvidia
Hopper (H100), Intel Ponte Vecchio (Intel now produces a whole series
of GPUs, Data Center GPU Max for which this is a codename), and partly the
latest Chinese BR100 from Biren Technology. These GPUs are conventionally
classified as a new generation, including because it was with their use
that the exascale barrier was first overcome or it is planned to be further
overcome (this applies to GPUs from AMD, Nvidia and Intel). The BR100 is
included here due to its significantly higher specified performance indicators
compared to the A100 [35]: at the processor level, Chinese developers
have not previously outperformed processors from the US and Japan (for
example, the ARM Kunpeng 920 [5] or the Zhaoxin x86 processor [36]),
but the appearance in 2022 of the SW26010pro processors containing 390
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cores with a total peak performance of more than 14 TFLOPS (by default
in the text of this review, double precision, FP64 is assumed) [37] and the
BR100 GPU gave such a high performance achievement that, one might say,
for the first time allowed the Chinese industry to surpass the performance
of some similar US products.

The relevance of a comparative analysis of AMD MI100 and MI200
with the above GPUs from Nvidia, Intel and Biren Technology seems
obvious. The AMD MI250X began to be produced primarily for Frontier,
which became the world’s first exascale supercomputer [38–40], but is
already used in about ten different supercomputers from the Top500,
including the third-ranking supercomputer LUMI [41,42], and GPUs actually
determine the maximum performance, achieved there in the Top500. The
well-known supercomputers Summit and Sierra with V100 nodes have
been in the top ten Top500 for a number of years. Intel Xe-HPC Ponte
Vecchio GPUs will be used in the US Argonne National Laboratory’s Aurora
supercomputer, where peak double precision performance is expected to
exceed 2 EFLOPS [43], and in the SuperMUC-NG supercomputer upgrade
at the Leibniz Supercomputing Center in Germany [44].

In addition, the most energy-efficient supercomputers are built on new-
generation GPUs— for example, Henri with H100 heads the Green500, and
supercomputers with MI250X occupy all the places there from 2 to 7
positions.

The relevance of comparing MI100 with Nvidia GPUs was recently noted
in [45],and now GPU comparison has become even more important due to
the emergence of new higher performance and more energy efficient GPUs.
MI100 and MI200 are already actively used in HPC and AI. Much attention is
paid to the performance data of the MI250X and A100 GPUs, obtained using
the latest HPE/Cray EX supercomputer systems containing them [46].

The new generation of GPUs is distinguished not only by the construction
of exascale supercomputers on them (Frontier— on MI250X [39], Aurora—
on Ponte Vecchio [47], and the Selene supercomputer, which ranks 9th
in the Top500, was supposed to be replaced with H100 [48]), but also
by using other specialized hardware with them. First of all, these are
interconnects (for example, Nvidia NVLinik [13,49,50], AMD Infinity
Fabric, also characterized by regular improvements of versions [10], or the
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CXL standard in BR100 [51]). These hardware closely related to GPU are
discussed in this review. Some server processors— for example, ARM—
Grace processors from Nvidia for work with GPU Hopper [13–15,52] or
AMD EPYC Zen 3 with (alleged) support of Infinity Fabric 3.0 in the I/O
die [53]) were originally intended to work in conjunction with new GPUs,
and are also discussed in the review.

But these CPUs could also be targeted at HPC or AI applications without
using of GPUs. The Intel Xeon Max series [54] (codenamed Sapphire
Rapids), which was originally intended to be used in the GPU-containing
nodes of the Aurora supercomputer, can be used independently of the GPU.

For future EFLOPS-level supercomputers, the EPAC accelerators
being developed within the European Processor Initiative (EPI) may be
of interest, which are based on RISC-V with the ability to work with
vectors of length 256 numbers in the FP64 format [55]– but these are
accelerators that are not related to the GPUs, and EPAC is still at the
development stage (only its test version 1.0 is available [56]), and a chiplet
is being constructed from a number of tiles of various types, where EPAC
is only one of them [57]. Accordingly, EPAC is not within the scope of this
review.

The review consists of sections with subsections. Section 1
discusses the general hardware and software features of GPUs from different
manufacturers. Section 2 analyzes the new Chinese GPU, Birentech BR100.
Section 3 analyzes Intel Data Center GPU Max (Ponte Vecchio). Section 4
analyzes Nvidia GPUs: in Section 4.1— A100, and in Section 4.2— H100.
Section 5 analyzes the AMD MI200 GPUs. In conclusion, general conclusions
are drawn.

All sections review the hardware and software (SDK) for the re-
spective GPUs and provide an overview of available performance data.
In Section 3 and Section 5, and in Section 4.1 and Section 4.2, this is
implemented as separate lower-level subsections. When comparing data,
primarily on performance, a comparison was also used with Nvidia V100
performance data, and in Section 5 there is a separate Section 5.3.1 with
AMD MI100 performance data.

The review necessarily uses a very large number of abbreviations. The
author often provides explanations of well-known abbreviations, keeping
in mind the possible reading of the text by specialists from different fields.
A list of abbreviations used in several different sections of the review
(in sections about different GPUs) is given in the appendix.
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1. Common features for GPUs from different manufacturers

Before considering specific GPUs from different manufacturers, it is
necessary to at least list the main software development tools (programming
models) used on modern GPUs with a focus on HPC and AI tasks. Maximum
performance is usually achieved using, of course, SDKs that are clearly
focused on hardware manufacturers: for Nvidia— CUDA (Compute Unified
Device Architecture) [16], for AMD— HIP (Heterogeneous Computing
Interface for Portability) [58], part of the overall ROCm software stack
(lower-level software tools are not discussed in this section of the review).
The noticeable appearance of alternative GPU manufacturers to Nvidia
on the market has increased interest in SDK components that work with
various types of accelerators. HIP already has the ability to work with
Nvidia GPU [58].

Among the programming tools that are not oriented towards working
with the GPU of a certain manufacturer, we first note OpenACC and
modern versions of OpenMP (support for working with accelerators
appeared in OpenMP version 4.0, and since 2021 there is already a 5.2
specification [59]). Later, OpenCL (Open Computing Language) [60], and
then SYCL [61]— an open standard for heterogeneous programming,
became more widely used as tools for developing programs for GPUs
and PGA accelerators. SYCL is developed by the Khronos Group, and
(beginning from SYCL 2020) is based on C++17.

Data Parallel C++, developed by Intel (DPC++) [62] is also an open
cross-architecture language built on C++ and SYCL— may become
widespread. DPC++ uses SYCL with extensions that are expected to be
included in future versions of the SYCL standard. OpenCL, SYCL and
DPC++ can also be used for CPUs. Of these, DPC++ now appears to be the
most advanced; A benchmarks already appeared on its basis [63].

Finally, GPU software mentioned here also includes Kokkos [64,65].
Kokkos (supported in a US Department of Energy project) targets exascale
supercomputers, uses C++, and aims to be «hardware-neutral». It
can use, in particular, CUDA, HIP, SYCL and OpenMP as a back-end.
A famous example of an application using Kokkos is the LAMMPS package
of programs for molecular dynamics [66].
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The listed software tools reflect the growing use of C/C++ in the areas
of HPC and AI. But the question of the achieved performance compared, for
example, with CUDA programs on Nvidia GPUs requires further study.

The functional simplicity of GPU cores makes it possible to quickly
switch thread context from active to passive and back, which is not true for
the CPU.

Nvidia’s long-term dominance of the GPU market has led to the
widespread use of terms for GPUs proposed by Nvidia. But the emergence
of a new generation of GPUs, including from other companies, was
characterized by their use of other terms for the same things (most
of them are SIMT terms for APIs— CUDA, HIP, OpenCL and others).
Accordingly, there are many publications and conference reports that
provide correspondences between terms from different manufacturers,
including in tabular form (see, for example, [67,68]). Below in Table 1
such a comparison is made for the purposes of this review.

All rows of the table, except the last two, are API terms. The last two
lines contain terms for similar important hardware components of GPUs
from different manufacturers. This table does not include the terminology
used for the BR100.

The table in the right column shows in bold the terms that will be
used later in this review as common for GPUs from different manufacturers
(although in sections about a specific manufacturer its terminology is also
used).

The used by GPU manufacturers terms may vary depending on their
using for hardware or software, and may change as new models become
available. Thus, AMD uses the term wavefront in the architecture and ISA
manuals discussed in the review of this company’s GPUs— but in the
modern HIP manual only warp is used [58]. And the emergence of a new
generation of Nvidia GPUs caused the emergence of a new term for them—
a cluster of thread blocks for the H100 GPU [16] in the hierarchy of various
levels of thread groups.
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Table 1. A comparison of terms used by various GPU manu-
facturers, including their programming models

Nvidia
(CUDA) AMD (HIP)

Intel
(oneAPI/
SYCL)

Desrription; the general term used in the
review (if used as a general term)

Thread Work item;
Thread

Work-
item

Individual thread (they work together in a
group of threads— in a warp or in a sub-
group); thread

Warp
Wavefront;
(sometimes

Warp)

Sub-
group

A set of operations (threads) that execute
synchronously, execute the same instructions,
and follow the same control flow path: a group
of parallel threads executed by a hardware
unit (Nvidia SM has 32 of them) is the smallest
computing unit, a block of threads per they
are divided; warp

Thread
block Workgroup Work-

group

A group of warps/sub-groups running concur-
rently on a GPU (running on a single SM on an
Nvidia GPU). Can synchronize together and
communicate using shared memory; thread
block

Grid Grid ND-
range

A grid of blocks of threads, the top level
of the hierarchy of the thread system of the
entire GPU; thread grid

Streaming
Multipro-
cessor (SM)

Compute
Unit (CU) Xe core

An analogue of a functionally simplified CPU
core (contain parallel ALUs). For example,
in Intel Data Center GPU Max Xe core contains
several SIMD-type ALUs.

Tensor
core

Matrix core
unit

Matrix
Engine
(XMX)

Computational unit for multiplying small
matrices (similar to GEMM, with mixed
precision); tensor core

Shared
memory

Shared
memory

Local
memory1

High-speed (cache-like) low-capacity memory
shared by all threads in a thread block/work-
group; shared memory

Global Memory2 DRAM memory available in the GPU; its data
passes through several levels of cache memory

Device2 GPU (with the memory); device

Host2
Processors and memory (more generally—
the entire part of the computer without the
GPU); host

Kernel2
Part of a program executed on the GPU (func-
tion in C, subroutine in Fortran). Kernel can
run in parallel with the CPU; kernel

1 Incomplete compliance;
2 a common term for all GPU developers.

Nvidia terms are taken from [16]; AMD— from [58]; Intel— from [69].
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Different levels of thread groups allow you to effectively organize highly
scalable SIMT parallelization. Since a situation may arise where a warp
is waiting for data from memory, the active calculation then switches
to another warp. In classic Nvidia GPUs, for this purpose, SM contains
a warp scheduler (it forms a warp group of threads) and a dispatch unit for
activating warp execution. Similar hardware units exist in GPUs from other
manufacturers.

Another very important common feature of modern GPUs is the ability
to work with data of varying precision, including mixed precision operations.
This, when using reduced precision and, accordingly, the number of bits to
represent a number, makes it possible to achieve several times higher
peak performance, reduce the requirements for GPU memory size and its
bandwidth, which very often limits performance. When reducing the
required memory capacity, the reduced amount of GPU communication with
the CPU can also improve performance. This doesn’t make sense when
working with traditional CPUs, and all floating point calculations in HPC are
done traditionally with FP64. However, for very actively developing AI
areas, working with neural networks uses matrix multiplication, and it has
been found possible to work with lower precision and with mixed precision.

The typical data format for use in deep learning is single precision,
FP32, but many works have shown that lower precision, such as FP16, is
sufficient [70]. The calculation time for deep learning is limited usually by
matrix multiplications, which is what tensor cores in Nvidia GPUs or their
analogues in other new generation GPUs are focused on. The tensor core
in a GPU first appeared in the V100, and from the very beginning it was
considered as an application specific integrated circuit (ASIC) integrated
into the GPU— see, for example, [71]).

Formula (1) reflects the BLAS function GEMM (here A, B, C are
two-dimensional matrices, the dimension of A is M ×K, the dimension
of B is K ×N , the dimension of matrix C is M ×N).

C = αA×B + βC(1)

Already in the first tensor cores (in V100), the FP32 format was used for
C, and FP16— for A and B [72]. In the A100 you can use BF16 for
A and B, and TF32 for C (although in the A100 it is now possible to work
with the FP64 format in tensor cores) [73].



New generation of GPGPU and related hardware 319

Table 2. Reduced precision floating point formats on GPUs

Number format Number of bits
Number’s sign Exponent Mantissa In register1

FP32 1 8 23 32
TF32 1 8 10 32
TF32+ 1 8 15 32
FP16 1 5 10 16
BF16 1 8 07 16
FP8-E4M3 1 4 03 08
FP8-E5M2 1 5 2 08
1 TF32+ format is only supported by BR100 [35], and FP8 formats are

supported by H100 [78].
This table uses data from Table 11 in [79] with the addition of a TF32+ format line for

BR100 [35].

Similar mixed-precision matrix operations are performed in modern GPUs
on special matrix blocks (see terminologies from different manufacturers
in Table 1) and are carried out for matrices of very small sizes from a fixed
set. For example, in tensor cores A100 for all matrices from formula (1)
with FP64 format M ×N ×K = 8× 4× 8 [17]. Many reduced-precision
floating-point number formats have begun to be used on GPUs (primarily for
AI tasks); The basic parameters of formats with reduced (relative to FP64)
precision are shown in Table 2 (this table shows only formats for floating
point numbers— but in AI it is also possible to work with integers reduced
to 8 bits in length, INT8).

Some of these reduced precision formats are not supported by the
IEEE-754 standard [74], but are supported by specific GPU manufacturer
models (TF32, TF32+, BF16, and FP8 formats). It should be noted here
that the TF32 and BF16 formats are considered effective for deep learning
(see, for example, [17,75]). TF32 uses the same 10 bits for the mantissa as
FP16, but due to the longer exponent, the range of numbers represented is
larger, which is important for AI tasks [76]. And in [77] the possibility
of using FP8 formats for deep learning is considered.

Since using reduced-precision formats on the GPU can lead to very
important performance increase, little by little the ability to work with
reduced (relative to FP64) precision has begun not only to be used in AI,
but to be studied in other well-known HPC areas, including: FP32 in CFD
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(there were also attempts to work with FP16) [80], FP32 in classical
molecular dynamics (in [81] the performance increase on FP32 was
measured not on the GPU), FP32 in quantum molecular dynamics (there
were also attempts to work with FP16) [82,83], in quantum chemistry
[84,85]. The corresponding increase in performance may be due not only
to a direct increase in the actual performance of the GPU cores due to
a decrease in precision, but also to a possible dramatic reduction in the
requirements for GPU memory capacity.

Naturally, studies began to appear on achieving acceptable precision
of results when working with reduced precision in mathematical methods,
for example, when solving the Poisson equation [86]. Methods for correcting
possible errors relative to FP32 during calculations with FP16 and TF32
(when working on A100 tensor cores) are proposed in in [87]. It is clear that
when working with reduced precision, fairly detailed systematic studies are
required, which may not have time to be carried out due to the ultra-fast
development of modern GPUs and the creation of new data formats in them.

Even in AI, the use of, for example, TF32 with a mantissa reduced
relative to FP32 makes detailed studies relevant due to possible problems
with the convergence of deep learning. Therefore, the TF32+ format
available for BR100, which has a larger number of bits for the mantissa
than in TF32, may be interesting. And, for example, in molecular dynamics,
modern software packages running on the GPU often have options that
allow calculations with reduced precision (for example, for two-point
atom-atom interactions) and in a large number of cases give acceptable
results— however, sometimes this leads to error. The author is not aware
of publications that formulate in which cases such errors occur. For
quantum chemistry the situation may be more complicated, for example,
in iterations with self-consistent total energy. The author is currently
generally wary of HPC calculations with reduced precision.

But until now, tensor cores are considered as ASICs focused on machine
learning tasks (see, for example, [88]), although recently there have been
works aimed at expanding the application of matrix multiplication with
tensor cores to HPC (see, for example, [89]). But in general, for HPC it’s
necessary to be based on the performance achieved by specific applications.
And in [90] it was found that of the 77 known HPC benchmarks selected
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there, only 10 used GEMM. And from the point of view of power efficiency,
the use of emulation of FP64 and FP32 formats with reduced precision
on the V100 tensor cores is significantly worse than the use of vector cores
there. Therefore, for wider use of tensor cores on HPC, from the author’s
point of view, they need hardware support for FP64, which Nvidia began
with the A100.

In general, issues of working with numbers of different precision are
of more general importance, not only for GPUs. For example, in [91]
proposed a new combined multiply-and-add unit targeting HPC and AI
tasks to handle formats having different precision. Some information
about the achievable precision when running on tensor cores for matrix
multiplication using mixed-precision operations is given very briefly later
in Section 4.1.4, which discusses the achievable performance on the A100.

2. New Chinese GPU BR100

This review starts with the Biron Technology BR100 for a number
of reasons. This accelerator differs quite significantly in design from
more traditional Nvidia and AMD GPUs, even in the form of terminology
used. There are almost no publications assessing the performance of the
BR100 in benchmarks and applications, and the prospects for their further
production have become doubtful due to US sanctions. Therefore, the
terminology used for BR100 was not shown in Table 1. Nevertheless,
the analysis of BR100 seems interesting, including as a possible effective
alternative to modern Nvidia GPUs.

The appearance of these GPUs was clearly evident for two reasons— the
high speed of development (they were made “almost from scratch” in just 3
years) and the declared superiority in performance of this Chinese GPU over
the Nvidia A100 (the H100 simply did not exist then).

It should immediately be noted that the BR100 is very clearly focused
on working in the field of AI, which allowed the developers to make a clear
gradation of importance when designing the microarchitecture. The main
available source of information on the BR100 (also used in this review)
is a report at the 2022 Hot Chips 34 conference [35], and additional
information is available on the developer’s website [51]. There were also
minor clarifications in the interview with Biren Technology director Zhang
Wen [92]. Certain comparisons of the characteristics of the BR100 with
other GPUs are then carried out only in relation to the A100, since this
model is classified as a base model in the review.
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Figure 1. BR100 microarchitecture (figure from [35])

The overall microarchitecture of the BR100 is shown in Figure 1 [35].
The BR100 family contains two different models— the BR100 and the

simpler, cheaper BR104, so BirenTech now also uses the BR10X name [51].
General characteristics demonstrating the success of the BR100 family are
usually given for the BR100 model (see also Table 3). It should be noted
here that the BR100 uses chiplets, is based on the use of two tiles (see
Figure 1), and is manufactured using TSMC 7 nm technology (CoWoS
2.5D [35]). BR100 contains 77 billion transistors with a total area of 1074
mm2. The BR104 has one tile, and many indicators are also half that
of the BR100 (see Table 3).

The main component shown in Figure 1 that determines the achieved
performance of the BR100 is the SPC (Streaming Processing Cluster),
which can be partly considered a kind of analogue of the Nvidia GPC
(Graphics Processing Cluster) in the A100. Each of the two BR100 tiles
has 16 SPCs.

Each SPC contains 16 EU (Execution Unit) blocks, which contain the
actual computing components of the GPU— 16 vector cores (V-cores),
and one tensor core TDA (Tensor Data Accelerator) [35]. With a target
clock frequency of 1 GHz (it is noticeably lower than the accelerated core
frequency in the A100, see Table 13 below) and knowing the number
of FP32 results achieved per clock cycle in the V-core (FP64 is not
supported in the BR100, which is due to the focus on AI), this makes it
possible to calculate peak performance with FP32. Table 3 provides data
on the peak performance achieved when working with TDA (since they are
especially relevant for AI tasks, which the BR100 is primarily focused
on) [51]. The peak performance values achieved (for AI-relevant data
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Table 3. Comparison of BR100 and A100 specifications

GPUs BR1001

(Walli 100P)
BR1042

(Walli 104P) A100-PCIe5 A100-SXM45

Technology, nm 7 (TSMC)

Form factor OAM
Full-length
two slot PCIe
board

PCIe SXM

Performance
(peak):4

FP32 (TFLOPS) 240 112
TF32+ (TFLOPS) 480 224 156/3123,6 156/3123,6

BF16 (TFLOPS) 960 448 312/6243 312/6243

INT8 (TOPS) 1920 896 624/12483 624/12483

Memory type and
capacity

HBM2E
64 GB

HBM2E
32 GB

HBM2E
40 GB

HBM2E
80 GB

Memory bus width
(bits) 4096 2048 5120 5120

Peak Bandwidth
(TB/s) 1.64 0.819 1.9 2.0

Interconnect to
GPU, Peak
Bandwidth (GB/s)

BLink
(8 ports ×8),

448

BLink
(3 ports ×8),

192
NVLink3,

600
NVLink3,

600

Interconnect to CPU
PCIe-5.0,
×16 with CXL
support

PCIe-5.0,
×16 with CXL
support

PCIe-v4
×16 NVLink3

TDP, W 550 300 250 400
1 see [99];
2 see [100];
3 after the slash data is given when using sparsity;
4 data using tensor cores are presented;
5 data from [93,94];
6 for A100 data is given for TF32.

formats) are only slightly below initial expectations [35] and 1.5–2 times
higher than in A100.

In fact, in the hierarchy from the SPC to EU level in BR100 there is
an intermediate level— CU (Compute Unit) blocks, each of which can
contain 4, 8 or 16 EU blocks (see the right side of Figure 1) [35]. CU can be
considered an analogue of SM (Streaming Multiprocessor) in A100.

A CU with four EUs has a 64 KB L1 cache (LSC). Next in the memory
hierarchy is the L2 cache with a capacity of 8 MB per SPC, which gives
256 MB for the entire BR100. HBM2E memory with a capacity of 64 GB
(in modern A100 models the capacity is increased to 80 GB— see, for
example, [93]) has an interface width of 4096 bits with a bandwidth that is
also lower than that of the A100 with 80 GB [93] (see Table 3).
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To achieve high GPU performance, memory bandwidth is important,
and some lag here between the BR100 and the A100 is compensated by the
huge capacity of the L2 cache (the A100 has a much smaller L2 cache
capacity— 40 MB [94,95]). To maintain more efficient operation of the L2
cache in the BR100, use Near Memory Computing [92]. Obviously, this is
a certain analogue of the Near Memory Processing paradigm, close to the
PIM, processing-in-memory paradigm, the goal of which is to spatially
combine computing units with memory and greatly reduce data transfers
between them [96], applicable for AI tasks [97,98].

Turning to the bandwidth, it is equally important for communication
between two BR100 tiles, and is 896 GB/s [35], which allows the BR100 to
be treated as one common GPU.

For communication with the CPU, PCIe-5.0 (×16) is used, with support
for CXL (Compute Express Link)— an interconnect with support for cache
coherence [101,102], which has a clear tendency towards standardization.

Up to 8 BR100 GPUs can be installed in one server, and for com-
munication between such GPUs, point-to-point communication channels
(i.e., between each pair of GPUs) BLink are used, which uses SerDes
(serializer/deserializer) [92]. One BLink has a bidirectional bandwidth of
64 GB/s [35], respectively, for 7 BLink channels connecting one GPU to
all others, the total bandwidth is 448 GB/s. Choosing to fully support
all point-to-point connections gives the BR100 an advantage due to the
absence of potential contention when multiple GPUs share interconnect
bandwidth, while GPU-to-GPU communication via the CPU has its downsides
in bandwdith and latency [3]. Therefore, as noted in [3], the topology
of such interconnect is very important.

For communication between the A100 GPU with the SXM4 form
factor [103] the Nvidia NVLink3 interconnect [94] is used, where 12
channels with a bandwidth of 50 GB/s are used to connect the GPU-GPU—
accordingly, a bidirectional bandwidth of 600 GB/s is obtained [94], which
is much more than for BR100. The BR100’s communication with the
CPU has significantly higher bandwidth (896 GB/s) than the NVLink3’s
600 GB/s. And in the A100 with PCIe-4.0 model, the communication
bandwidth between GPUs is the same as that of the BR100, 64 GB/s [93].

It is clear that the effectiveness of a GPU interconnect can only be
assessed by the measured performance of benchmarks or applications, which
is practically non-existent for the BR100 at the moment. The observed
orientation of applications to minimize all communications between the CPU
and GPU (this is one of the basic rules of optimization in CUDA on the
A100 [104]) suggests that scaling performance with increasing number
of GPUs in a server with A100/SXM4 (in the case of rather large requirements
for such communications) will be higher than in a server with BR100.



New generation of GPGPU and related hardware 325

The advantage of BR100 is the use of OAM Spec v1.1 [92]— a rapidly
spreading and actually claiming to standardize the OAM (OCP Accelerator
Module) form factor [105] (the corresponding module with BR100 is called
Walli100 [92]); And the BR100 is located on the UBB board [92], which
can also become the standard of the future [105]. For comparison, the
A100 with a high-speed NVLink3 GPU interconnect uses Nvidia’s own SXM
form factor, while the maximum number of GPUs in a server (for example,
in the famous Nvidia DGX for AI) is also 8 [106].

Of course, BR100 provides a number of other features not discussed
here— including 4 blocks of special functions (Special Function Units—
SFU, analogues previously known in Nvidia GPUs, used, among other things,
to calculate elementary functions); ability to work with NUMA and UMA;
support for up to 8 virtual GPUs (Secure Virtual Instance, SVI— analogous
to Nvidia MIG, Multi-Instance GPU), which allows several applications (that
do not support good scaling to a full GPU) to effectively work with the one
GPU simultaneously [35,99]. Classic shader blocks for image processing are
completely absent in the BR100, which is due to the unique orientation
of this GPU towards AI (the video codec is supported [99], but this is not
discussed in the review).

Another important modern GPU parameter is TDP— according to
Table 3, BR100 needs more power consumption than A100. If we calculate
power efficiency (performance per watt), then, for example, for the BF16
format relevant for AI in the BR100 it is higher than that of the A100
with SXM4 or PCIe (without using sparsity). The created Haixuan OAM
server [92,99] contains 8 BR100s and has a peak performance (for BF16)
of about 8 PFLOPS with a maximum TDP of 7 kW [92] (see Figure 2) [35].
Together with Inspur, a well-known manufacturer of multi-GPU servers for
AI, cluster solutions are also planned [92].

The BR104 not only has half the performance and memory capacity
(see Table 3), but also the number of Blink ports is 3— accordingly,
fewer GPUs can be installed in one server. The announcement of the
Wallen Technology Wallace 104 server with BR104 was reported in a
number of media. The form factor is also important here— the BR104
uses a full-size two-slot board [100]. This can be compared with the
A100-PCIe— based on them, Nvidia produces, for example, HGX modules
(with a PCIe form factor) for servers, including two connected via the
NVLink Bridge GPUs [93].

Regarding the BR100 (Bi Liren) architecture in a general sense, and
not about the microarchitecture, it should be noted that there is a large set
of supported data formats (Table 3 shows the performance for only some
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Figure 2. Interconnect topology in a server with BR100
(Figure from [35])

of them): INT8, INT16, INT32, FP16, BF16, FP32, TF32+. Information
about them, primarily about the original development of Biren Technology
TF32+, is available on a number of sites (see, for example, [107]). TF32+
looks like an attempt to improve the well-known TF32 format for tensor
cores from Nvidia [94] (see Table 3), with the help of which the BR100
developers wanted to increase precision and performance [51]).

To work with BR100, a set of software tools BIRENSUPA (BIREN
Scalable Unified Parallel Architecture) [92]— was developed— drivers, the
BRCC compiler with support for extended C++, program libraries and
other tools focused primarily on deep learning [35,108]. BIRENSUPA has
a programming paradigm and language style similar to NVidia CUDA, and
also uses hardware capabilities unique to the BR100 [92]. But there were
no publications demonstrating the use of these software tools and the
actual performance achieved at the time of writing the review.

As for performance for AI, for BR104 there is data for two tests from
the well-known set of benchmarks for the machine learning inference stage,
MLPerf inference datacenter version 2.1 [109,110] for data centers.
The MLPerf inference datacenter benchmarks results show how quickly
a trained neural network can perform inference tasks on new input data.

The first benchmark for image classification from the MLPerf Inference
datacenter is based on ResNet (residual neural network) using the famous
artificial neural network technology; ResNet has been expanded and
modernized many times, and has been used, for example, for image
processing for the diagnosis of COVID-19 (see, for example, [111]). Another

https://github.com/mlcommons/inference
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Table 4. MLperf 2.1 inference datacenter benchmarks data
(December 2022) on servers with GPUs

GPU
mod-
els

Number
of GPUs
in the
server

Server model and
manufacturer

Image
classification
(A=99%)

Natural
Language
Processing
(A=99.9%)

server
(queries/s)

offline
(sam-
ples/s)

server
(queries/s)

offline
(sam-
ples/s)

BR104,
PCIe

4 Inspur NF5468M661 150027 212391 8993 11106

8 Inspur NF5468M66-P2 200052 424660 13952 22134
A100,
SXM,
80GB

4 Lenovo SR670v23 150027 174180 No data

4 Dell PowerEdge XE85454 128029 131364 5297 5476

A100,
PCIe,
80GB

8 ASUS ESC8000A-E115 270066 283838 11496 13129

A100,
SXM,
80GB

8 Inspur N5688M66 313069 347202 No data

8 Inspur N5488A57 290066 346954 13594 14977

H100,
SXM,
80GB

1 Nvidia Preview8 58995 81292 6195 7921

1 with Intel Xeon Gold 6354 and suInfer;
2 with Intel Ice Lake-SP 8368 and suInfer;
3 with Xeon Platinum 8360Y 2.40 GHz and with CUDA 11.6;
4 with EPYC 7763 and with MaxQ, TensorRT 8.4.2 and CUDA 11.6;
5 with 64-kernel EPYC 7763, TensorRT 8.4.0 and CUDA 11.6;
6 with Xeon Platinum 8358, TensorRT 8.4.2 and CUDA 11.7;
7 with EPYC 7713, TensorRT 8.4.2 and CUDA 11.7;
8 with 8-kernel EPYC 7252, with TensorRT 8.5.0 and CUDA 11.8.

benchmark for work with natural language, BERT (Bidirectional Encoder
Representations from Transformers), uses a transformer-based machine
learning model to pre-train natural language processing using a bidirectional
encoder [112]. This method is extremely widely used and is probably most
famous for its use by Google LLC.

The results of these famous tests, presented in [109] for servers with 4
or 8 BR104 GPUs, as well as for servers with 4 or 8 A100 GPUs, are shown
in Table 4, which selects the highest performance results achieved. The
specified data for GPU BR104 and A100 refers to the class of available (that
is, the corresponding servers can be purchased).

In these tests, the required accuracy of inference (A) is 99% or 99.9%
relative to FP32. But we must keep in mind that the achieved performance
may significantly depend on the software development systems used. For
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the A100, in addition to basic CUDA tools, to achieve high performance, To
achieve high performance, special Nvidia TensorRT software [113] was
used; For BR104, suInfer tools were used.

Performance data from MLperf inference datacenter 2.1 using 4 and 8
BR104 GPUs in Inspur servers showed the performance advantage of BR104
in the natural language processing (NLP) test with the BERT model by
one and a half to two times when using the same number of BR104 or
A100 in the server. In the "offline" scenario of the image classification
test with the ResNet model on servers with 4 and 8 GPUs, servers with
BR104 are also faster than servers with A100 (see Table 4), and in the
"server" scenario of this test on servers with 4 GPUs, A100 is not ahead
of servers with BR104, but significantly faster than them when using
8 GPUs. This may also be due to the advantage of NVLink3 over BLink
with such a number of GPUs.

These tests may require less computational resources than MLPerf
Training, often run on the A100 GPU: MLPerf Training measures the time
required to train machine learning models to a target level of accuracy,
where the main tasks are the actual training.

The above data about the BR100 clearly indicates that it is designed
to compete with Nvidia GPUs, which should be supported not only by
the higher peak performance of the BR100 and the high performance
achieved in AI tests. A clear focus on extremely rapidly developing and
commercially relevant AI tasks (which made it possible to target the BR100
hardware more narrowly and economically), and the use of hardware that
claims to be standardized should help reduce the cost of the BR100, which
is combined with the initially rather typical for Chinese manufacturers
lower cost relative to products Western countries.

However, the situation with the BR100 changed dramatically due
to US sanctions imposed in 2022, as a result of which TSMC stopped
manufacturing and supplying BR100 chips. This has been widely discussed
in various media, but here it should only be noted that this ban is aimed
against possible competition with Nvidia and does not contribute to the
acceleration of the development of the global GPU market.

3. Intel Data Center GPU Max (Ponte Vecchio)

The choice of Intel Ponte Vecchio (hereinafter abbreviated PVC) as
a new generation of GPUs as the next object of analysis is due to the fact
that at the time of writing the review they had just appeared on the
market in the form of several different Data Center GPU Max models, and
scientific publications about their performance are almost are missing.
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Intel’s information about available PVC models was changing at the time
of writing this review. And the PVC architecture (and the software SDKs
used) are quite different from the more “traditional” GPU architectures from
Nvidia and AMD.

The appearance of PVC has been expected for several years; in September
2022, Intel announced the start of supply of PVC to the Aurora supercomputer
at the Argonne National Laboratory in the US. But this supercomputer is
missing from the June 2023 Top500 list.

3.1. PVC hardware
Intel developed the Xe architecture (“eXascale for everyone”) for use

in a wide variety of classes of GPUs (not just GPGPU), to work with both PCs
and servers. Xe has a common instruction set architecture (ISA), and
Intel uses 4 different microarchitectures— each class of GPU has its own
microarchitecture [69]; PVC uses the Xe HPC GPUs [114,115]. For data
centers, Intel offers Data Center GPU products, including two series— Data
Center GPU Max [116],— this is the official name that replaces the use
of the Ponte Vechio code word (abbreviation PVC in this review), and the
Data Center GPU Flex series [117] with Xe-HPG microarchitecture.

The review considers only the family of HPC-oriented GPUs with the Xe

HPC-GPU microarchitecture— Data Center GPU Max (PVC is designed to
work in exascale supercomputers; PVC further means the senior model
of this series, Max 1550— for the formation of the Aurora supercomputer,
Intel supplied this GPUs, and data about it have been presented in a number
of publications cited here in the review). Intel points to 3 different models
in this family, the recommended price data for which was expectedly not
provided on the website ark.intel.com at the time of writing the review—
in accordance with the corresponding lack of similar price recommendations
from other manufacturers of new generation GPUs. Table 5 shows the
basic specifications of various PVC models. This table shows only GPU
specifications that are primarily relevant for classic HPC tasks. And, for
example, the number of blocks in PVC for processing ray tracing, which
can also be used for AI tasks (see, for example, [118]), is not given here
(there are as many of them in PVC as Xe cores— 128)— because hardware
capabilities of PVC for ray tracing are also not discussed in the review.

For the production of PVC, it was planned from the very beginning
to use three-dimensional laying based on tiles [114,120]. Intel could
have been pushed to this point by a certain lag in its own semiconductor
technology (sometimes formulated as rumors [121]). According to a report
from the famous exascale computing project ECP [67], PVC was planned for
delivery in 2021.

ark.intel.com
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Table 5. Basic characteristics of Data center GPU Max series
models (PVC)

GPU
model

Number of Frequency (GHz) Memory
TDP,
WattXe cores XMX XVE Base Max. capacity,

GB
bandwidth,

GB/s
1100 56 448 448 1.0 1.55 48 1228.8 300
1350 112 896 896 0.75 1.55 96 2457.6 450
1450 128 1024 1024 no data 128 no data 600
1550 128 1024 1024 0.9 1.6 128 3276.8 600

XMX(Xe Matrix eXtensions)— matrix units, XVE (Xe Vector Engines)— vector units. The
data in the table is taken from different (in time) versions [116] and [119]. Models 1350 and
1450 are marked in red because they are not listed on ark.intel.com at the time of review
writing.

PVC uses three-dimensional Co-EMIB (Co-Embedded Multi-Die
Interconnect Bridge) technology using chiplets, which promotes high
performance, and with PVC we can talk about working with PIM architecture,
aimed at solving the problem of exchanging large amounts of data with
memory [122]. The construction of three-dimensional processors from
several crystals (dies) in [123,124] is indicated as a progressive way to
ensure the continuation of Moore’s law, and three-dimensional memory
began to be made quite a long time ago, which was the case not only for
HBM (see, for example, [125]).

Here it is necessary to point out an alternative option for integrating
different dies into a whole (Intel’s tiles in PVC) using chiplets, used by
AMD, including when building the MI200 GPU. For a modern overview
of chiplets, see [126], and modern AMD GPUs are discussed below. It
should also be noted that the standard chiplets interconnect, which is being
developed by a consortium of a number of companies, including Intel,
AMD, ARM, Google and TSMC, includes not only the physical layer—
there is now a UCIe 1.0 specification [127].

Model PVC contains 100 billion transistors arranged in 47 functional tiles
(thermal tiles are not counted here), combined into 5 nodes [116,128–130].
Of this large number of tiles, two tiles are basic, 16 are compute tiles (see
Figure 3 [131]), 8 are HBM2E memory tiles. The PVC is structured as 2
hardware stacks [129]— each of the two base tiles contains 8 compute tiles
and 4 memory tiles (the logical relationships of these PVC components
are presented in Figure 3). Basic tiles also contain PCIe interfaces and
channels to HBM2E.

These tiles, as well as the interconnect tiles between GPU PVCs, Xe

Link [129,130] will be briefly discussed below. Rambo (Random Access
Memory, Bandwidth Optimized) cache tiles were also planned for PVC [129],
but for the Xe architecture in [114] they are listed as optional, and they
are not included in the microarchitecture datasheet [130].
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Ponte Vecchio: A Multi Tile 3D Stacked Processor for Exascale Computing 9 of 40Figure 3. Tile-based PVC architecture (drawing from [129])

The implementation of advanced multi-chip 3D technology is discussed
in more detail in [128]. Consideration of technologies is not within the
scope of this review; It should be noted only the use in PVC of a 24-layer
substrate, which ensures operation with overos three-dimensional stacking
technology [132] and with 2.5D EMIB (Embedded Multi-die Interconnect
Bridge) technology [133], which when used together they are called
Co-EMIB [122]. EMIB is used to support local internal interconnects;
Foveros with Intel 7 technology (formerly Enhanced 10nm SuperFin)
is used in base tiles. Memory tiles are made using Intel 7 technology,
Compute tiles are made using TSMC N5 technology, and HBM2E memory
tiles are made using TSMC N7 technology. PVC is manufactured for the OAM
1.1 form factor [134]), which provides high equipment packaging density
and, as noted above in Section 2, is intended to be used as a standard.
Tiles are further considered not in technological terms, but simply as
certain blocks of microarchitecture— accordingly, some types of tiles are
not mentioned here at all.

It should be noted here that Intel also uses other terms (not just tiles)
to refer to Xe class of microarchitectures hierarchies [69,130]. Subslices
are not used for PVC, they are an analogue of Xe cores in PVC. In PVC
(Data Center GPU Max, below the level of the entire GPU, there are 2
levels of hierarchy— a slice (Xe HPC Slice) and a stack (Xe HPC stack).
Slice has 16 Xe cores and 16 ray tracers. The stack contains 4 slices
(respectively with 64 Xe cores and 64 ray tracing acceleration devices)
[69,115]. In addition, the stack has an L2 cache, a memory controller,
a PCIe-v5 interconnect and 8 Xe Link channels (see below). PVC scales up
to two stacks— up to 128 Xe cores [116,130]. Xe cores are analogous
to SM in Nvidia GPUs, and comparing their number is often used when
comparing different GPUs (as well as the number of cores in the CPU).
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Table 6. The number of operations per clock cycle performed
in one Xe core and in the hierarchy of units performing
calculations for different data formats [69]

Execution units Data format Number of operations per cycle

8× XVE
FP64 256
FP32 256
FP16 512

8× XMX

TF32 2048
FP16 4096
BF16 4096
INT8 8192

Slice— 16 times more execution units and operations per clock cycle
Stack— executing blocks and operations per clock cycle are 4 times more
Double-stack PVC (model 1550)— still 2 times more execution units and operations
per clock cycle

XMX does not support the use of the FP64 format

A general description of the PVC microarchitecture is available in [130].
Each computing tile contains 8 Xe cores, of which there are 128 pieces
for the entire PVC. Each Xe core has 8 XVE vector engines with 512-bit
vector lengths and 8 XMX matrix engines working with 4096-bit operands
[69,129,130], and has a Xe Link, interface based on a coherent interconnect
CXL [135] (also previously developed by Intel).

Accordingly, the PVC has a total of 1024 XVE vector engines and 1024
XMX matrix engines. XMX are an analogue of Nvidia tensor cores (this was
indicated in Table 1 in the introduction), which are found not only in the
V100 and A100 GPUs, but also in other Nvidia graphical processors [136].

XVE units operate on 512-bit operands and use multiply-and-add
operations. This gives the Xe core 256 FLOPS per clock for FP64 (and for
FP32 too) [129].

Table 6 shows the number of operations performed per clock cycle with
the different data formats available for XVE and XMX [129,130]. This allows
peak performance P to be calculated using clock frequency ν. So, for FP64
or FP32 formats when working with XVE P = 128× 256× ν, that provides
52.4 TFLOPS (Table 7 shows numbers rounded to the nearest integer,
taken from the Intel overview [130]). Considering the possible values of
ν, given in Table 5, it becomes clear that this numbers are calculated
assuming operation at the maximum, and not at the base frequency.

From the data in Table 7, we can conclude that when using vector
(without using matrix blocks) operations, peak performance for FP64,
traditional for HPC, grows monotonically with the start date of new GPU
models.
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Table 7. Comparison of vector and matrix (XMX) peak
performance of Intel PVC and GPUs of other companies for
different data formats

Performance for different
formats PVC A100 H100-SXM H100-PCIe MI250X

FP64 (TFLOPS)1 52 9.7 33.5 25.6 47.9
FP32 (TFLOPS)1 52 19.5 66.9 51.2 47.9
XMX TF32 (TFLOPS) 419 156 494.7 378 No
XMX BF16 (TFLOPS) 832 312 989.4 756 383
XMX FP16 (TFLOPS) 832 312 989.4 756 383
XMX INT8 (TOPS) 1664 624 1978.9 1513 383
1 Data without matrix operations (XMX in PVC does not support FP64). With the

use of tensor cores, the peak performance of the H100, A100 and MI250X is twice
as high. Data for Nvidia H100 are taken from [78], for A100— from [73]; data
om PVC— from [130,138].

In the field of AI the FP32 format is normal, and it’s possible use
FP16/BF16, including on XMX (see the text above in the discussion
of formula (1)). The square root operation in FP32 format, according
to [69], gives four results per clock cycle in XVE.

For Intel graphical processors, not very low frequencies are observed;
For example, Arc Alchemist can reach more than 2 GHz [137]. Previously,
in [129] it was indicated that the FP32 peak performance was expected to
be at least 45 TFLOPS— this most likely means that Intel managed to
increase the clock frequency compared to last year’s prototype in PVC.

Nevertheless we must keep in mind that the power consumed in this
case increases in proportion to the frequency, and increasing the frequency
to maintain reliable operation of the chip often also requires an increase
in voltage, the square of which is proportional to this power. The TDP
of the PVC model under consideration is 600 W, and assumes liquid
cooling [129] (see also comparisons of Data Center GPU Max models
in Table 5). In [129] another PVC model with possible air cooling and a TDP
of 450 W is indicated— this corresponds to the Data Center GPU Max 1350
model.

However, in mid-2023, Intel announced the discontinuation of the Max
1350 model due to the creation of a modified version of the Max 1550 with
air cooling, and plans to produce a new Max 1450 model [139].

Table 8 provides a comparison of PVC (by default, this refers to the only
model 1550 available at the time of writing the review) with other GPUs
considered in the review in terms of other very important for performance
indicators.



334 Mikhail B. Kuzminsky

Table 8. Comparison of PVC hardware specifications with
other modern GPUs

GPUs PVC H100 A100-SXM4-40GB MI250X

Technology
Intel 7 (7 nm)
& TSMC N5
& TSMC N7

TSMC
4N (5
nm)

TSMC N7 (7 nm) TSMC
(6 nm)

Memory capacity, GB 128 80 40 128
Memory type HBM2E HBM3 HBM2 HBM2E
Memory bus width,
bits 8192 5120 5120 8192

Bandwidth, TB/s 3.3 3.0 1.6 3.2
Form factor OAM SXM SXM OAM
TDP, W 600 700 400 560

© 2022 Intel
Accelerated Computing Systems and Graphics Group
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Figure 4. Memory hierarchy in PVC (Figure from [129])

Due to the high computing performance of modern GPUs, actual
performance achieved when working with them is often limited by memory
bandwidth, which happened before (see, for example, [140]), and now often
happens (see, for example, [141,142]).

A discussion of the PVC memory hierarchy should begin with the
register file, which has a capacity of 64 MB (512 KB per Xe core) and
provides a bandwidth of 419 TB/s [120]. The L1 cache is traditionally
divided into an instruction cache and a data cache, which has a capacity of
512 KB per core [129,143]. The PVC also has SLM (Shared Local Memory)
with a total capacity of 8 MB for the entire PVC [69]— see Figure 4.

Each compute tile has 4 MB L1 [129], a total of 64 MB per PVC,
with a bandwidth of 105 TB/ [120]. The 408 MB L2 cache (204 MB per
stack)[144] on the base tile [129] has a bandwidth of 13 TB/s [120]. Data
for other Data Center GPU Max models is shown in Table 9.



New generation of GPGPU and related hardware 335

Table 9. Memory hierarchy and interconnects of data center
GPU Max series models

GPU
model

L1 cache,
MB— per
GPU/per one

Xe core

L2 cache,
MB –per

GPU/per one
Xe HPC stack

HBM2E
capacity per
one Xe HPC
stack, GB

HBM2E
bandwidth,

TB/s

Number
of Xe

Link
ports

1110 28/0.5 108 481 1.2 6
1350 48/0.5 216/108 48 2.5 16
1450 64/0.5 408/204 64 no data
1550 64/0.5 408/204 64 3.3 16

1 Model 1110 has only 1 stack. The table data is taken from [69,116] and [119].
Models 1350 and 1450 are marked in red because they are not listed on ark.intel.com
at the time of writing.

In addition, in [129] it is indicated that the base tile contains a TLB
buffer, traditional for conventional CPUs (which can also be considered some
kind of cache), and also a RAMBO SRAM cache— see Figure 4. This
cache consists of 4 banks with a capacity of 3.75 MB on a base tile that
also contains a cache switch [129]. But the technical review of Intel Data
Center GPU Max[130] does not mention the presence of a RAMBO cache.

The HBM2E memory itself in PVC combines up to 128 GB (8 tiles)
and operates over a channel with a width of 8192 bits [120]. As stated
in [69], the GTI (Graphics Technology Interface that connects the GPU to
the rest of the computing system) bandwidth of a single PVC stack is
1024 bytes/cycle for reading or writing, which for a dual-stack PVC with
a maximum frequency of 1.6 GHz (for 1550 model) provides bandwidth
of approximately 3.3 TB/s (see Table 5). The bandwidth of this memory
for other Data Center GPU Max models is also shown in this table.

Although each of the two EMIB-linked (up to 230 GB/s in both
directions) stacks has its "own" L2 cache and 64 GB HBM2E memory [130],

Before considering scaling computing resources using the Xe Link
hardware available in Data Center GPU Max which provides coherent
interconnection between GPUs in the server [130], it is necessary to point
out the differences between different GPU models of this series (see Tables 5,
9). In addition to the older Max 1550 model, there is also data on the Max
1450, 1350 and 1100 models (as noted above, Intel no longer plans to
produce the 1350 model).

Of particular interest is the future Max 1450 model, which has the
same number of Xe cores as the Max 1550. And Max 1110 consists not
of two, but of one stack. The number of Xe cores in different models
is proportional to the total capacity of HBM2E and L1 and L2 caches:
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Figure 5. Interconnect between PVCs (Figure from [146])

in the Max 1100 model the corresponding capacities are 28 and 108 MB.
Naturally, as the number of Xe cores in the models decreases, the TDP also
decreases (see data in Table 5).

Here we can draw an analogy with three different models of GPU MI200
from AMD: the top model MI250X has two GCD (Graphics Compute Die),
like the MI250 (which simply has fewer cores), and the bottom model
MI210 has only one GCD (see below in the section about GPUs from AMD).

The bottom Max 1100 model is also distinguished by a reduced number
of physical Xe Link ports (see Table 9), but it also uses a form factor
different from OAM— PCIe AIC (add-in card) [116] (add-in card). PVC,
which can be classified as a system on a chip (SoC) [114] has a PCIe 5.0
×16 interface [130] with a bandwidth of about 63 GB/s [69]; In all Data
Center models, GPU Max PCIe 5.0 is used to communicate between the GPU
and the host [116].

The Xe Link tile supports embedded switch and 8 Xe Link channels,
with each channel communicating directly to each (see Figure 5) [143].
And in two stacks there are respectively 16 Xe Link channels [69]. In [130]
reported a per-Xe Link bandwidth of 26.5 GB/s in each direction. Xe

Link is designed to provide coherent communication between Xe HPC
stacks. This accordingly includes both internal communication in PVC (OAM)
and between multiple PVCs (OAM) [130]. This interconnect, used for
communication between multiple GPUs in a server, allows for efficient
operation in SYCL with USM (Unified Shared Memory) mode [69].

What’s important is how the Max 1550 and Max 1450 logically
look to the user. Given the Xe Link bandwidth mentioned above, the
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communication bandwidth between the two stacks is much lower than
the memory bandwidth on a single stack. In the AMD MI250X/MI250,
which is similar in this regard, therefore each GCD there logically looks like
one GPU. In [144] states that users treat two PVC tiles as two processors.
However, in Intel’s oneAPI GPU Optimization Guide [145] states that
moving from one stack to two requires simply changing an environment
variable, meaning the Max 1550 gives you the choice of running it as two
different GPUs or as one big GPU.

PVC officially began to be supplied by Intel already at the time of writing
the review, and many details at the hardware level were not yet available,
for example, latencies values, which is also important for communications
via Xe Link, including between PVC stacks.

In [130], two types of solutions supported by Intel for scaling computing
systems due to an increase in the number of Xe HPC stacks are indicated:
scaling inside (scale-up)— inside multi-GPU servers, and scaling outside
(scale-out), which refers to the cluster, containing GPU nodes. Above we
actually talked about scale-up scaling.

The scale-out solution can scale to a cluster containing a maximum
of 64 OAMs interconnected via Xe Link Glueless. Further scaling along
with Infiniband allows to build a system with up to 512 interconnected
OAMs [130]. “Glueless” interconnects ((where are no intermediate chips) have
been known for a very long time; They provide very low latencies [147].

And first it is planned to use the Tuscany configuration, in which
a common board with four OAMs can be connected to the server via PCIe
5.0. Options are available with Data Center GPU Max with TDP 450 or 600
W, with air or liquid cooling [130]. Taking into account the data in Table 5,
they probably meant the GPU Max 1350 and 1550 models, respectively.

PVC was originally intended to be used in two-socket servers with the
new Xeon Sapphire Rapids CPUs (now called Xeon Max they were used
in Intel’s server performance data [116]). Intel’s currently offered Xeon
Max supports DDR5 and HBM2E (see, for example, [148]). Using HBM
in these CPUs can greatly improve performance, as shown in [149].

In the Aurora supercomputer, the computing nodes are dual-processor
servers (with a Xeon Max 9480 CPUs) containing another 6 PVCs [47].
In addition to the Aurora supercomputer being created, PVC is planned
to be used on the European exascale supercomputer with SiPearl Rhea
processors [150]. Of course, this strengthens PVC’s potential position
in the market, but it will be more important to consider the realities
of performance achieved in applications, transfer of software to PVC and
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cost indicators. Data Center GPU Max of course, is intended to be used not
only on supercomputers, but also at the level of small clusters and separate
servers with GPUs— such servers have already been announced by famous
manufacturers, including Dell, Lenovo and Supermicro.

3.2. Software tools and first initial data on PVC performance

As for software, the existing publication [120], taking into account the
work for the Aurora supercomputer being created at the Argonne National
Laboratory in the US [67,151,152] indicates the accelerated movement
of Intel towards the SYCL standard line from the Khronos Group [153],
extended by Intel in the form of DPC++ (Data Parallel C++) [154]. The
relevance of this direction is clearly, since DPC++ is focused on working
with different accelerators, which provides portability, including between
different GPUs. Intel’s DPC++ compiler is part of the overall Intel oneAPI
software [155], which can also run on Intel processors and PGA accelerators,
giving developers the ability to create a degree of common program code.
Intel is actively developing new versions of oneAPI— for example, oneAPI
2023 is now available [155].

The oneAPI software includes a wide range of tools— compilers,
debuggers, profilers, libraries and specialized tools for working with AI. The
oneAPI DPC++/C++ compiler makes it possible to work with GPUs from
Nvidia and AMD [156]. For optimization tasks when working with oneAPI,
Intel has prepared a special guide [69]. A big advantage of DPC++ itself is
the presence of an open source compiler [157].

In [158], for V100 on the STREAM (triad) benchmark, the bandwidth
achieved with DPC++ was close to that obtained using OpenCL and CUDA,
and the use of SGEMM from the oneMKL library gave 66% of the peak
performance. Obviously, these results can be improved when working with
new versions of oneAPI.

Since oneAPI is an open, standards-based unified programming
model [159], aimed at working with both processors and accelerators
of different types and from different companies [156], taking into account
the end of the GPU monopoly from Nvidia and the transition to the use
of GPUs from different companies, this is definitely promising. But it is
clear that proposals from different companies may evolve in the direction
of unification (for example, AMD’s HIP software is already focused not only
on AMD GPUs), and in this actively developing area it is now difficult to
predict what will become the most used.
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Intel, of course, has also taken care of the pressing issue of possibly
porting code from Nvidia GPUs to PVC, and in oneAPI it also provides
the DPC++ Compatibility Tool (often used abbreviation— DPCT), which
automatically translates CUDA code to DPC++. According to [160], such
automatic porting typically does this for 90–95% of the CUDA code, and
full completing the porting of all code requires manual work. And how
effectively all this will work on the GPU in terms of performance, of course,
there is practically no data yet. In [154] does some preliminary research,
but it does not apply to the GPUs covered in this review, and it is unclear
how relevant it is to HPC workloads. In [161] based on the experience
of porting SGEMM from the MAGMA library, it was concluded that DPCT
can be successfully used for the initial port of CUDA code to DPC++, but the
results used here are for GPUs that are not included in the review.

In general, as examples of work on porting GPU-using applications
to DPC++ should indicate the porting of several well-known molecular
dynamics applications to DPC++— NAMD [162], GROMACS (ported to
SYCL, using the DPC++ compiler [163,164]); LAMMPS can also work
on PVC— but through the use of Kokkos. Data about similar porting
of other areas applications are available in [154]. In [165] discusses the use
of SYCL on Nvidia and AMD hardware by using hipSYCL with different
backends (now hipSYCL is renamed to AdaptiveCpp ).

The tasks of porting program codes from CUDA to oneAPI have already
been considered in a number of articles, since oneAPI tools are applicable
to various graphical processors that appeared before PVC. Thus, in [166],
for numerical integration problems, porting from CUDA (with V100) to
oneAPI required special manual optimization before performance with
oneAPI became slightly lower than with CUDA. In [167], when porting
unstructured grid CFD code to SYCL for the A100 and V100, hipSYCL was
used, but concluded that CUDA was still better for achieving maximum
optimization. For the same CFD area, a similar result was obtained
in [168]. These works noted that better results for DPC++/SYCL can be
obtained in the future as the quality of optimization by compilers increases.
The report at the supercomputer conference at NASA on the transfer
of the FUN3D software package from CUDA to oneAPI (for CFD, with the
solution of the Navier-Stokes equations) [169] essentially also indicated the
advisability of manually optimizing the code for a specific architecture.

It is also worth pointing out that oneAPI has a certain disadvantage
associated with being based solely on C++, since this does not help codes
that natively use modern Fortran. For CUDA there is CUDA Fortran [170].
At the same time, the modern Fortran language when working on the

https://github.com/AdaptiveCpp/AdaptiveCpp
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GPU began to be considered versions of the standard with support for
object-oriented tools [171]. And modern versions of OpenMP, also
implemented in Fortran compilers [172], have suitable tools for working
with GPUs. But the above disadvantage is associated with delays in the
development of possible new extensions of modern Fortran standards with
tools for efficient work with GPUs.

A more detailed analysis of Intel’s oneAPI is not practical here due
to the very small number of scientific publications demonstrating the
performance of PVC compared to other modern GPUs, including comparisons
with work with other software such as CUDA. Intel has achieved a lot
primarily with oneAPI, as these tools, including DPC++, have begun
to be used on other Intel GPUs— for example, working with the well
known Ginkgo library [173]. In addition, DPC++ learning for students
studying programming of heterogeneous computing systems is already
being implemented [174].

Among the isolated publications with data about the performance
of Data Center GPU Max we point out two works in which the performance
of the Max 1100 model was compared with Nvidia and AMD GPUs.
Article [175] is focused on supporting modern versions of OpenMP, which
allow to work on GPUs. Here, using Max 1100 (with Intel oneAPI 2023) and
A100-40GB (with Nvidia NVHPC 23.3), calculations were performed on the
CFD-related mini-application LULESH using OpenMP parallelization, and
it was claimed that the A100 was 34% better than Max 1100 (although the
performance gain for the A100 depended on the size of the problem used
in the calculation and varied from 15 to 42%). However, the large memory
size of the Max 1100 made it possible to perform LULESH calculations for
higher problem size, where the memory on the A100 was not enough.

In [176], the portability of SYCL to different hardware platforms was
studied and performance data was obtained on a number of different
applications using parallelization with SYCL (mainly in the area of CFD),
executed on Max 1100 (with oneAPI 2023.1), A100-40GB (with CUDA 11.6)
and MI250X (with ROCm 5.4.2; Only one of the two GCDs of the full GPU
was used here, see Section 5.1.1 below for more information).

All selected applications are memory-bound (which limits their
performance) and use structured and unstructured grid methods. On the
BabelStream triad benchmark, the memory bandwidth obtained in [176]
was 1310 GB/s for the A100, 1290 GB/s for the MI250X, and 803 GB/s for
the Max 1100.
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These applications used high-level, method-specific parallelization tools
that generated various lower-level parallelization codes, including SYCL.
In [176], different parallelization variants were used on each GPU for each
application. In the optimal (for A100 performance) variants, this GPU was
noticeably faster in all applications than the Max 1100 in any variants.
And with a similar comparison of the performance of the Max 1100 with
the MI250X, in some cases the Max 1100 was faster, in others the MI250X.

The information on PVC performance discussed below applies to the
Max 1550 model. The report [120] provides data on acceleration in
PVC (using SYCL tools in DPC++) relative to the A100 using CUDA
(although data was also provided for the A100 with SYCL)— according to 8
benchmarks, of which the traditional HPC area includes SYCL HP Linpack
(obviously, an HPL implementation using SYCL). Here an acceleration of 1.5
times was achieved. Among other benchmarks, the most famous is Google’s
hashing benchmark (hashtable), in which a maximum speedup of 2.5 times
was achieved. In other benchmarks, the acceleration achieved was in the
range of 1.4 to 1.8. It is clear that all these numbers require more detailed
clarification. Interestingly, in some of these tests, using SYCL on the A100
gave about 10 percent better performance than using CUDA.

Other data on the performance of PVC are given in [116]— about a 12.8
times acceleration of calculations using the famous LAMMPS molecular
dynamics software package on a dual-processor server with an Intel Xeon
Max 9480 and six Data Center GPU Max— relative to a dual-processor
server with a Xeon 8380. Considering, that 6 GPUs are used here, and
the comparison is made with the Xeon 8380, which are inferior by the
maximum achieved floating-point performance in the widespread SPEC
CPU2017 benchmarks to the AMD EPYC 7763 processors in the speed and
rates variants [177], it would be more interesting to compare performance
with other modern GPUs.

An important publication that provides real data on the performance
of the Data Center GPU Max 1550 compared to the A100-80GB is [178],
which provides not only data on the achieved performance, but also
on porting code from CUDA to SYCL. Here, using the FP32 format, molecular
docking calculations (an extremely simplified specialized technique for
calculating the orientation of closely located molecules, for example, ligands
relative to a protein), which are often used for drug design, were performed.

For this purpose, the CUDA version of the well-known AutoDock-GPU
program was transferred to SYCL using DPCT tools, followed by manual
modification. When moving from calculations on a single Max 1550 stack
to calculations on two stacks (simply changing the environment variable),
the performance of various test calculations increased from 6% to 58%.
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It is worth noting, by the way, the found ratio between the performance
of calculations achieved on the A100 using CUDA and SYCL versions
of AutoDock. Of the 10 calculations performed, the CUDA version was faster
(from 1.24 to 3.64 times) in nine, and the SYCL version was faster in one.

Calculations using the SYCL version of AutoDock using both Max
1550 stacks were faster than on the A100 with the CUDA version in 7 out of
10 calculations (maximum 1.88 times faster); A100 was more successful
in larger calculations (with more atoms or numbers of rotatable bonds).
But all the achieved accelerations of the Max 1550 relative to the A100 were
less than the ratios of the peak performance (for FP32) of these GPUs. As
noted in [178], the calculations here are still preliminary, and improvements
are expected in the AutoDock code.

In [179], data were obtained on the achieved performance of PVC using
package linear algebra tools from the ginkgo library for an iterative solver
of the Navier-Stokes equations (in the PeleLM lattice hydrodynamics
application). When switching from a single Max 1550 stack to dual stacks,
performance increases by 1.5 to 2 times, and the larger performance gains
apply to larger task sizes.

In [179] also obtained similar performance data for A100-80GB and
H100-PCIe. A comparison of these results shows that the Max 1550 using
a single stack is on average 1.3 times faster than the H100, and 2.4 times
faster when using two stacks.

It should be noted that this work is also largely preliminary. Thus,
it lists the peak performance of the Max 1550 as 45.8 TFLOPS— less
than the current “official” value of 52 TFLOPS (a lower clock speed was
probably available). The calculations on the A100 and H100 used CUDA
11.8.0, while with the H100 typically used version 12 (for example, all
Nvidia H100 MLPerf benchmarks used version 12.2, see Section 4.2.6).

Even these few publications show the high achievable performance
of PVC. Peak performance data is insufficient to make good estimates
of actual performance. The Max 1550’s greater peak performance compared
to that of the H100 does not necessarily translate into an advantage
in actual application performance achieved. It should also be noted that
the peak performance data given above in Table 7 do not include data
on the peak performance of Nvidia and AMD GPUs for FP64 using tensor
cores (with their use, the performance of top models of these GPUs is higher,
see Table 20), since XMX in PVC this format is not support. It is clear that
for PVC and oneAPI/DPC++ tools to be practically successful, there is still
a lot of work to be done, which will require some time.



New generation of GPGPU and related hardware 343

3.3. Summary for Intel PVC

Technologically complex PVC production may not produce a very high
percentage of usable PVC chips (which could also result from a slowdown
in the supply of PVC for Aurora, which is not on the June 2023 Top500 list)
and contribute to an increase in cost. In fact, the same thing was stated
earlier in [180].

Both the Intel Max 1550 and the AMD MI250X can be considered to
consist of two logical GPUs, which raises the question of which comparisons
should be made— for one logical GPU or for a full (physical) one, which is
also associated with cost indicators that can vary greatly.

When compared with the whole AMD MI250X, the PVC is slightly
ahead of the MI250X in terms of peak performance in conventional vector
operations (see Table 7), but also has a slightly higher TDP. But the peak
performance advantage of the new GPUs from Intel and AMD relative to the
Nvidia H100 does not mean an advantage in real application performance.

A disadvantage of PVC for certain HPC applications can be considered
the lack of support for the FP64 format in XMX. When using the Tensor
Cores in the H100-SXM4 (or the equivalent in the MI250X), these GPUs
significantly outperform PVC in terms of peak double precision performance
(see also Table 20 below).

Taking into account the fact that Nvidia already offers the GH200
Grace Hopper superchip with H100 integration with ARM processors
(see Section 4.2.3), and at the CES (Consumer Electronics Show) in early
2023, AMD announced the MI300 GPU with an integrated CPU (in the form
3D chiplet, assumption of readiness— for 2023), from the author’s point
of view, a significantly wider use of Intel GPUs in HPC may be realized
somewhat later, after the implementation of the expected successful Intel
technological processes (especially 18A), which are not expected in 2023.
Intel recently abandoned the “second generation” PVC previously planned
for 2023, codenamed Rialto Bridge [180], containing 160 Xe cores, so we
should rather expect the release of the Falcon Shores GPU or its subsequent
XPU variant with integration of the GPU and x86 CPU [181]— success
in technology probably determines everything.

Almost more important (compared to the competition between Intel
and Nvidia for part of the GPU market— where AMD also participates)
the author now seems to be the introduction of Intel-supported software
for GPUs in the direction of SYCL— > DPC++ (and oneAPI), since this is not
only allows us to move further away from a narrow focus on specific GPUs
(Nvidia CUDA and partly AMD HIP), but it may also one day become
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effective for new multi-core server processors, the number of cores in which
continues to grow. Perhaps the use of SYCL may immediately become the
most attractive for modernizing C++ applications that have not yet been
ported to the GPU.

However, one should not exaggerate the capabilities of the new
SYCL standard. Thus, the appearance in CUDA tools for H100 of a new
level in the hierarchy of the thread system— a cluster of thread blocks
(see Section 4.2.5)— has no analogues in SYCL. It should also be kept
in mind that SYCL does not solve all performance portability issues, and it
may be necessary to use different algorithms for different hardware [176].

4. GPU from Nvidia: from A100 to H100

As noted above, the base GPUs here include the Nvidia V100 and
A100, which are currently most widely used in the HPC and AI fields,
including in supercomputers. Since the V100 became available back in 2017,
this microarchitecture review only covers the A100; V100 specifications
are shown in comparison tables only. In addition, the most important
computational units and data types that first appeared in the A100 (which
were not present in the V100) are mentioned. Detailed information about all
the improvements to the various components of the A100 microarchitecture
relative to the V100 is available in [73].

The most modern of the “basic” Nvidia GPUs, the A100, has been
produced since 2020, and a detailed analysis of its microarchitecture is not
carried out here, considering the relevant information is already quite
well known. But in the microarchitecture of the H100, naturally, a lot
coincides with the A100, and accordingly, after analyzing the A100, it will
be convenient to talk mainly about improvements in the H100. Accordingly,
only the figure of SM from the H100 is shown here (the A100 is only slightly
different here— and it will simply be stated below what the differences are).
The same applies to software— the review focuses in more detail on what is
appropriate to use on a new generation GPUs.

Data on the achieved performance of the A100 in applications and
benchmarks are also considered somewhat limited, since the main purpose
of the review was the new generation GPUs, the performance of which is
also considered with a comparison with respect to the V100 and A100.
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4.1. GPU A100
4.1.1. A100 microarchitecture
In current CPUs generations, HPC performance gains come primarily

from microarchitecture advancements rather than from ISA improvements.
n current CPU generations, HPC performance gains come primarily from
microarchitecture advancements rather than from ISA improvements.
In modern Nvidia GPUs, microarchitecture data is also the most important,
but to maximize performance, especially for AI tasks, new improve-
ments/extensions to all levels of the CUDA API and low-level warp are
especially important. CUDA tools can be classified as low-level because it is
possible to work at a higher level— for example, use only already ready
library functions, or work with directives. There is a lower level in relation
to CUDA, where a virtual instruction system (ISA) for Nvidia GPUs is used—
PTX (Parallel Thread eXecution) [182], and accordingly an assembler [183],
but it is, naturally, used very rarely in programming. Strictly speaking, PTX
is an intermediate level— it is then converted into binary code for a specific
GPU model.

By improving the architecture, the review primarily refers to the
microarchitecture. But there is a more general architecture— for different
models of graphics processors, its microarchitectures retain some of its
basic common features.

The A100 uses Ampere GA100 architecture. The A100 was the first
GPU released with this architecture in 2020. Then the other, including less
computationally powerful, GA100 models appeared. They use a smaller
number of SMs and contain a smaller number of tensor cores, but more
high-performance ones. But unlike the A100, their tensor cores do not
support FP64 [184]. In addition, after the US imposed sanctions against
China, Nvidia began to produce the A800 GPUs, which is not subject
to these restrictions, with reduced computing capabilities compared to
the A100. Information about these GPUs is available, for example, in the
well-known Techpowerup database on GPUs produced in the world [185]
(on the Nvidia website consumers were offered to use this database). The
review below only considers the A100.

The most complete consideration of the A100 architecture is in [73],
on which the subsequent consideration of its microarchitecture in this
review is based. The consideration in [73] is partly integrated with
SIMT-based parallelization (using CUDA) due to CUDA’s deep coupling with
Nvidia GPU hardware. This also applies to the hierarchy of different types
of memory in GPU and CUDA (extremely important components for realizing
high performance), and to the hierarchy of different levels of formation
of large groups of parallel threads in CUDA. Table 1 lists all this briefly
in terminological terms. However, not all memory types used in CUDA have
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Table 10. Comparison of Nvidia V100, A100 SXM and H100
GPU specifications important for traditional HPC (data from
[73,78,185])

GPUs V100 A100 SXM H100
PCIe H100 SXM

Architecture Volta Ampere Hopper Hopper

TSMC Technology 12 nm
FFN 7 nm N7 4N1 4N1

Chip area, mm2 815 826 814 814
Number of transistors (×109) 21.1 54.2 80 80
TDP (W) 300 400 350 700
Form factor SXM2 SXM4 PCIe-v5 SXM5
Number of SMs 80 108 114 132
Number of FP64 vector cores in
SM 32 32 64 64

Number of FP32 vector cores in
SM 64 64 128 128

Number of INT32 cores in SM 64 64 64 64
Number of tensor cores in SM 8 42 4 4
Boost Clock, GHz 1.53 1.41 1.764 1.984

Register file size in SM 256 KB 256 KB 256 KB 256 KB

Shared memory capacity in SM Up to 96
KB3

Up to 164
KB3

Up to 228
KB3

Up to 228
KB3

L2 cache capacity 6144 KB 40960 KB 50 MB 50 MB

Memory type/capacity, GB HBM2/16
or 32

HBM2E/40
or 80 HBM2E /805 HBM3/805

Memory bus width, bits 4096 5120 5120 5120

Memory Clock, MHz 876 1215 or
1593 1593 1313

Memory bandwidth, GB/s 897 1555 or
2039 2039 1681

1 modified for Nvidia;
2 The number of matrix multiply-and-add operations per clock cycle in the A100

tensor cores is 4 times greater than that of the V100;
3 Shared memory capacity in V100, A100 and H100 is configurable;
4 for FP32 and FP64, for less precision the frequency is slightly lower;
5 there is a model with HBM3/96 GB and a different GPU frequency.

a unique hardware equivalent. There is also the integration of various types
of CUDA memory into one hardware type of memory A100. In addition, [73]
sometimes refers to the V100 architecture discussed in the other Nvidia
description.

The basic specifications of the A100 in comparison with the similar
specifications of the V100 and H100 are shown in Table 10. In technological
terms, due to the more modern 7nm TSMC technology in the A100, with
almost the same chip area, the number of transistors has more than doubled
compared to the V100, but the TDP has not increased as much strongly.

Table 10 shows data for two different A100 models with the SXM form
factor, differing in memory capacity (40 or 80 GB). In addition, there
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are two other A100 models with PCIe interconnect, which can also have
capacities of 40 or 80 GB. This somewhat limited representation of the A100
models in this table was chosen for two reasons. Firstly, for ease of reading
and comparison with other GPU models from Nvidia in the format of this
publication. And secondly, the peak performance discussed at this point
in the review (see Table 12 below) was calculated for increased clock speeds,
which are the same for all four different A100 models. In addition, further
in Section 5, which describes the new generation GPUs from AMD (the
comparison with which seems to be one of the most actual in this review),
a more detailed comparison of all characteristics, including performance,
with different A100 models is carried out (see Table 20 and Table 21).

For a starting understanding of the performance of the A100 (to
begin with the peak) it is natural to base it on the SM execution units:
the peak performance of the entire A100 is simply proportional to the
number of SMs, which is indicated in Table 10. In the hierarchy from
one SM to the full A100 there are 2 types of clusters: texture processing
clusters (TPC, Texture Processing Clusters), containing by 2 SMs, and GPC
clusters, containing by 8 TPCs. In the Ampere architecture (in GA100), it
is permissible to have 8 GPCs and, accordingly, 128 SMs [73]. And the
sense of GPC from the point of view of GPGPU (if we ignore textures): it is
a group of SMs physically located close to each other, which gives locality
of parallel processed data with access to them with higher bandwidth and
lower latencies (so to speak, a kind of localised analogue of PIM).

The general construction of SMs, the many of which make up the
computing power of the A100 (also both V100 and H100) can be seen
in Figure 6. Although this is a figure of an SM from the H100 [78]), at the
macro level of the figure, the differences in the A100 from the H100
are easily visible: the A100 does not have Tensor Memory Accelerator;
L1 D-cache capacity is 192 KB versus 256 KB on H100; And in H100,
accordingly, there is a new version of the tensor core. But the main thing is
that in the H100 in each of the 4 SM sections (what is meant here by the SM
section is clear from Figure 6) there are 2 times more vector FP64, FP32
and INT32 engines. In the A100, each section has 8 FP64 enginess, and 16
FP32 and INT32 engines.

Since SM runs warps consisting of 32 threads, each partition has a warp
scheduler that produces 32 threads per clock and a dispatcher with the
same "performance". This reveals the close intertwining of Nvidia GPU
hardware and CUDA tools. A block of CUDA threads (containing warps)
is assigned to one SM. And clarification of the operations of the warp
scheduler is considered not in [73], but in the CUDA manual [16], where it is
stated that SM statically distributes its warps between its schedulers. And
then each scheduler issues one instruction for one of its assigned warps,
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Figure 6. General construction of SM in GH100 (Figure
from [78])

which is ready to be executed, if there is one. The warp scheduler is used
to ensure that the computing engines of the SM section are loaded: if
a warp is waiting, for example, for memory operations to complete, then
another warp can be executed. And the dispatcher redirects the selected
commands to computing engines (they take data from registers).
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Table 11. Technical characteristics of different versions
of Compute Capability (CC) depending on Nvidia GPUs

GPUs V100 A100 H100
Compute capability version 7.0 8.0 9.0
Threads per one warp 32
Maximum warps per one SM 64
Maximum thread blocks (CTA) per one SM 32
Maximum thread blocks/thread block clusters No 16
Maximum number of 32-bit registers per thread 255
Maximum number of registers per one SM 65536
Maximum number of registers per block 65536
Maximum number of threads per block 1024
Shared memory per one SM, KB, Up to 96 164 228
Number of FP32 cores per one SM 64 128
Number of FP64 cores per one SM 32 64

The data in the table is taken from [78]

The actions of the warp scheduler may depend on the version of Compute
Capability described in [16] for different GPU models; The above is true for
V100, A100 and H100. These capabilities for these models are shown
in Table 11.

Each of the 4 SM sections has a register file, and 8 load/store devices for
memory access. Each SM section has its own L0 I-cache (the L1 I-cache is
shared across the entire SM), but typically performance in HPC and AI does
not require code to be specifically targeted to their use. When analyzing
the performance of Nvidia GPUs, they often start from the SM level, since
they also contain hardware components common to all 4 sections, including
texture memory and a common L1 D-cache (SM can be considered some
kind of analogue of the processor core in the CPU).

Each SM in the A100 and V100 has 32 vector CUDA cores for FP64,
which allows the SM to perform 32 multiply-and-add operations per clock,
resulting in 64 FLOPS per clock (for FP32— everything is twice as much).
Accordingly, the peak GPU performance when working with these vector
cores is obtained by multiplying 64 FLOPS by the number of SMs (there
are more of them in the A100 than in the V100) and the clock frequency,
which gives higher performance for the A100 (see Table 10). But the main
advances in performance are now focused primarily on AI and, accordingly,
on the use of tensor cores, which can produce more results per clock
cycle than conventional vector units— and correspondingly higher peak
performance for various data formats.
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Table 12. Peak performance of GPUs V100, A100, H100
(TFLOPS, for integer operations— TOPS)

Data format V100 A100 H100 PCIe H100 SXM4
FP16 31.4 78 204.9 267.6
FP161 125 312/624 756/1513 989.4/1978.9
BF161 — 312/624 756/1513 989.4/1978.9
FP32 15.7 19.5 51.2 66.9
TF321 — 156/312 378/756 494.7/989.4
FP64 7.8 9.7 25.6 33.5
FP641 — 19.5 51.2 66.9
INT81 — 624/1248 1513/3026 1978.9/3957.8

1 values when using tensor cores.
Following the slash numbers are the performances using sparsity
when available.
Data from [73,78,185].

Tensor cores in A100 work with matrices of different possible sizes
depending on the data formats used (a list of all possibilities is available
in [16]). Traditional HPC requires working with FP64, which was first
supported in tensor cores at the hardware level in the A100— FP64 is what
we will be talking about here. And data on peak performance for other
data formats, primarily actual for AI, are shown in Table 12.

The A100 introduces a hardware implementation of the calculations
for formula (1) for double precision, a new matrix instruction "multiply-
and-add" (Double Precision MMA), which replaces the 8 similar DFMA
instructions in the V100 and produces 128 FP64 results per clock— 2 times
more than V100 [73]. For FP64 in A100, at the lowest warp level, the
WMMA operation is applicable, with which you can work with matrices
of dimensions 8×4 or 4×8 and accumulator matrices 8×8 (i.e. M = N = 8
and K = 4 for formula (1)) [16]. As noted in [89], WMMA operations can
be performed on slightly larger matrices than supported by the tensor
core hardware, and multiple tensor cores are used simultaneously when
performing a WMMA operation.

The Nvidia shipped A100 has 108 SMs [73], so the peak performance
achieved is 108 × 128 × ν, where ν is the clock speed. It follows that
the peak performance information provided by Nvidia in [73] and used
in Table 12 refers to the boost frequency. A100 users have the ability to
control the clock frequency, which allows them to adjust the TDP and
stabilize the measured performance— for example, in [186]) a frequency of
1005 MHz was used to study the performance achieved by GEMM.



New generation of GPGPU and related hardware 351

Table 13. Base clock speeds of various A100 models and
their memory

Model GPU A100 Base frequency Memory frequency
A100-PCIe-40GB 765 MHz 1215 MHz
A100-SXM4-40GB 1095 MHz 1215 MHz
A100-PCIe-80GB 1065 MHz 1512 MHz
A100-SXM4-80GB 1275 MHz 1593 MHz

The current Nsight Compute profiler [187] for the A100 defaults fix to
a base clock speed, which gives repeatable results, but correspondingly
lower peak performance than those listed in Table 12. Base frequencies
depend on the specific A100 model used (these are the 4 most important
for this review— they were usually used for calculations and benchmarks
for HPC and AI), they differ in HBM2E size and form factor. Table 13
shows the values of their base frequencies from the database [185].

But in addition, the memory frequencies used and, accordingly, its
bandwidth differ in different A100 models. Only two A100 models with 40
GB memory capacity have the same frequencies, and since the memory bus
width (5120 bits) is the same for all A100 models, the theoretical bandwidth
of the A100 models with 40 GB memory is the same (it can be calculated
by multiplying the bus width by memory frequency). Table 13 also shows
the memory frequencies of different A100 models (data from [185]).

But let’s return to the tensor cores that determine the maximum peak
performance of the A100. Even with such small hardware-supported
matrices, they still have the ability to take into account fine-grained
sparsity, which applies to formats with reduced precision relative to FP64
and gives there a two-fold increase in peak performance [94] (see Table 10).
This sparsity was not supported in V100 and is mainly targeted at AI tasks
(see [73] for details).

Since many HPC applications do not require matrix multiplication (the
feasibility of supporting it in hardware is generally debated [90]), equally
important to the double-precision performance of the A100 is the peak
performance of the FP64 vector CUDA cores, which are not related to the
tensor cores (see Figure 6).

One SM has 32 FP64 vector units (the corresponding FP32 vector units,
of which there are twice as many in each SM, are traditionally called CUDA
cores) [73]. For all 108 SMs, this gives a corresponding 6912 results per
clock (thanks to the use of the multiply-and-add instruction), which when
multiplied by the boosted frequency gives the A100 a peak performance of
9.7 TFLOPS for double precision— without the use of tensor cores (see
Table 10).
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In addition, each SM has 4 SUs, that speed up the calculations
of transcendental functions. This can be practically important for a wide
variety of applications, but SFUs have been available on Nvidia GPUs for
a long time, even before the V100, but only for the FP32 format (see [188]
for more details).

Since achievable GPU performance is so often dependent on memory
bandwidth, we now need to look at the memory hierarchy in the A100.
Because traditionally large numbers of threads running in parallel on a GPU
require many registers, the A100, like older GPUs, has a 64 KB 32-bit
register file in each of the 4 SM sections (see Figure 6). Each executing
thread uses its own local registers from the corresponding file.

The next level in the memory hierarchy in the A100 is the L1 D-cache
and shared memory with a total capacity of 192 KB. It provides high
bandwidth and low latency; Real data are available for [189]. This memory
is common to the entire SM (and accordingly to the block of threads
in CUDA). In CUDA, it is possible to dynamically change the amount of shared
memory.

The penultim level of the memory hierarchy on the path to the HBM2E
global memory, the 40 MB L2 cache, is discussed in [73] in a common
subsection with HBM2E. The spaces of these memory levels are common to
all SMs and all applications running on the GPU. The L2 cache capacity has
increased more than 6 times compared to the V100. This cache reads and
writes to the HBM2E device’s memory. Higher parallelization in the A100
required higher bandwidth per SM. To achieve this, the L2 cache split into
partitions using a hierarchical crossbar structure, and each partition caches
data nearer to the accessing SMs, reducing latency [94].

And the increased width of the HBM2 interface and memory frequency
compared to the V100 gave an increase in bandwidth by approximately 1.7
times (see Table 10). To increase the effective DRAM bandwidth and L2
cache capacity, the A100 hardware features of sparse data compression
provides up to 4× compression in DRAM, up to 2× compression in L2
cache for AI workloads [190].

CUDA uses its own types of memory, some of which actually reside
together on the same type of hardware memory. Unlike shared memory, local
memory is the private memory of each thread. In CUDA terminology, global
and local memory areas (as opposed to global, the latter is cached [16]) are
called device memory and are located in HBM2E. Constant memory (lives
only while the application is running, this memory is read-only) is located
in the device memory (constant memory is cached). As for the texture
memory, it is located in each SM (see Figure 6) and cached in a special
cache [73].
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The A100 introduces MIG tools to address a possible data center
problem of underutilization of A100 resources by certain applications where
the use of A100 would become correspondingly ineffective. The A100 can
function as up to 7 isolated GPU instances [73], reconfigurable on the fly to
meet dynamically changing needs [94], i.e. the result is virtualized GPUs
with smaller computing resources.

The new MIG feature provides improved client (including virtual
machines and processes) isolation and QoS for multi-tenant and virtual-
ized GPUs, which is especially useful for cloud service providers [73]. New
fault handling technologies in the Nvidia Ampere architecture are very
important to MIG to ensure proper isolation and security between clients
using the same GPU.

As stated in [94], two types of MIG instances are supported. One type
isolates computing resources but not the memory system, allowing the
operating system to schedule processes with simplified administration. The
other type further provides functional and performance isolation in the
memory system. In this case, A100 assigns each MIG its own physical paths
(including to the L2 cache and memory interface), providing additional
security for cloud computing [94].

Using MIG allows you to expand the exeediency of using of the A100 to
a wider area of work. For more information on setting up and using MIG,
see [191].

Nvidia’s A100-PCIe-80GB manual [192] describes software power
management capabilities that allow to customize graphics card’s power
consumption or performance per watt. The A100 naturally has many more
features that are important for achieving high performance, among which
we should first of all mention support for asynchronous copying (at the ISA
level)— it loads data directly from global memory into shared memory
in SM, bypassing the register file, and can run in the background while the
SM performs other calculations (this also reduces power consumption).
For more information on this and other A100 features, see [73]; A brief
discussion of asynchronous data transfers and computations is provided
later in Section 4.2 about the H100, in which the corresponding capabilities
have been significantly expanded.

A description of A100 interconnects using NVLink channels is provided
below in Section 4.1.2, since it partly applies to hardware additional to the
GPU— this also includes connections to the CPU via PCIe.
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4.1.2. Interconnections for A100 and computing systems with A100: from
servers to supercomputers

NVLink interconnects for communication between multiple Nvidia GPUs
in a server predate the V100. Initially, there was a problem that PCIe
bandwidth was not high enough to connect the GPU to the CPU. A general
overview of the interconnects used by various companies for GPUs is available
in [193]. NVLink is a channel, and devices can have multiple channels and
communicate through a mesh network.

Naturally, the second version (NVLink2) used in the V100 has a lot
in common with NVLink3 in the A100. Various performance metrics for
NVLink2 running with V100 are discussed in detail in [194]. NVLink2
(instead of the slower PCIe 3.0) is used to both communicate with IBM
Power9 and provide cache coherence.

Like PCIe, NVLink2 is a packet bus, but NVLink2 is more efficient
when transferring small packets— with 16 bytes of header, 256 payload
bytes can be transferred. This interconnect uses a mesh topology for
point-to-point connections, resulting in higher overall bandwidth compared
to the tree topology in PCIe. Connections consist of multiple full-duplex
links that exchange data at 25 GB/s in each direction. The device has up
to six channels, and they can be combined into 3 channels with a total
speed of 75 GB/s. Both PCIe and NVLink provide bidirectional transfers,
but NVLink also has direct access to CPU page memory [194]. In [194] are
given data on the achievable bandwidth and latency of NVLink2.

Using a switch to communicate between Nvidia GPUs not only improves
performance scalability, but also provides an extremely important (especially
for modern AI tasks) increase in the amount of available GPU memory.
NVSwitch is a non-blocking switch (inernally— fully connected crossbar),
has 18 NVLink ports and makes it possible to connect up to 16 V100 GPUs
via NVLink2, providing each channel with a bidirectional bandwidth of 50
GB/s— and, accordingly, a total switch bandwidth of 900 GB/s [195].
For example, in implementations on motherboards containing 8 GPUs,
each of them is connected to 6 switches on the board, which also have
connections with switches on another board. GPU communications inside
the board require one NVSwitch traversal, and with the GPU of the second
board— two NWSwitch traversals. Cyclic Redundancy Coding (CRC) is
used to ensure communication reliability on links, and ECC is used within
switches (for example, for routing) (see [195]). for details). Bandwidth
limitations on servers with V100 may occur more likely when transferring
data over PCIe between the GPU and CPU.
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Figure 7. GPUs interconnect in the DGX A100 server (Figure
from [73])

Multi-GPU servers with A100 already use NVLink3. Low-level details
explaining why increased bandwidth and reduced latency relative to V100
with NVLink2 were obtained, are described in [94]. From the user’s point
of view, the main thing is that with no change in channel bandwidth, the
number of channels has increased from 6 on the V100 to 12 on the A100.

In multi-GPU servers using NVLink, various specific topologies are
accordingly possible [190]. For example, the AI-oriented DGX A100 server
has 8 GPUs and 6 NVSwitch chips, and each GPU is connected to each
NVSwitch using two NVLink3 links [196]. This is illustrated in Figure 7
(PCIe PEX switch is used to communicate with EPYC Rome) [73].

NVLink3 also provides improved error detection and recovery fea-
tures [190]. Although, as stated above, the A100’s single NVLink channel
has the same throughput as the V100— 25 GB/s in each direction— but it
uses half as many signal pairs per channel compared to the V100. Doubling
the number of channels in the A100 compared to the V100 gave a total
throughput of 600 GB/s for the entire A100, compared to 300 GB/s for the
V100.

In [3], on different servers with 4 V100 GPUs and on a DGX A100 server
with 8 A100 and two 64-core AMD EPYC 7742 processors, the throughput
of data transfers from the host to the device or vice versa was measured.
For the A100 with PCIe-v4, it was about 25 GB/s (about three-quarters
of the theoretical value of 32 GB/s for PCIe×16), which corresponds to the
authors’ expectations [3]. This work also revealed a slight decrease in the
bandwith of bidirectional data exchanges between CPUs with “remote”
A100 compared to “local” ones (having a direct PCIe connection with the
corresponding CPU), which was due to competition for work with PCIe.



356 Mikhail B. Kuzminsky

It is clear that calculations with multi-GPU servers to achieve the
expected high performance may probably require significant modernization
of programs or applications that work with one GPU (and even perhaps more
subtle optimization taking into account some “asymmetry” of different GPUs
in the server). Examples include works [197,198]. Such modernization also
includes algorithms, and can cover the most basic things— for example,
GEMM (see [199] and [200]).

It is clear that servers containing one or more A100 GPUs are being
supplied by all leading server manufacturers. Multi-GPU servers are
focused primarily on AI workloads, although HPC software is emerging
in areas where GPUs have not been used much at all. For example, the
QUICK application implements parallelization at the multi-GPU level,
including for the most widely used quantum chemical method DFT in the
Gaussian basis [198].

The DGX A100 is an AI-focused Nvidia famous “classic” server
containing 8 A100 GPUs and 6 NVSwitches [201]. It uses the HGX A100
module for this, and gives a specific fixed SXM4 interconnect topology. The
A100 has two variants with a memory size of 40 or 80 GB, respectively,
there are two server options— DGX A100 320GB System and DGX A100
640GB System, with memory size of 1 and 2 TB per system, respectively.
The DGX A100 has two 64-core EPYC 7742 Roma processors, which
are connected to the A100 via PCI switches (with PCIe-4.0 ×16 buses).
For communication between servers, Nvidia ConnectX-6 or ConnectX-7
adapters (Infiniband HDR /200 Gb/s Ethernet) are used [202].

The DGX A100 is a ready-to-use system supplied with an operating
system (based on Ubuntu Linux) containing special management and
monitoring tools. For details (including the implemented topology of the
interconnects used), see [202].

In addition, Nvidia is reviving a class of workstations that has not
been used for a long time— with the DGX Station A100 offering (for
different types of DGX systems, see [203]).

Nvidia has gone even further in providing fast deployment computing
systems and created the DGX SuperPOD platform, based on building blocks
with racks containing of five DGX A100, with the delivery of cluster systems
having from 4 to 28 racks (see, for example, [196]). This arrangement
of building blocks was then modernized [204]. These AI-centric systems
can be deployed in just a few weeks [196,204]. For example, in the Top500,
such a supercomputer Nvidia Selene based on DGX A100, installed in 2020,
takes 9th place. Obviously, the DGX A100 and larger systems are aimed
at simplifying work in their respective data centers.



New generation of GPGPU and related hardware 357

Let’s point out even more powerful supercomputers using the A100,
which are included in the top ten Top500. The computing nodes of the
Italian supercomputer Leonardo (installed in 2022), which ranks fourth
in the Top500 [205], contain one 32-core Intel Xeon Platinum 8358/2.6 GHz
processor (Ice Lake) and 4 GPU A100-SXM4-40GB, and for communication
between nodes is used Infiniband HDR200 (Nvidia products with Dragonfly+
topology).

And the eighth place in the Top500 is occupied by the Perlmutter
supercomputer installed in 2021 of the US National Energy Research
Center (NERSC, and the operator is the American Lawrence Laboratory,
LBNL, famous in the supercomputer world) [206]. Its main computing
nodes use a 64-core EPYC 7763/2.45 GHz processor and 4 A100 GPUs (most
nodes use A100-40GB, and another 256 have A100-80GB). Perlmutter uses
the well-known HPE Cray EX235N supercomputer hardware and the
corresponding HPE Slingshot 11 interconnect. Interestingly, these last two
of the above-mentioned supercomputers, focused not only on solving AI
problems, use 4 A100 per node.

4.1.3. Nvidia SDK Tools for A100

General composition of SDK tools. Like the A100 hardware
discussed above, the SDK tools are also predecessors to the corresponding
H100 tools. But SDKs are constantly evolving, and different versions of them
can usually work for both base Nvidia GPUs and next-generation GPUs.
After analyzing the A100 SDK here, in relation to the H100 SDK it is enough
to point out the improvements.

Nvidia’s SDKs have become well known due to Nvidia’s clear dominance
of the GPU market for many years. The basis for HPC is, of course, NVHPC
tools— see the developer’s website, [207]. There is also a complete list
of components included in these software tools, most of the names of which
(primarily mathematical libraries) already explain why they are needed.
The ability to freely access NVHPC is a plus for Nvidia. At the time
of writing this review, HPC SDK Version 23 was available [208].

NVHPC includes compilers supporting x86-64 (AMD and Intel),
OpenPower and ARM platforms. They call the corresponding language
compilers (with support for OpenMP and OpenACC tools for the CPU),
assembler and link editor for target processors with command line
parameters. These compilers are nvc (ISO C11), nvc++ (ISO C++17) and
nvfortran. The latter (supports Fortran 2003 and a number of Fortran 2008
features) can use the parallelization features of Fortran, OpenMP and
OpenACC to work with the GPU.
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Finally, nvcc, a CUDA C/C++ compiler driver for Nvidia GPUs, uses
GPU-specific options to generate optimized code for Nvidia GPUs and manage
the host compiler. The latest version of CUDA at the time of writing
was 12.2. nvcc hides the complex details of CUDA compilation from the
developer, and redirects all non-CUDA compilation steps to the host compiler
with special command line options [208]. The effective development
of nvcc is facilitated by its basing on the famous LLVM compiler [209].
Further Section 4.2.5 about CUDA tools for the H100 describes the general
design of different Nvidia compilers down to the runtime level, including
new previously unused programming languages.

HPC SDK math libraries include, in particular, cuBLAS, cuSPARSE,
cuRAND, and cuSOLVER (for solving linear algebra problems, including
eigenvalue problems). cuSOLVERmp provides these functions when working
with distributed memory in multi-node and multi-GPU systems. The
cuFFTmp library complement the cuFFT library to perform similar
advanced functions as in cuSOLVERmp.

The low-level cuTENSOR library is designed for linear algebra problems
on tensor cores, and can be used not only for AI problems, but also
in HPC areas. Two very important libraries provide communications.
These are NCCL (Nvidia Collective Communications Library), which
provides communication primitives for multi-node and multi-GPU systems
with Nvidia GPUs, and NVSHMEM for PGAS parallelization using the
OpenSHMEM standard. Here the memory can, in a sense, be integrated
in a cluster with Nvidia GPUs in the nodes, using communications with
NVLink, PCIe and Infiniband.

NVHPC includes a number of other tools, including the CUDA-GDB
debugger and the Nsight Compute profiler (it is possible to use the NVTX
profiling library to work with it) [208].

It should also be noted that traditional MPI parallelization tools
on multi-node clusters containing GPUs can naturally also be used. But
what may be important here is the use of such MPIs, which can use the
long-standing hardware and software capabilities of Nvidia GPUs and
CUDA tools— GPUDirect, which provide data transfer (RDMA) via PCIe
bypassing the CPU— directly through the network card. Such capabilities
have long been available, for example, in MVAPICH2 [210].

CUDA Toolkit. CUDA is the most famous and widespread API for
working with GPUs, discussed in many publications. AMD has developed
similar HIP tools for its GPUs [58]. Intel’s OneAPI uses DPC++, but the
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overall parallelization design there also uses the SIMT model originally
proposed by Nvidia, and oneAPI uses terms similar to those used in CUDA
(see Table 1 above). The hardware of modern GPUs is closely connected with
SIMT, so an ultra-brief explanation of the basics of CUDA is also necessary
here (for a full description, see [16]).

Roughly speaking, in the CUDA programming model, sequential code is
written, which is executed in parallel by many threads on the GPU, and
each thread works with its own part of the common data, for which it
receives its own identifier. Although a CUDA program running on the host
can use not only C but also C++, the core software running on the device
uses extensions relative to C.

In CUDA, the original task is divided into a set of independent subtasks,
which are calculated on their own thread blocks. Each subtask has its own
block of threads, and it is solved by all threads of this block. Threads can
interact with each other only within the same block. A thread block is an
array of threads that can be one-, two-, or three-dimensional.

Threads inside a block of threads use shared memory (ultra-fast—
roughly speaking, at the cache level) and interact through barrier synchro-
nization (when accessing this function, further work is impossible until all
threads enter it). And global memory is used to exchange data between
different blocks of threads.

The thread block is the central object for parallelization programming
in CUDA (although with the advent of H100, a new level has appeared above
the thread block in CUDA, the thread block cluster, this is unique to H100).
The top level of the thread hierarchy— above the thread blocks— is the
thread grid, a one-dimensional, two-dimensional or three-dimensional array
of thread blocks.

All blocks of threads have the same dimensions and size (number
of threads in a block). Thread grid size (number of thread blocks) and
block size are built-in variables. Any block of threads in a grid has a block
index in the grid. Each thread has an index specified by one, two or three
non-negative integers.

For indexing threads and blocks, the software core uses, for the “most
scalable” case, three-dimensional integer vectors— the built-in variables
threadIdx and blockIdx.

Each block of threads is divided into warps, and all threads of a warp
belong to one block. Only threads within the same warp are physically
executing simultaneously. And threads at different warps can be at different
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stages of program execution. There is no need to exlicitly work at the warp
level in a CUDA program. All Nvidia GPUs discussed in this review have
warps of 32 threads. Working at the warp level may only be necessary to
maximize the achievable performance in CUDA.

Nvidia CUDA is not limited to being based solely on C/C++. We will
illustrate working with CUDA using the example of CUDA Fortran, which is
attractive because Fortran remains popular in HPC (the ability to use
Fortran to work with Nvidia GPUs is a significant advantage of the company).
The newest (as of the June 2023 Top500 list) version of nvfortran was 23.3.

CUDA Fortran extensions allow you to write subroutines and functions
in a Fortran program for execution on the graphical processor, including
declaring variables allocated in GPU device memory and allocating dynamic
memory in GPU device memory. Naturally, CUDA Fortran has support for
copying data from host memory to GPU memory and vice versa, and calling
GPU routines from the host. CUDA Fortran provides software access to tensor
cores, cooperation with CUDA C, the use of asynchronous transfers between
the host and the GPU (asynchronous transfer allows calculations to be
performed on the device simultaneously with data transfer) and many
other capabilities needed for modern GPUs [211].

Below is a simple example of how a program is built in CUDA Fortran
(quoted from the Nvidia manual, [211]).

On the host On the device
1 program t1
2 use cudafor
3 use mytests
4 integer , parameter :: n = 100
5 integer , allocatable , device :: iarr (:)
6 integer h(n)
7 istat = cudaSetDevice (0)
8 allocate(iarr(n))
9 h = 0; iarr = h

10 call test1 <<<1,n>>> (iarr)
11 h = iarr
12 print *,&
13 "Errors: ", count(h.ne.(/ (i,i=1,n) /))
14 deallocate(iarr)
15 end program t1

1 module mytests
2 contains
3 attributes(global) &
4 subroutine test1( a )
5 integer , device :: a(*)
6 i = threadIdx%x
7 a(i) = i
8 return
9 end subroutine test1

10 end module mytests

On the left is the code that runs on the host, and on the right is the
code that runs on the device.

In the host code, the use of the |cudafor| module (line 2) provides
interfaces to the CUDA host runtime library (in this program, to |cudaSet-
Device()|, where the device number 0 is selected— this is the API call
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on line 7). Line 3 indicates the use of a module on the device (this module
contains the test1 subroutine that is called). The 8th line of the program
allocates the iarr array on the device, and the next line initializes data
on both the host and the device [211].

The kernel running on the device is called on line 10; |«<1,n»>| here
means that the kernel is executed by n GPU threads (more generally, n
in this syntax indicates the number of threads in the block, and before the
comma the number of thread blocks is indicated, which here is 1). On line
11, the results of the kernel execution are transferred to the host array, and
on line 14, the CPU array is deallocated.

On the right side of the Fortran text running on the device, the prefix
attributes(global) is used, which is an extension in the CUDA Fortran
language. The global attribute means that the corresponding code runs
on the device but is called from the host [211].

The 6th and 7th lines of code for the device are a replacement for the
do loop in usual Fortran:

1 do i=1,n
2 a(i)=i
3 enddo

Since the test1 subroutine is executed on the GPU, it is executed
in parallel by several threads on the GPU, each of which is identified by the
built-in variable ThreadIdx (it is used as the index-of the array element).

Since the test1 subroutine is executed on the GPU, it is executed
in parallel by several threads on the GPU, each of which is identified by the
built-in variable ThreadIdx (it is used as the index-of the array element).

CUDA Fortran allows you to work in conjunction with other software. For
example, it is possible to use OpenACC and CUDA Fortran together in one
program; A program with OpenMP can use CUDA-managed memory [211].

Descriptions for CUDA Fortran are permanently available at the URL
https://docs.nvidia.com/hpc-sdk/pdf/hpcVv .pdf, where Vv are the all
version digits of the SDK (e. g. Vv=233 for version 23.3 at the time of writing
the review).

To conclude the brief information about CUDA Fortran, it should be
noted the point of view of Nvidia employees, indicated in their famous
book [212], that the use of CUDA Fortran will be aimed primarily at those
programmers for whom it is important to ensure software portability,
clarity and ease of maintainability of code when achieving acceptable
performance. But the ease of writing code also has another important
effect, increasing labor productivity (reducing program development time).
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Naturally, other developers also have SDK-class software that can be
used when working with Nvidia GPUs. For example, HPE Cray MPI [213]
with CUDA support (this MPI correctly copies data from the device memory
to the network card memory (and vice versa) by implicitly copying the data
first to the host memory, and from there to the network card, or directly
(bypassing the host memory) with support for GPUDirect RDMA [214],
which is available in A100. MVAPICH2-GDR [215] can also interface with
CUDA. AMD HIP tools, which can also work on Nvidia GPUs, were mentioned
above. Such SDK tools that were not developed by Nvidia will not be
discussed here, but they may be discussed in the sections of the review
about new generation GPUs.

4.1.4. A100 Performance Data

Although the review is aimed at new generation GPUs, it seems
necessary to provide data on the achieved performance of the A100 and its
acceleration relative to the V100. Information on the performance of the
A100, which also provides a comparison with the new generation GPUs, is
discussed further in the relevant sections about these GPUs, and may not be
presented here.

Peak performance was discussed earlier, data from benchmarks and
applications are discussed here. It must be kept in mind that deliveries
of the A100 GPU from Nvidia, which began in 2020, were accompanied
by such an active emergence of new A100 models, including due to the
simultaneously awakening competition with the new generation GPUs from
AMD emerging at that time, that the authors of some publications, where
the latest A100 were used, the parameters of the model used were not
always clearly indicated.

It is useful here to give a short introduction about the efficient use
of tensor cores for dense matrix multiplication and the use of mixed
precision. For working with AI, this is enough natural; For ordinary HPC
applications FP64, that run efficiently on the GPU, the use of DGEMM is
also often assumed. For a discussion of how actual is hardware support for
DGEMM for mainstream HPCs, and whether lower mixed precision can be
used, see [90].

HPC often requires DGEMM to work with large square matrices, and
the A100 tensor core performs hardware operations on matrices of fixed
small sizes (see above in Section 4.1.1). But there are many tensor cores
in A100, and multiplication of large matrices boil down to multiplication
of small submatrices. And programmers can simply use cublasDgemm, and
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for a large matrix size (compared to hardware-supported in tensor cores)
16384× 16384, [216] indicates achieving 19.4 TFLOPS close to the peak
performance for the A100 tensor cores. In [216], power consumption was
also studied, and it was found that an increase in power does not always
correlate with an increase in performance.

It should be noted that in [216] a matrix size multiple of 2k was used.
This is consistent with Nvidia’s guide to working with matrices [217]
on tensor cores (focused on AI areas)— it notes that performance is higher
with matrix sizes that are multiples of 128 bytes (for FP64). In [217]
describes how GEMM in cuBLAS is implemented by partitioning the
output matrix into fragments that are assigned to blocks of threads, and
discusses the optimal trade-off between the size of the submatrices to
be multiplied and the requirement to utilize all GPU hardware resources
through maximum parallelization. But these different proposed variants
of GEMM are more important for not very large input matrices, and the
results in [217] are demonstrated for the low precision typical for AI.

For the graphical processor Nvidia Titan RTX, where DGEMM was
emulated using tensor cores due to their lack of hardware support for
the FP64 format [218], a plot of the performance of DGEMM from
cuBLAS versus the dimensions of square matrices shows certain jumps
in the achieved performance. And for the A100, such jumps in GEMM
performance when changing matrix dimensions when working with FP16 are
demonstrated in [217]. Obviously, a similar dependence of the performance
of A100 in DGEMM for the most relevant large square matrices for HPC also
has this property, but the author is not aware of any articles demonstrating
this.

So to work effectively with HPC on a GPU, not only sophisticated
programming of possibly initially naturally sequential codes is required, but
knowledge of the likely performance behavior at the BLAS level is also
useful. In general, one gets the feeling that the use of tensor cores of these
Nvidia GPUs for traditional HPC tasks in the FP64 format with conventional
dense matrices remains to be studied— GPU hardware has developed too
quickly, with an initial orientation not at all towards HPC.

A number of studies are devoted to the use of tensor cores and simply
from the point of view of the applicability of mixed precision. Thus,
in [219] various issues of such arithmetic were studied on V100 and A100,
including from the point of view of rounding modes.
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Work on software for matrix multiplication using tensor cores and
their effective use continues. In [220], the possibility of using multiword
arithmetic was explored— when matrices are represented as the unevaluated
sum of two or more lower-precision matrices, and the product of the
matrices is calculated by multiplying their lower-precision constituents.
This was done, for example, on tensor cores of A100 and V100 for the input
matrices A and B in formula (1) with FP16 numbers, and the accumulative
matrices with FP32 numbers. Rounding errors were studied and the use
of algorithms that reduce rounding errors was proposed. The purpose
of this is to improve the trade-off between performance and precision [220].

For AI, it is relevant to work with matrices that have a specific sparsity.
Data on such work with tensor cores for V100, A100 and H100 are available
in [221].

The following is some of the information about the performance of the
A100, which the author considers most relevant, especially for HPC tasks.
The more high performance of the A100 relative to the V100 is obvious
and confirmed in many articles. This is primarily due to FP64 support
in tensor cores, higher peak performance, larger L2 cache size, and higher
memory bandwidth in the A100. But this does not mean that the gain
will be obtained in any code (especially not optimized), when using any
version of CUDA, with any task dimensions, and so on. Thus, in [222]
on some codes given by Nvidia as examples of using CUDA [223], the V100
outperformed the A100.

Well, as a kind of starting integral estimate of the acceleration of the
A100 relative to the V100, we will use the data from the SPEC ACCEL
v1.2 benchmark (using 19 different applications) [224], where the maximum
results obtained by Lenovo for the A100-PCIe-40GB relative to the
V100S-PCIe-32GB are better than approximately 1.7 times. Another
integral assessment of the performance of the A100 is provided by data
from the SPEChpc 2021 benchmarks, for which modern supercomputers
with GPUs are also used [225]. However, the official results of these
benchmarks [226] (as of June 14, 2023) do not contain data for computing
systems with the same number of A100 and V100 GPUs. Comparative data
on the performance of servers with multiple A100 is presented below
in Section 4.2.6 on H100 performance.

Microbenchmarks and low-level performance measurements, as
close as possible to the A100 hardware. Several publications can be
roughly classified into this group of performance tests. In [227] stydied the
performance impact of using asynchronous copy at the microbenchmark
level and in the higher-level modernized integral Rodinia benchmarks suite
(for non-AI applications at the University of Virginia).
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In [79], microbenchmarks were used to measure the latency and
bandwidth (performance of executing instructions) on tensor cores (at PTX
level). In [228], the performance of kernels for memory-bound iterative
methods for solving systems of linear equations was studied on the V100
and A100.

In [229], a low-level synthetic benchmark was developed and applied to
determine the performance and power consumption of the DGX A100
server with 8 A100 GPUs and the DGX-2 server with 16 V100 GPUs using
dynamic frequency and voltage scaling. To measure performance, it was
used the Mandelbrot floating-point benchmark [230], implemented on CUDA
PTX, which gives the closest approximation to peak performance due to
high data parallelization, virtually no execution delays due to memory
access and branches. These servers use 64-core EPYC 7742 due to their
support for PCIe-4.0, which was not available in Intel Xeon. At optimal for
power efficiency configuration, the A100 achieved power efficiency of 51
GFLOPS/W and 91 GFLOPS/W for the FP64 format when operating
without and using tensor cores, respectively [229].

To ensure high application scalability, communication between GPUs
in a multi-GPU server and between cluster nodes of such servers is
important. A study [231] focused on Deep Learning Recommendation
Models (DLRMs—widely used by Internet companies to predict what
consumers might like when multiple options are available) obtained data
on the bandwidth of such communications using NCCL and MPI for systems
containing A100 and V100.

Memory bandwidth benchmarks. Data on traditional performance
benchmarks can start with bandwidth benchmarks— it very often limits
performance and is important for other benchmarks discussed below. Here
we must keep in mind that due to the different programming models used,
different numerical results may be obtained for the same benchmark.
A notable example of this is BabelStream [232], which is a modification
of the widely used STREAM benchmark for CPUs (see, for example, data
for ARM processors [5]).

BabelStream does not take into account the transfer time between the
host and the device, and it has implementations in almost all programming
models used for GPUs. Compared to the classic standard STREAM
benchmark [233] BabelStream has added a kernel with the scalar product
of vectors, and some other modifications have been made [232].

https://github.com/UoB-HPC/BabelStream
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In [234,235], the obtained dandwidth data for all BabelStream kernels
for different array sizes show a generally significant speedup of A100
relative to V100. For an 8.2 GB array, the V100 achieves 800 to 840 GB/s
in these kernels, while the A100 achieves 1.33 to 1.4 TB/s. Although for
small array sizes the A100 has lower bandwidth than the V100, for larger
array sizes the A100 is about 1.7 times faster than the V100 for most
kernels [234]. It should be borne in mind that these data were obtained
shortly after the appearance of the A100 and obviously refer to the first
model A100-40GB, and the CUDA 11 version was used.

Similar bandwidth data for all BabelStream kernels using different
array sizes for the A100 and V100 are presented in [173].

In [42], data were obtained for the bandwidth (with the usual FP64
format) of all 5 BabelStream kernels: copy (a[i] = b[i]), mul (a[i] = b * c[i]),
add (a[i] = b[i] + c[i]), triad (a[i] = b[i] + d * c[i]), dot sum (= sum + a[i]
* b[i])— and for each of them on 5 different programming models, for A100
(on a server with two 64-core EPYC 7H12 + 4 A100-40GB) and for V100
(on a server with two 20-core Xeon Gold 6230 + 4 V100 -32GB). One
GPU was used in this benchmark. As a “unit of reference” that gives the
maximum bandwidth of A100 and V100, the BabelStream results obtained
with the CUDA version of this benchmark was taken.

Our analysis of data from [42] shows that in all BabelStream kernels
using OpenMP and Kokkos on the A100 the "closing" to the CUDA values
in percentage is more than on the V100 (with the exception of add and
triad in Kokkos), and the achieved level of "close to the CUDA indicators"
looks acceptable.

In many ways, BabelStream benchmark provide a convenient oppor-
tunity to compare the effectiveness of the implementation of different
programming models of different GPUs. For example, in [236] a Fortran
implementation of BabelStream was made using DO CONCURRENT
tools from Fortran 2008 applicable to GPUs, which is in addition to other
capabilities for working with GPUs in Fortran— using OpenMP, OpenACC or
CUDA Fortran tools. Comparative performance data of different BabelStream
implementations was obtained for A100-40GB and A100-80GB. Using
NVHPC 22.7 for A100-80GB in C++ and Fortran, bandwidth of 1.7-1.8
TB/s was obtained in all 5 BabelStream kernels.

At the same time, the achieved bandwidth values on OpenMP and
CUDA variants for C++ and Fortran practically coincided (the maximum
difference is about one percent), with the exception of the dot kernel, where
CUDA C++ was 13% slower than CUDA Fortran (after changing of the tuning
parameter BabelStream, the C++ lag has decreased to one percent).
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This review does not systematically examine the effectiveness of various
GPU programming models, and these data were presented to illustrate
the opinion of the authors [236] supported by the author of this review,
about the lack of activity in the development of programming models
using Fortran tools for heterogeneous architectures. The significantly
higher results obtained in [236] for the A100 in BabelStream compared to
[234,235] are primarily associated with the use in [236] of a more modern
A100 model (the A100-80GB has higher memory bandwidth; In [237]
BabelStream triad kernel gave 1732 GB/s for A100-80GB versus 1399
GB/s for A100-40GB.

Achievable memory bandwidth data is no less important for AI than
for HPC. In [231], a set of tests for DLRM tasks is proposed, which includes
a memory bandwidth test specialized for DLRM, where it is evaluated when
working with FP32 and FP16 formats. For the A100-40GB, a throughput
of about 1.4 TB/s was achieved for FP32, for FP16 it was slightly lower.
For V100 with FP32 more than 800 MB/s is achieved, and with FP16—
less than 800 MB/s [231].

Considering mixed-precision work in tensor cores, the corresponding
memory bandwidth indicators are used to optimize the performance of the
actively developed Ginkgo sparse linear algebra library portable to GPUs
from different manufacturers [173]. The authors of [238] reports the
performance of the A100 on a mixbench benchmark that uses kernels with
mixed computational intensities (the ratio of floating point operations
performed to bytes transferred) for different data formats and with different
programming models [239], which gives and bandwidth estimates. This is
actual mainly for AI and is not discussed here.

Performance of Linear Algebra Codes (BLAS). As with other GPU
benchmarks, linear algebra tasks introduce a number of GPU-usable features
that are different from traditional CPU use. This is mainly due to the
frequent use of lower precision formats and support for operations with
small matrices in tensor cores, which is primarily actual for AI. This led to
BLAS with lower precision, as well as the development of batch linear
algebra (solving many linear algebra tasks with small independent matrices;
The batch size here is the number of matrices in it) [240].

Accordingly, linear algebra libraries specialized for GPUs have appeared
(here we primarily mean not libraries from GPU development companies, but
libraries focused on working with GPUs from different manufacturers)— and
articles are appearing that study the performance of working with the tools
of these libraries.
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One thing to note here is the Ginkgo library for sparse linear algebra
mentioned above; Data on the achieved performance on the A100 using
it are available in [173,234,235,237,238]. For batch linear algebra,
the well-known MAGMA library is applicable, the modules of which
showed performance higher than the corresponding modules of the GPU
manufacturers’ libraries. Data on the performance of this library when
running on the A100 are presented, for example, in [234] and [241]. For
exascale computing, the libCEED library of the CEED Center (Center for
Efficient Exascale Discretizations) of the US Department of Energy has
appeared, where performance close to peak values is achieved on tensor
cores of Nvidia GPUs [242], but the corresponding data in this work were
obtained not for the A100, but for the V100.

It’s natural to start analyzing performance for dense linear algebra
problems with GEMM, since this is the only way to achieve maximum
performance when working with A100 tensor cores. But due to the
fundamental importance of GEMM and working with tensor cores, the
general features of this for A100 have already been analyzed above at the
beginning of Section 4.1.4 Publications that provide numerical estimates
of the performance of GEMM with different data formats are reviewed here.

Benchmarks [222] reports the performance obtained for matrix
multiplication of different data formats on the A100 and V100 for example
CUDA kernels from Nvidia. There was no optimization goal here, small
matrix dimensions atypical for traditional HPC problems were used, and this
only illustrates the fact that you can use matrix multiplication code that
will run faster on the V100 than on the A100.

Nvidia’s tutorial on matrix multiplication for deep learning tasks [217]
shows how GEMM’s performance from FP16 on V100 increased dramatically
when moving from cuBLAS v10 to cuBLAS v11, illustrating the rapid
progress even in stable Nvidia software. This guide also shows typical
performance dependences of the A100-SXM4-80GB for such GEMMs
on matrix dimensions.

In [231] the benchmarks set for DLRM includes GEMM benchmark and
uses GemmEx calls from cuBLAS. For V100 with FP32, this benchmark
applies to working with FP32 vector cores, and for mixed precision with
FP16— with tensor cores. For the A100-40GB, the benchmark with tensor
cores additionally includes work with TF32 and BF16. But the achieved
performance values given in [231] refer to the batch version of GEMM (see
Figure 8; BS in this figure is the package size), which is due to the small
(indicated in the figure) sizes of different matrices. This figure shows that
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APPENDIX-A
Compute Benchmarks
We collected and developed a set of operator-level benchmarks which we have also open sourced as part of PARAM bench§, to evaluate
the representative problem sizes and shapes on the candidate hardware platforms and to better understand the throughput and latency in
compute, memory, and communications.

GEMM benchmark. This benchmark calls cuBLAS GemmEx routine to compute matrix multiplications on configurable problem sizes with
multiple precision choices. On the V100 GPU, this benchmark supports FP32 GEMM on the CUDA core and FP16 mixed-precision GEMM on
Tensor Core. On the A100 GPU, it additionally supports TF32 GEMM and BF16 GEMM on the Tensor Core.

The benchmark results are shown in Figures 12.
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Figure 12: GEMM performance (TF/s) for V100 FP16 vs. A100 FP16/BF16.

MLP benchmark. This benchmark implements the following multilayer perceptron (MLP) layers:
• Batch size = 128, 256, 512, 1024, 2048, 4096;
• 20 MLP layers, where each layer is 1K×1K , 2K×2K and 4K×4K;
• Each layer has ReLU and final layers has SoftMax;
• Both backward and forward passes, including SGD update as the optimizer after the backward pass;
• Precision support: FP16, BF16, TF32, FP32.

The batch size, layer dimension, and number of layers can be configured to the customized number. We implemented this MLP benchmark
using C++, directly implementing FC and FCGradients in the MLP layer using cuBLAS SGEMM/GemmEx function, ReLU with cuDNN
cudnnActivationForward/ cudnnActivationBackward function, SoftMax with cudnnSoftmaxForward in the forward a customized CUDA
kernel for the backward pass, and SGD optimizer with cuBLAS axpy function. This benchmark can be used to project the performance
of V100/A100 GPUs using a minimal MLP network without the framework overhead in PyTorch. The benchmark results are shown in
Figures 13 and 14.

Memory Benchmark
This benchmark evaluates the achieved memory bandwidth of the embedding kernels described in Section 5. To eliminate the L2 cache
effects, a random tensor with 40 MB data (A100 L2 cache size) is allocated to flush the cache.

• Support the evaluation forward and backward pass (the backward pass is fused with optimizer);
• Precision Support: FP32 and FP16;
• Number of rows: 1000000, Number of tables: 64, Embedding dimension: 128, Pooling size: 32, rows per thread block: 32.

The benchmark results are shown in Figures 15 and 16.

§https://github.com/facebookresearch/param

Figure 8. Performance of the GEMM batch implementation—
with GemmEx calls from cuBLAS (Figure from [231])

the performance of the A100 with FP16/BF16 is several times greater
than that of the V100 with FP16, which corresponds to the main focus
of modern GPUs primarily on AI.

But the performance of batch variants of GEMM was also studied for
the FP64 format. Data showing significant performance gains when running
DGEMM in batch mode on a GPU are available in [242]. Batch variants
of DGEMM for typical HPC tasks can be said to have not been used before—
in the sense that relevant research has only begun to appear in the last ten
years. Here it is worth noting the solution of the equation of hydrodynamics
of compressible fluids with high-order finite elements [243] (see also
[244,245]).

In computational chemistry, the packaged DGEMM was used in the
well-known CP2K software package for calculations using the quantum
chemical DFT method with periodic boundary conditions in the basis
of plane waves [246]. The effectiveness of batch matrix multiplication for
calculating the matrix of pairwise distances used in molecular dynamics
tasks was noted in [247].

The appearance of FP64 support by tensor cores in the A100 can
significantly increase the relevance of batch DGEMM. But the use of these
tools now largely relates to the development stage, figuring out where it
can be used, which is also reflected in modern works. So, in [248] it was
concluded that it is advisable to use batch DGEMM in the Nektar++ CFD
application.



370 Mikhail B. Kuzminsky

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DGEMM, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(a) Batched DGEMM

0
2
4
6
8
10
12
14
16
18
20
22

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Tf
op
/s

Matrix size (Batch = 500)

Batched DGEMM, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(b) Batched DGEMM

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DTRSV, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - v100
magmablas - A100
magmablas - V100

(c) Batched DTRSV

0

50

100

150

200

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Gf
op
/s

Matrix size (Batch = 500)

Batched DTRSV, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(d) Batched DTRSV

Fig. 8: Performance of the batched GEMM and TRSV routines, applied to many (10k) small-sized problems (left) and few

(500) moderate-sized problems (right).

leverages the performance of the batched GEMM routine in

cuBLAS. For small sizes, the batched LU factorization is

3.7×/3.6× faster than cuBLAS on the V100/A100 GPUs,

respectively. The asymptotic speedup for larger sizes is about

4×/6×. For the batched QR factorization, MAGMA is about

6.7×/5.8× faster than cuBLAS for very small sizes on the

V100/A100 GPUs, while the asymptotic speedups are more

than 30× on both GPUs. Comparing the two GPU generations,

small problem sizes are handled up to 1.6× faster—which

correlates to the bandwidth improvement—while MAGMA

processes large problems about twice as fast.

VIII. IMPROVEMENT OVERVIEW

We visualize all improvement over A100 against V100 by

boxplot in Figure 10 and Figure 11. We add two reference

lines to help recognizing the performance improvement, one

red line is the base line (1) and the other blue line is the general

memory improvement (1.7). In Figure 10a, ginkgo SpMV does

not always touch the memory improvement because the matrix

sparsity leads memory movement is not enough to achieve

the highest bandwidth. Except for gmres, other solver gives

similar improvement around 1.7 in Figure 10b. In Figure 11a

and Figure 11b, cublas gets a little better improvement than

magma does except for batched dtrsv on 500 batch and

batched dgeqrf on 10k batch.
We also summarizedthe average performance of all routines

and corresponding performance improvement in Figure 12.

The huge improvement of batched dgemm on 500 batch is

related to that A100 supports double precision in tensor core.

On average, every routine except for cublas batched dtrsv

on 500 batch gets the new architecture benefit from higher

bandwidth, performance, or more cache.

IX. CONCLUSION

In this paper, we assessed the performance NVIDIA’s new

A100 GPU achieves for sparse and batched computations.

As most sparse linear algebra algorithms are memory bound,

we initially present results for the STREAM bandwidth

benchmark, then provide a very detailed assessment of the

sparse matrix vector product performance for both NVIDIA’s

cuSPARSE library and the Ginkgo open-source library, and

ultimately run complete Krylov solvers combining vector

operations with sparse matrix vector products and orthogo-

nalization routines. As many sparse problems coming from

finite element simulations carry an inherent bock structure,

we also assess the performance the A100 delivers for batched

routines. We consider both the batched routines available in
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Figure 9. Performance of MAGMA and cuBLAS on DGEMM
and DTRSV (Figure from [234])

In [249], calculations using the quantum Monte Carlo method
were performed on nodes of the Vega supercomputer (at the Institute
of Informatics, Slovenia), containing two CPUs (64-core EPYC 7H12) and
four A100. Although the operation time of the batch GEMM was lower,
in the Monte Carlo approach proposed in [249] using MPI parallelization
of GEMM tasks, the overall performance of the entire simulation was much
higher than that of the batch DGEMM. But in this work, tensor cores were
not used.

Batch support for DGEMM is available in various libraries for the
A100. In [234], the performance of batch DGEMM achieved on A100
was studied using MAGMA and cuBLAS (CUDA 11.0) tools. For small
size workloads, MAGMA’s batch DGEMM achieves 2.4/1.6 TFLOPS
for A100/V100. This is 33/60% faster than cuBLAS, which is due to
special optimization for small matrices in MAGMA. At the same time, the
batch implementation of DGEMM in MAGMA did not use tensor cores
(unlike cuBLAS). But on larger tasks, cuBLAS achieved 18/6 TFLOPS
for the A100/V100 (for more details, see Figure 9, which also shows the
performance of another BLAS routine, DTRSV); In general, on batch
DGEMM, A100 is up to 1.5 times faster than V100 in MAGMA and up to
3 times in cuBLAS [234]. It can be seen that in the cuBLAS variant a good
closing to peak tensor performance of the A100 for FP64 is achieved.
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F I G U R E 8 Performance analysis of GEMV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right)

F I G U R E 9 Analysis of the average relative rounding error of DOT kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU
(right) using uniform random values in the interval [−1, 1]

F I G U R E 10 Performance analysis of DOT kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right)

to the DOT kernel from BLAS, computing the dot (or scalar) product of two vectors. In Figure 9, we again use input
vectors with random values uniformly distributed in the interval [−1, 1]. We again observe a mild accuracy advantage of
the accessor-based DOT over the fp32 DOT kernels. At the same time, the performance of the DOT kernel does not suffer
from the use of higher precision in the arithmetic operations, achieving almost twice the arithmetic rate of the DOT kernel
using fp64; see Figure 10. We note that the accessor-based DOT is slightly slower than our fp32 DOT kernel on the A100
GPU; however, it still outperforms thefp32 DOT kernel from the cuBLAS library. Thus, using the accessor-basedDOT can
render accuracy improvements while incurring only a small runtime overhead.

4.3 Dense triangular system solve

Next, we turn our attention to the dense triangular matrix-vector solve (TRSV) from BLAS. Accuracy plays a critical
role for this kernel as it is the last component in the direct solution of a linear system of equations via, for example, an
LU factorization,27 and any error introduced in the kernel impacts the accuracy of the solution of the original problem.
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Figure 10. A100 performance for matrix vector multiplication
(Figure from [238])
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from the use of higher precision in the arithmetic operations, achieving almost twice the arithmetic rate of the DOT kernel
using fp64; see Figure 10. We note that the accessor-based DOT is slightly slower than our fp32 DOT kernel on the A100
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Figure 11. A100 performance with scalar product of vectors
(Figure from [238])

In [234] also provides data on the performance of the A100 and V100
on MAGMA and cuBLAS implementations for batch BLAS DTRSV and LU
and QR factorization (in LU and QR on the A100, MAGMA outperformed
cuBLAS in all dimensions, and in DTRSV only in the middle ones).

To complete the discussion here of performance in batch linear algebra
tasks on the A100, we should provide performance data for the QR
factorization of dense matrices used in FP64 and FP32 formats [241].
The highest performance data, strongly superior to all alternatives, was
achieved here using the MAGMA library. The asymptotic performance
achieved (more than 2.6 TFLOPS for square FP64 matrices) is far from the
theoretical peak values because the matrices for batch GEMM are not large
enough.

From other publications regarding BLAS on A100, it is necessary to
note the data [238] for matrix vector multiplication (GEMV kernel),
which may be even more common (than GEMM) in HPC and for the scalar
product of vectors (DOT kernel)— see Figure 10 and Figure 11. Here, the
achieved performance for FP64 and FP32 using special memory access
tools for different data formats of the Ginkgo library (marked as accessor
in the figures) for A100 and V100 is compared with cuBLAS data. Here
you can see how significantly the A100 outperforms the V100 in terms
of performance across different BLAS implementations. Similar results were
obtained in [238] for another matrix vector multiplication module from
BLAS, TRSV.
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As for working with sparse matrices, there are a number of publications
for the A100 with data on the performance of sparse matrix vector
multiplication (SpMV in BLAS), which is actual for various applications.
[173,234,235] and [238] provide performance data on the A100 and V100
for SpMV in FP64 format. But the result here depends on the chosen
sparse representation format, and on the specific matrices selected in the
test, and, naturally, on the library used (cuSPARSE and Ginkgo were used
here), and at the “macro level” it is less informative. Let us only note the
maximum achieved performance of 220 GFLOPS and 135 GFLOPS on the
A100 and V100, respectively [173], which is close to the upper limits was
expected by article authors (230 GFLOPS and 140 GFLOPS, respectively—
probably in roofline modeling).

Since choosing the optimal sparse matrix storage formats is also
a non-trivial problem, machine learning was proposed to solve it on the
A100 and V100 in [250].

The fast ourier transform (FFT). Important data on the performance
of the A100 is provided by the achieved FFT performance, which is actual
for various tasks, both HPC and AI. [251] demonstrates the performance
of A100 using the developed SYCL FFT library compared to cuFFT.
Although SYCL FFT is clearly inferior to cuFFT in terms of performance,
the goal of the SYCL FFT developers is portability to GPUs from different
manufacturers. At the same time, the lag of SYCL FFT is largely due to
big overhead of the SYCL runtime (especially kernel dispatch), which is
less important for large-scale problem.

Another FFT library aimed at working with GPUs from various developers
is the open source VkFFT library, whose performance data on the A100-
40GB is available in [252]. VkFFT supports double, single, and half
precision data, and the performance achieved on the A100 is typically
greater than with cuFFT [252].

In [253] developed the tcFFT library for one- and two-dimensional FFT
using tensor cores. When running on FP16, tcFFT outperforms cuFFT
(CUDA 11.0 was used) in 1D and 2D FFT on both the A100 and V100
(with the exception of low-dimensional 1D FFT). A significant superiority
in performance in A100 relative to V100 for one- and two-dimensional FFT
is shown; These data are illustrated in Figure 12 for a 2D FFT [253].

Computational chemistry:

(A) Molecular dynamics. Molecular dynamics problems began to act as
classic problems, one of the first demonstrated examples of GPU
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Figure 4: Performance of 1D FFT of different sizes on two platforms.
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Figure 5: Performance of 2D FFT of different sizes on two platforms.
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Figure 6: Global memory bandwidth of 1D and 2D FFT of different sizes on V100.

we divide the sizes of 1D FFTs into three parts: short, moderate, and
long, according to the required stride lengths of memory accesses.
FFTs of larger sizes require longer stride lengths and use merging
kernels with less computation overlap, so their memory throughput

is lower. In short cases, thanks to our redesign of data arrangement
and the memory access pattern, the memory throughput of tcFFT
is close to the peak global memory bandwidth, and in other cases,
tcFFT can outperform cuFFT nearly 2x.

Figure 12. Performance of cuFFT and tcFFT on V100 and
A100 (Figure from [253])

performance growth by their developers. Thus, in [190] an increase
in performance in well-known molecular dynamics applications
AMBER, GROMACS, NAMD and LAMMPS is indicated by 1.5-1.9
times on the A100 compared to the V100 (1.9 times applies to
LAMMPS).

A detailed and in-depth study on the performance of LAMMPS
in calculations of various molecular systems using different potentials
and different GPUs, including the A100, is [254]. Here was used
a cluster of multi-GPU servers (HPE/Cray EX on the Airforce
Weather computing system, AFW HPC11). The A100-based nodes
used one 64-core EPYC 7713 and four A100-40GB. LAMMPS uses
Kokkos software to support code portability, and the paper aims
to achieve the optimal choice of their parameters, and only the
corresponding relative performance data is provided.

(B) Molecular docking. In [42], data were obtained on the performance
of the miniBUDE mini-application [255] based on the BUDE (Bristol
University Docking Engine) application targeted towards molecular
docking for potential drug discovery tasks (prediction of the favored
orientation of a ligand to protein at the form their stable complex.
There, the change in the Gibbs free energy for the ligand-protein bond
is considered extremely simple, empirically. BUDE was originally
GPU-focused, and miniBUDE effectively ports to a wide variety of SDK
for GPUs. The calculations here use FP32 and the A100 is about 30%
faster than the V100.

Another molecular docking program, AutoDock, was upgraded to
AutoDock-GPU in [256] to run on Nvidia GPUs. There, the A100 was
found to achieve higher performance when using CUDA than when
working with SYCL.

(C ) Quantum chemistry. In [198] a radical modernization by the authors
of the open source software package for computational chemistry
(QUICK) is described, which makes it possible to carry out calculations
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using quantum chemical methods HF and DFT (the most common
in the world today) in a Gaussian basis sets on multi-GPU servers,
including c A100. A feature of calculations of all modern quantum
chemical methods in such a basis set is the need to calculate O(N4)
integrals (N-dimension of the basis), which cannot be reduced to
widespread mathematical methods.

These calculations (as well as the corresponding gradients) require
major calculation time using the HF or DFT method. For parallelization,
CUDA C and OpenMPI tools were used here. Each of the above
integrals from contracted basis functions is calculated by one thread
at the PTX level, which made it possible to achieve high performance
for such a complex task. Parallelization in QUICK is possible from
the level of a single GPU to a cluster of multi-GPU servers. All
calculations are performed in the FP64 format required for quantum
chemistry; Tensor cores are not used due to the lack of need for
matrix multiplication in these methods.

The presented results of run times for various molecules containing
from several tens to several hundred atoms in an Infiniband HDR
cluster with DGX nodes (4 V100-SXM2 with two Xeon Gold 6248 per
node) showed high parallel efficiency and almost linear performance
scalability from 1 to 16 GPUs. On a DGX A100 server with 8 A100,
parallel efficiency is slightly lower than with V100 (V100 has less
SMs), but the calculation time is much lower [198]. QUICK is
developing rapidly [257–259], and the achieved very high acceleration
in DFT calculations relative to conventional dual-processor x86-64
servers makes it attractive for fairly large-scale calculations.

An alternative approach to providing highly efficient Gaussian DFT
calculations using GPUs was proposed in [260] and was implemented
on the A100. In [260] new algorithms were developed for calculating
the Coulomb and exchange contributions to the matrix of the
one-electron DFT Hamiltonian, and a program was created that
generates CUDA codes (the kernels are different for different angular
momenta). On molecular systems ranging in size from a few hundred
to over a thousand atoms, they achieved fairly good performance
scaling using up to 128 A100 GPUs on the Perlmutter supercomputer.

Another demonstration of the ability to achieve a high level
of parallelization scaling in a cluster of multi-GPU servers with A100
on quantum chemistry problems is work [261], where calculations
were performed at the Samsung Electronics supercomputer center
(on the SSC-21 supercomputer, ranked 20th in the Top500), the nodes
of which used HPE servers with two 32-core EPYC 7543/2.8 GHz, 1
TB memory and 8 A100-80GB (nodes connected via Infiniband
HDR200).
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Here, using the TDDFT method (extended in comparison with DFT,
with time dependence for calculating exited states), using Gaussian
basis functions, calculations of a protein molecule containing over
40 thousand atoms were performed using up to 256 A100. The
parallelization program used OpenMPI, OpenMP and CUDA Fortran
tools (from NVHPC SDK 22.3). One MPI rank per node was used,
where the processors (they are connected to the A100 via PCIe)
generate a number of OpenMP threads equal to the number of GPUs
in the node, and NVLink is used to communicate between the A100.
The resulting acceleration does not deviate much from linear scaling
up to 256 A100; Even with 256 GPUs, the parallelization efficiency
exceeds 80% [261].

Another work carried out within the framework of the ECP
project [262] presents the calculation times for the exchange-
correlation component of the one-electron Hamiltonian of the
quantum chemical DFT method using Gaussian basis functions using
the new NWChemEx software package (developed on the basis of the
well-known NWChem software package). The corresponding part
of the code was done on CUDA. In the calculation of a protein (ubiquitin,
more than a thousand atoms), the dependence of the calculation time
on the number of GPUs used in parallelization on the Perlmutter
(with 4 A100 in each node) and Summit (with 6 V100 in each node)
supercomputers was studied. To optimize the calculation, code was
developed at the PTX level, and NCCL/NVSHMEM tools were used to
optimize the use of distributed memory. The calculation time for all
program components decreases almost linearly as the number of GPUs
increases to 32, and the deteriorating deviations from linearity when
using V100 are slightly larger. And these times themselves on one
A100 are one and a half to two times less than on the V100.

Computational fluid dynamics (CFD). Data on the performance
of CFD applications are as “typical” in reports from GPU manufacturers as
data on molecular dynamics, and accordingly, many publications with such
data for the A100 have already appeared.

Thus, in [263], the calculation using the OpenCFD-SCU program
on the A100 required 3.036 seconds per calculation step compared to 4.702
seconds on the V100.

In [264] provides performance data on the well-known Nek5000/RS
code using the specialized OCCA (Open Library Concurrent Compute
Abstraction) library for different types of GPUs. The kernels on the A100
there support 2.1–2.2 TFLOPS (FP64) for the Poisson operator and 3.1–3.8
TFLOPS (FP64) for the advection operator (higher numbers in ranges refer
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to higher dimensions). In the pressure preconditioner, the forward Poisson
operator at coarser multigrid levels realizes 2.5–3.9 TFLOPS (FP32), and
the Schwarz smoother supports 2.5–5.1 TFLOPS (FP32). The comparable
values on the V100 are one and a half times lower.

Similar data on the higher performance of A100 relative to V100 by
1.55 times when running NekRS are available in [265].

In [190], an increase in productivity of 1.7 times is indicated on the A100
relative to the V100 of the famous NASA software package, FUN3D [266].
It is clear that this requires additional information about specifications
of calculations.

FUN3D is a software package for solving CFD problems with an
unstructured grid, originally written in Fortran, part of the source code
of which was transferred to C++ CUDA in the form of kernels of the FLUDA
library, and even a mini-application was developed. Calculations here are
performed in FP64 format for most variables, and with mixed precision
FP32/FP64 for linear algebra problems [267].

At the 2023 AIAA Science and Technology orum, there were a number
of presentations that provided data on the A100’s performance in various
CFD tasks, including in comparison to the V100. In [268], it was found
that three quarters of the total execution time of FUN3D using the
A100-SXM-40GB on a 3.7 million point grid was used by memory-bound
kernels. Achievable performance correlates with bandwidth, and calculation
on the A100 by the NASA common research model (CRM) in transonic
conditions using the Reynolds-averaged Navier–Stokes equations was 1.67
times faster than the V100-SXM-16GB calculation.

In [269], in an aerodynamic analysis for electric VTOL aircraft using
a large eddy simulation program on a system with 8 A100, the calculation
time using FP32 was 1.4 hours versus 2.9 hours on a system with 8 V100.

In [270], large eddy simulations of flow instability were performed
on multi-GPU systems with 4 V100 and 8 A100. Performance vs. number
of GPUs data for A100 and V100 systems shows that with the same number
of GPUs (up to 4), A100 performance is several times higher when working
with both FP64 and FP32, and good performance scaling up to 8 A100 is
achieved.

Other CFD performance data for A100 and V100 servers at this forum
is presented in [271], and in [272] performance data is obtained for systems
with 4 A100 or V100 GPUs.
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Report [273] presents data on the performance of solving CFD problems
using the lattice Boltzmann method on the A100 and V100. The work [274]
implements the lattice Boltzmann methods improved by the authors,
compares the performance on the A100-40GB and V100 using FP32 and
FP64 and, naturally, shows a significant increase in the performance of the
A100 compared to the V100.

In [275] provides data on the performance achieved within the
URANOS program when using the A100 or V100. URANOS is designed
for compressible flow solver for high-fidelity modeling of compressible wall
flows (solving the system of Navier-Stokes equations in a three-dimensional
Cartesian system from low to high Mach and Reynolds numbers), is
implemented in Fortran 90 and parallelized using OpenACC and MPI. The
calculations were performed on two different Italian supercomputers with
V100 in nodes, and on DGX-A100, where maximum performance was
obtained. In all computing systems, maximum performance is obtained
when using not the standard MPI implementation, but the supporting GPU
from Nvidia, which uses direct data exchange between devices without
accessing the host.

And in [276], for the tasks of accurate modeling of high-speed flows
in various solution schemes, the efficiency of different Nvidia GPUs, including
the A100 and V100, was compared using not only the FP64 format as the
main one, but also FP32. Simulating supersonic jet noise (13 million cells,
400 000 iterations) on a single A100 using CUDA gave an run time of 34.5
hours. We calculated the ratios of various calculation times on A100 and
V100 given in [276], and obtained a range of accelerations of A100 relative
to V100 from 1.4 to 1.9 times.

Artificial intelligence. Regarding the A100’s performance for AI
problems, only two more important data sources (from the author’s
point of view) are considered here. Firstly, this is, of course, data on the
performance of machine learning— MLPerf training benchmarks [277];
At the time of writing the review, the data was current for version 2.1 [278].
The more comparable “closed” section of these benchmarks is discussed
below. Within it, possible data is divided into available cloud, available
on-premise and preliminary. Table 14 shows locally available performance
data for servers running the A100According to the rules, results can be
provided for individual benchmarks from the general list. But in our
review, the goal was maximum comparison, and the individual maximum
performance values (obtained by different companies and achieved for
individual of the benchmarks), which were not accompanied by many
corresponding data for other benchmarks, are not shown in the table.
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Table 14. Machine learning performance in MLPerf Training
v2.1 benchmarks [278]. Data: Available on-premise

Task Type and number
of GPUs

Calculation
time, minutes Submitter

Image classification
A100-SXM-80GB, 4 54.956 ASUSTek1

A100-PCIe-80GB, 8 30.756 ASUSTek2

A100-SXM-80GB, 4 54.231 Dell3

Image segmentation
(medical)

A100-SXM-80GB, 4 49.446 ASUSTek1

A100-PCIe-80GB, 8 25.855 ASUSTek2

A100-SXM-80GB, 4 47.253 Dell3

Object detection,
light-weight

A100-SXM-80GB, 4 161.699 ASUSTek1

A100-PCIe-80GB, 8 89.137 ASUSTek2

A100-SXM-80GB, 4 222.199 Dell3

Object detection,
heavy-weight

A100-SXM-80GB, 4 78.535 ASUSTek1

A100-PCIe-80GB, 8 43.081 ASUSTek2

A100-SXM-80GB, 4 83.712 Dell3

Speech recognition
A100-SXM-80GB, 4 59.989 ASUSTek1

A100-PCIe-80GB, 8 32.534 ASUSTek2

A100-SXM-80GB, 4 55.086 Dell3

Natural languages pro-
cessing

A100-SXM-80GB, 4 33.431 ASUSTek1

A100-PCIe-80GB, 8 24.186 ASUSTek2

A100-SXM-80GB, 4 32.792 Dell3

Recommendation A100-SXM-80GB, 4 3.147 ASUSTek1

A100-SXM-80GB, 4 4.309 Dell3
Reinforcement
Learning A100-PCIe-80GB, 8 161.647 ASUSTek2

1 with EPYC 7773X, GPU TDP 400 W;
2 with 2×EPYC 7763, GPU TDP 300 W;
3 with 2×EPYC 7763, GPU TDP 500 W;

The table contains only data whose submitter provided results for 7
benchmarks out of 8 available in MLPerf training 2.1. There are no V100
performance data for version 2.1, but the strong acceleration of A100
relative to V100 can be indirectly estimated from MLPerf training HPC 2.0
data [279]. The resulting benchmark performance may depend not only
on the GPU characteristics itself, but also on the specific computing system
and software used.

This is not discussed further here, but below, in Section 4.2.6, we
present data on the performance of the A100 in the new versions of the
MLPerf benchmarks— training v.3.0 and another set of benchmarks
for machine learning inference, inference datacenter v.3.1. There, the
performance of the A100 is compared with the H100 (this data became
available after the practical completion of the review).
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Another publication with important information on A100 performance
metrics for various AI domains [231] is narrowly focused on DLRM. It has
been noted that these models have atypical requirements compared to other
types of deep learning models. In [231], using A100 and V100, various
performance data were obtained, including on a cluster of GPU servers,
which is actual for large, highly scalable data centers, and recommendations
were made on possible improvements to DLRMs.

All of the above performance data naturally and unambiguously
indicates the advantage of the A100 over the V100, including in performance,
which should be most pronounced in HPC applications that require FP64
matrix multiplication and/or large memory capacity. The V100 lag is
smaller in HPC applications with FP64 that do not use matrix multiplication
in tensor cores: both GPUs have the same number of FP64 vector cores per
one SM.

4.2. New Nvidia H100 GPUs
4.2.1. H100— microarchitectural implementations of Hopper

The main metrics that characterize the H100 versus the A100 are
shown in Table 10, and Figure 6 illustrates the overall SM structure in the
H100, providing a framework for understanding the H100 architecture and
scaling performance with the number of SMs. In addition to the H100
models discussed in this review, Nvidia began producing H800 GPUs, which
also have Hopper architecture and are not subject to US sanctions against
China due to the reduced performance level in the H800 to an acceptable
level. These GPUs are not covered in this review; information about them is
available, for example, in [185].

All information provided later in this section about the Hopper
microarchitecture and its implementation in the H100 is based on a general
description by Nvidia [78], and additionally, if more detailed information is
needed, references are provided to relevant sources.

Thanks to the above discussion of the A100 and the Ampere architecture,
the H100 analysis can only focus on the improvements in the H100 relative
to the A100, since the overall build of the H100 and A100, as well as their
SMs, are roughly the same. The general hierarchy of GPU construction
from the SM level to the full GPU level is no different for the H100 and
A100, and the terminology used does not change: from two SMs a TPC
cluster is formed, and from a set of TPCs GPC clusters are formed, of which
there are 8 on the GPU. But different H100 GPUs in this hierarchies differ
in quantitative indicators.

Like the A100, the H100 has the highest available metrics supported by
the Hopper architecture (these are specified for the GH100). In fact, Nvidia
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Table 15. Macro-level characteristics of GH100 and H100
models

GPUs GH100 H100-SXM5 H100-PCIe
Number of SMs 144 132 114
Number of TPCs 72 66 57
Number of GPCs 8 8 8
L2 cache 60 MB 50 MB 50 MB
Number of HBM stacks 6 (HBM2E or HBM3) 5 HBM3 5 HBM2E

offers two models (with different form factors) that implement the Hopper
architecture, and their quantitative specifications in this hierarchy are
shown in Table 15.

The GH100 has 9 TPCs in each GPC, but this is not required in real
H100 models. The GH100, H100-SXM5 and H100-PCIe each use 10 memory
controllers (512 bits each), giving a total memory width of 5120 bits (see
Table 10). The most important thing is that H100 models with different
form factors differ significantly in performance simply due to the different
number of SMs, as well as due to different memory. This can be seen
in more detail not in Table 15, but in Tables 10 and 12. Peak performance
in the H100 can be calculated in the same way as was done above for the
A100— the number of SMs has simply increased in the H100, and every of
4 partitions of SMs in the H100 has twice the number of FP64, FP32 and
INT32 vector devices than in A100 (see Figure 6).

Compared to the A100, in addition to the quantitative increase in the
H100 in the number of available SMs and the number of vector cores
contained in each SM, and at the general level of the H100— the size
of the L2 cache and other specifications, a number of very important
improvements in the H100 hardware are closely related to CUDA and will be
discussed further in the analysis of CUDA extensions for H100. This applies
to both asynchronous execution and a new module, the Tensor Memory
Accelerator (TMA), for efficiently transferring large blocks of data between
global and shared memory (see Figure 6).

Finally, the H100 introduces or improves upon the A100 with a very
large number of new hardware enhancements that are beyond the scope
of this review in the narrow sense of its HPC focus and with limited
consideration of AI. Even listing new such tools can take more than one
indent— these are numerous improvements in MIG technology (especially
actual for working with cloud technology), security tools, and so on. New
instructions have been added to ISA, for example, for current genomics
problems— this has a very important, but narrow meaning. A lot of what
has been added relates to video and image processing and AI. Of the latter,
we note only the appearance of hardware for transformer models used
for NLP. As with the A100 above, interconnect hardware is covered in a
separate section on H100 servers and computing systems.
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Table 16. Nvidia GPUs Interconnect Specifications according
to [78,280]

GPUs V100 A100 H100
Number of lines (differential pairs) per NVLink
port 8 4 2

Single/bidirectional bandwidth of NVLink link,
GB/s 25/50 25/50 25/50

Number of NVLink links per GPU 6 12 18
Total bandwidth of NVLink links 300 600 900
Total aggregate NVSwitch bandwidth, TB/s 2.4 4.8 7.2

4.2.2. Computing systems with H100

This section describes Nvidia’s H100-based computing systems (from
servers to supercomputers) using x86-64 server processors, as well as the
H100 interconnects and Nvidia’s Grace ARM processors that will be used
in H100-based servers.

NVLink network for H100. To scale performance with the growing
number of GPUs used in servers (which has become a current characteristic
trend) and quickly exchange GPU data with the CPU and with other GPUs,
interconnects are critical. From the author’s point of view, here Nvidia
managed to achieve a very striking breakthrough (see Table 16).

NVLink4 in H100, as a high-speed, low-latency interconnect with
support of fault-tolerant features, provides a bandwidth of 900 GB/s— 1.5
times more than NVLink3 [78]. It is important that this bandwidth is
ideally combined with other bandwithes of the new Nvidia superchips using
ARM architecture, which will be discussed below.

NVLink4 uses two differential pairs in each direction (two times less
than there were in the NVLink3 channel with the same bandwidth) to form
a single channel with an effective bandwidth of 25 GB/s in each direction.
Therefore, the H100 now has 18 NVLink4 channels versus 12 channels
in the A100 [78].

But more importantly, NVLink4 now supports the NVLink network,
allowing up to 256 H100s in different nodes (servers) to securely communicate
with each other using a fat tree topology. The corresponding cluster
has 32 nodes with 8 H100s each. The NVLink network has a network
address space and uses address translation hardware in the H100, ensuring
isolation of the network address space and the separate GPUs address spaces
(previously on the NVLink network all GPUs share a common address
space [78].
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The NVSwitch switch initially provided the ability to combine the
memory of several GPUs. Powered by the H100, the NVSwitch3 provides
hardware-accelerated multicast collective operations, delivering up to two
times the bandwidth and reduced latency of NCCL on the A100 for small
block size collectives. This significantly reduces the load on SM during
collective communications [78].

Using the NVLink network and NVSwitch3 allows you to create large-
scale NVLink Switch System networks with very high levels of bandwidth.
Nodes in such a network are connected through a second (“external” to the
nodes) level of NVSwitches, which reside in switch modules outside the
nodes and connect multiple nodes together. Connected nodes are capable
of delivering 57.6 TB/s of all-to-all bandwidth [78].

This results in building H100-contained NUMA systems with very high
memory scaling levels achievable, in line with the trends of today’s large AI
training models.

Servers and clusters with H100. H100 GPUs can be hosted on a server
using appropriate Nvidia modules. Nvidia supplies HGX modules (roughly
speaking, an analogue of a graphics processor board) that contain the H100
and can be used by other companies to create a server containing the
H100. HGX H100 is a unit containing 4 or 8 H100. The 4 H100 HGX
configuration has fully interconnected point-to-point connections, while the
8 H100 configuration provides full bandwidth between the H100s via the
NVSwitch.

Another type of module with H100 from Nvidia is the H100 CNX,
where in addition to the H100 there are Nvidia ConnectX-7 SmartNIC
capabilities that provide 400 Gb/s throughput in the Infiniband NDR400 or
Ethernet 400 variant [78]. It is clear that the HGX modules are primarily
focused on AI, while the CNX modules are primarily focused on HPC.

The server configuration as it relates to H100 is determined by these
modules. Therefore, here we will note only the DGX H100 servers that
have already been supplied for use in supercomputers, focused primarily
on AI (although various companies have already announced their servers
with H100-PCIe and HGX, for example, Supermicro and Gigabyte).

The DGX H100 with 8 H100 system contains two independent data pro-
cessing units (DPU) Nvidia Bluefild-3 and 8 ConnectX-7 adapters [78].The
DGX H100, in addition to being almost completely ready to solve AI
problems, is ideal for working with AI in cloud technology, support for
which starts at the level of one H100.
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In the DGX H100 SuperPOD cluster (minimum configuration— 32
DGX H100 nodes), compared to the SuperPOD A100, instead of two levels
of Infiniband switches, one level of NVSwitch3 switches is used, and the
maximum cable length from switch to switch is increased from 5 meters for
DGX A100 to 8 meters for DGX H100.

The June 2023 version of the Top500 list has 5 supercomputers using
H100-PCIe in x86-64 based servers. The highest performance among these
supercomputers (14th place in the Top500) was achieved in the predecessor
of the EOS supercomputer announced by Nvidia [281]. This cluster
uses 128 DGX SuperPOD nodes. The DGX H100 servers run Ubuntu
22.04 and contains a 56-core Xeon Platinum 8480/2 GHz (Intel Sapphire
Rapids, fourth generation Xeon Scalable CPU) and NVidia ConnectX-7 for
Infiniband NDR.

Other Top500 supercomputers with H100 are in the second hundred
of the Top500 list and beyond. They use servers from other companies and
other server CPUs, including AMD EPYC. Of these supercomputers, it is
worth noting Henri, which ranks 255th and also tops the similar June
Green500 list. Henri uses Infiniband HDR and the nodes use 32-core Xeon
Platinum 8362/2.8 GHz (Intel Ice Lake) processors. It should also be noted
the expected Kestrel supercomputer [282].

The very fact that the DGX H100 is being used today in a supercomputer
suggests its likely focus on AI and working with cloud technologies.

4.2.3. Nvidia ARM hardware to work with H100

The use of ARM processors in high-performance servers with the H100
GPU should be a vivid real-life illustration of ARM’s success in competition
with traditional x86-64 server processors, which were used in Nvidia
servers with the H100 shipped at the time of writing this review. But the
use of ARM in servers with Nvidia GPUs began earlier: multi-core ARM
processors are already used in servers with the A100 (for example, from
Gigabyte [283]; these servers are now supplied to Russia and Uruguay, and
Gigabyte already offers servers with the H100).

In 2023, Nvidia began trial deliveries of modules containing ARM
processors to work with the H100. Information on the architecture and
performance of Nvidia’s ARM CPU (Grace) for running the H100 is still
very limited; Available benchmark and application level performance
estimates for Nvidia’s Grace were more about expectations.

Therefore, the discussion of Nvidia’s ARM hardware (the Grace
superchip module, which has begun trial deliveries, and the Grace Hopper
superchip, where the Grace superchip is integrated with the H100) is very
brief here.
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Table 17. Main technical characteristics of the Grace super-
chip

Architecture Neoverse V2 (ARM 9.0-A) with 4×SVE2(128 bit)
Number of ARM cores 144 (two Grace processors)
Peak performance 7.1 TFLOPS (FP64)
L1 cache 64 KB I-cache and 64 KB D-cache (per core)
L2 cache 1 MB (per core)
L3 cache 2×x117 MB
Memory type LPDDR5X (with ECC)
Memory bandwidth up to 1 TB/s
Memory capacity 240/480/960 GB
NVLink-C2C bandwidth
(bidirectional) 900 GB/s

PCIe links 8×PCIe-v5 ×16 with splitting capability
Their total (full duplex bandwidth 1 TB/s
TDP 500 W (with memory)

Data from: [284,285]

ARM Grace superchips. The Grace superchip is essentially an
implementation of an SoC containing two ARM processors and memory,
with PCIe support. As noted in [13], it was created specifically for
supercomputers and HPC.

The Grace data analyzed below is based on [284], and additional
references are provided only for information from other sources. The main
technical characteristics of Grace are collected in Table 17.

The first thing to note is that Grace is based on the latest ARM cores
for HPC, Neoverse V2 [286], which were announced in the fall of 2022.
These are 64-bit ARM cores with OoO instruction execution, supporting
SVE2 instructions with 128-bit vectors.

The Grace superchip consists of two 72-core Grace processors connected
by an NVLink-C2C channel supporting memory coherence with a throughput
of 900 GB/s, which eliminates interaction between sockets of conventional
servers as a bottleneck [13]. At the same time, the peak performance
(FP64) of the superchip, 7.1 TFLOPS, is not much lower than that of the
A100 without the use of tensor cores.

It should be noted that in modern Neoverse V2 cores, aimed at CPUs
with a large number of cores, the L1 I-cache is protected by parity checking,
and the L1 D-cache is protected by ECC codes. The L2 D-cache of ARM
Neoverse V2 cores is also protected by ECC codes and can have a capacity
of 1 or 2 MB [286]; in Grace, Nvidia chose the 1 MB option. The L3 cache
is naturally also protected by ECC codes; or other details of the Neoverse
V2 microarchitecture, see [286].

An interesting and very important feature of the Grace superchip
developed by Nvidia is the Scalable Coherency Fabric (SCF), which has
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NVIDIA GRACE

▪ NVIDIA fabric and distributed cache design

▪ 3,225.6 GB/s Bi-section BW

▪ Scalable to 72+ cores

▪ 117MB of L3 cache

▪ Arm Memory Partitioning and Monitoring (MPAM)

▪ Supports up to 4-socket coherency over Coherent NVLINK

NVIDIA Scalable Coherency Fabric

*Example possible fabric topology for illustrative purposes
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Figure 13. General construction of the Grace microarchitec-
ture (Figure from [13])

a mesh structure over which the cores and L3 cache partitions (SCCs
in Figure 13) are distributed, and ensures data flow between the cores,
NVLink-C2C, memory and system I/O with a total half-bandwidth of more
than 3.2 TB/s. This is illustrated in Figure 13. SCF is designed to scale
beyond a single Grace CPU to form a super chip with 144 cores. Cores and
SCCs are distributed across the mesh, and CSN (Cache Switch Nodes) act
as the interface between the CPU cores, the cache, and the rest of the
system [13].

The Grace superchip also has special tools that support partitioning
of hardware resources, which can be effectively used when working in a
cloud environment [284].

Nvidia developers explain their choice of 32-channel LPDDR5X memory
technology as the “golden mean” between HBM2E and DDR5 in terms
of capacity, bandwidth, cost and power consumption [13]. The maximum
theoretical bandwidth of LPDDR5X in the Grace superchip (1 TB/s) is
slightly higher than the bandwidth of NVLink-C2C (see Table 17).

It should also be noted that Grace supports four PCIe-v5 ×16 channels
(in addition, for various tasks there are two more low-speed PCIe-v5 x2
channels) [13]. This immediately makes this superchip the leader among
CPUs in terms of I/O performance.

But the TDP of the Grace superchip (this is a dual-processor SoC)
is comparable to the TDP of modern GPUs; this is higher than the A100
and H100 PCIe (but lower than the H100 SXM). To work with the Grace
superchip, air or liquid cooling can be used [284].

Nvidia in [284] also provides expected estimates of some of the
Grace benchmarks. These relate to STREAM test data (up to 400
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Figure 14. Grace Hopper with support for working with
NVLink4 (Figure from [287])

GB/s for one Grace CPU and up to 800 GB/s for the entire superchip),
SPECrate2017_int_base (370 and 740 for one Grace CPU and superchip,
respectively), and significant speedup values in some applications (including
areas CFD and weather forecasting) compared to a dual-processor server
with AMD EPYC 7763 (Milan). Other initial data have appeared, but they
are still completely insufficient.

Nvidia talks about a twofold increase in power efficiency compared to
traditional CPUs used in data centers [284]. Plans to create supercomputers
based on Grace were announced by the US Los Alamos National Laboratory
and the Swiss National Computing Center [14].

4.2.4. Grace Hopper superchips

In addition to Grace, Nvidia also announced Grace Hopper, in which
Grace (two 72-core processors) is integrated with the H100. The main basic
indicators of this superchip are approximately the sum of the indicators
of the H100 and Grace discussed above, and depend on which variants
of each of these two integrated components is used in the Grace Hopper.

In version 1.01 of the document [287], on which further analysis
of Grace Hopper superchips is based, it is indicated that the LPDDR5X
size for Grace in the Grace Hopper superchip is up to 512 GB, size of HBM3
memory for H100 is up to 96 GB, and about the presence of two options
Grace Hopper superchip— with support for working with NVLink4 (see
Figure 14) and without it (then systems with such superchips are connected
via Infiniband NDR). It is clear that the integration of two CPUs, H100 and
memory gives a high TDP, 1000 W is specified in [287].
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Figure 15. General microarchitecture of Grace Hopper
(Figure from [287])

After completing work on this section of the review at the same
URL [287], Nvidia posted new versions of this document (the latest version
known to the author is 1.11), where the superchips in question are now
called GH200 Grace Hopper. The most important changes there are
associated with the emergence of new GH200 models, in which instead
of HBM3, HBM3E with a capacity of 141 GB with a bandwidth of 4.8
TB/s will be used (versus 4 TB/s when working with HBM3). The main
characteristics of the GH200 Grace Hopper architecture, of course, have not
changed. But since due to the rapid development of GH200 and related
computing systems in 2023, new modifications appeared in later versions
of this document, and sometimes even the names used were modernized,
the analysis of GH200 in this review was carried out in a limited scope and
is further based on version 1.01 of the document.

As the interconnect between the Grace processor and the H100
uses NVLink-C2C, which provides high bandwidth and low latency (see
Figure 15) [287]. NVLink-C2C provides memory coherence and hardware
support for system-wide atomic operations, which improves the performance
of synchronization primitives. Memory coherence allows developers to
transfer only the data they need (rather than entire pages of memory) from
Grace to H100 and back again, and naturally simplifies programming
heterogeneous applications. The performance of non-local memory accesses
also improves (for example, when CPU and H100 threads access memory
located on another device) [287].

A key feature of the GH200 superchip is the use of extended GPU
memory (EGM). Each GPU from a multi-node computing system with an
NVLink network based on GH200 has access to both the LPDDR5X
memory of all Grace processors and the HBM memory of all GPUs, i.e. The
total memory capacity for the GPU is dramatically expanded. A unified
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Figure 16. General construction of interconnections GH200
with NVLink support (Figure from [287])

memory is formed with common page tables, a common virtual address
space. The speed of GPU access to local memory is set by NVLink-C2C, and
to remote memory by NVlink4 [287] (see Figure 14 and Figure 15).

Servers with GH200 are already offered, for example, by Gigabyte [288].
Nvidia offered computing systems with the GH200— the MGX GH200 and
DGX GH200 platforms. The MGX GH200 modular platform (there are
options with HBM3 or HBM3e) is as similar as possible to a server with one
GH200 superchip, without support for the NVLink switching system.
Nodes with MGX GH200 can form traditional clusters, where Infiniband or
Ethernet can be used for communication, working through the DPU.

DGX GH200 is a supercomputer for AI; there, 256 superchips are
combined using the NVLink interconnect, giving a memory address space
of up to 144 TB. A summary of these Nvidia AI-focused platforms is
provided in version 1.11 of the document [287].

From the point of view of the possibility of building the most powerful
supercomputers, the basis for ultra-high levels of performance scaling is
provided by the use of NVSwitch3 with NVLink4 channels in conjunction
with the GH200, since this provides Nvidia’s original two-level scaling. Its
capabilities are illustrated in Figure 16, which relates to working with the
GH200 variant with NVLink support [287].

At the first level, it’s possible to combine a set of GH200 superchips
into a single domain, connected through the NVSwitch3 switching system
(with a total bandwidth of all GPU threads in the domain up to 900 GB/s
per superchip). The use of these interconnects makes it possible to form
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a common memory of the entire domain, including both the LPDDR5X
memory of the Grace processors and the HBM3 memory of the H100 [287].
In late 2023, Nvidia announced another single-rack compute system (GH200
NLV32)— with a much smaller domain than the top-end DGX GH200
configuration. Already at this level a very high level of performance
is achieved; Nvidia also calls this system a supercomputer (see, for
example, [289]).

At the second level, clustering of domains is possible using the most
modern, widely used interconnects. For this, PCIe-v5 channels supported
in Grace are used. Figure 16 shows a possible variant of such formation
of a cluster of domains using the Bluefild-3 DPU. For communication with
Grace, this DPU has 32 PCIe-v5 lanes, which has a total bidirectional
bandwidth of 256 GB/s (this DPU has another 32 GB of own memory).
And to form a cluster of domains, the DPU has 1 or 2 additional ports
with speeds up to 400 Gbps (they can work with Infiniband NDR400 or
Ethernet 400) [290], as shown in Figure 16. The use of DPU removes the
Grace need to manage transferring data over the cluster interconnect.

It is clear that scaling on such a system will be a difficult task even for
AI. But the author does not know, even through the announcement, about
the possibility of such an “option” and the level of scaling of systems
with GPUs from other companies. But in general, it is clear that Nvidia with
the GH200 is focused on delivering more work-ready computing systems.

4.2.5. CUDA Extensions for H100

Everything stated below in this section is based on the description
of the H100 hardware [78]. But first, it is advisable here to point out the
general structure of the CUDA platform in its part related to compilers, since
over time new programming languages appear that can also be used to
obtain kernels executed on Nvidia GPUs. At the same time, the CUDA
platform provides different compilers with a unified software stack, and
creating a compiler for a new programming language basically comes down
to writing only the front end part of the compiler.

These compilers are based on LLVM (in [78] the use of its 7th version is
indicated). In addition to the capabilities of the C++ and Fortran ISO
standards used for working on GPUs, as well as their CUDA extensions, back
in 2021 in CUDA 11.4 Nvidia introduced CUDA-Python [291], and there are
also developments for Julia and other programming languages.
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Figure 17. Working with DSMEM in A100 and H100 (Figure
from [78])

The corresponding front-end components of these compilers generate
an intermediate representation (IR) called NVVM IR [292], which is based
on the famous LLVM IR. Next, using the libNVVM library, a PTX code is
generated, from the virtual ISA of which a kernel is obtained that runs
on the GPU [78].

The most important thing for achieving high performance of GPGPU is
a provision of data locality, which gives high-speed access to nearby memory
levels, and asynchronous execution, when the calculations themselves are
performed independently (simultaneously) with data transfer.

Previously (and for the A100), the CUDA programming model included
blocks of threads, from which a grid of threads was formed. IIn H100, the
number of SMs has increased significantly and another level has been added
to the overall thread hierarchy, a thread block cluster, which includes a set
of thread blocks spanning multiple SMs. All this is reflected in the H100
hardware implementation with a new larger level of memory localization,
since clusters of thread blocks in the H100 work simultaneously on SMs
inside the GPC, ensuring fast data exchange between threads in the cluster.

Cluster threads can directly access the shared memory of other SMs
using load, store, and atomic operations (which cannot be partially
executed). For this purpose, DSMEM (Distributed Shared Memory)
is formed. Figure 17 shows how data is exchanged between thread
blocks in A100 and in H100 with DSMEM. A thread block cluster has
access to more shared memory capacity than a single thread block—the
virtual address space of "shared" memory. Compared to using global
memory, DSMEM speeds up data exchange between blocks of threads by
approximately 7 times. [78].

On the other hand, from the author’s point of view, the appearance
of a of thread block cluster on a new GPU model is a clear demonstration
that widely used programming models for GPUs, which require the highest
possible performance, automatically become poorly portable to other GPU
models.
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Other notable extensions in CUDA for H100 relate to asynchronous
execution, allowing for overlapping (simultaneous execution) of data
movement, computation, and synchronization [78]. To achieve this, the
H100 has a new asynchronous memory copy module TMA and a new
asynchronous transaction barrier. TMA can transfer large (up to the
shared memory capacity) blocks of data and multidimensional tensors from
global memory to shared memory and back.

The TMA operation is asynchronous and uses shared memory-based
asynchronous barriers like the A100. In addition, one thread in a warp can
be selected to perform an asynchronous operation, and then multiple
threads can wait for the data transfer to complete using a barrier. TMA
frees threads to do other independent work, since after a thread creates
a so-called copy handle before running TMA, TMA itself performs all other
functions as part of the H100 hardware.

Asynchronous barriers first appeared in the A100, and the H100 intro-
duced a new primitive for asynchronous memory copies, the asynchronous
transaction barrier. The write command to shared memory transfers not
only the data, but also the number of transactions. The asynchronous
transaction barrier blocks threads on a wait command until all producer
threads have completed the “Arrive-On” operation and the sum of all
transaction counters has reached the expected value. See [78] for more
details. These capabilities are naturally used to work with thread block
clusters.

4.2.6. H100 Initial Performance Data

Data on the H100’s performance in benchmarks and HPC applications
at the time of the June 2023 Top500 list was virtually non-existent, except
for the starting data in the Hot Chips 34 report [293]. We will also note
the available (as of June 14, 2023) data from the tiny suite of the SPEChpc
2021 benchmark [226], where results for the Lenovo ThinkSystem SR655
V3 server are presented with one and two H100-PCIe-80GB (with EPYC
9654P). We compared these data with Lenovo’s SPEChpc 2021 results for
one and two A100-PCIe-80GB on another ThinkSystem SR670 V2 server
(with Xeon Platinum 8380). For the base variant of the test (the peak
variant for the A100 was not carried out), the resulting performance on one
H100 was 1.33 times greater than that of the A100, and on two H100s the
same acceleration was 1.51 times. But should be kept in mind that for
parallelization, OpenACC tools (plus MPI) were used here.
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Other interesting data on the performance of H100 were obtained for
the well-known molecular dynamics application Amber version 22 [294].
There, for typical test molecular systems for this application, calculations
were carried out that gave performance estimates (the number of simulated
nanoseconds per day of calculation) on different graphics processors. The
relative performance calculated from these values shows the acceleration
of H100 relative to A100 by 1.11-1.28 times for dihydrofolate reductase
(23 558 atoms), 1.27 times for nucleosomes (25 095 atoms), 1.42-1.43 times
for a protein of 90 906 atoms, 1.40 times for cellulose with a large number
of macromolecules (408 609 atoms), 1.35 times for a satellite of the tobacco
mosaic virus (1 067 095 atoms).

In calculations of smaller molecular systems, the accelerations obtained
on H100 were also and greater than those indicated above, but we do not
present these data here. But it is useful to note that for all the molecular
systems calculated in [294], the performance of the Nvidia RTX 3090 is
close to the A100, and the Nvidia RTX 4090 is close to the H100.

There is also other data on Amber22 performance on the H100
compared to performance on the A100, but these are discussed below
in Section 5.3.2, with comparison to performance on the MI250.

But first of all, new generation GPUs are usually focused on solving AI
problems, so the initial performance data appears here. For the H100, first
became available Nvidia’s preliminary results for one of the classic AI
(machine learning) benchmarks suites, MLCommon— MLPerf Training
in version 2.1 [278].

The calculation times presented in [278] for H100 (in the “closed”/“pre-
liminary” section of MLPerf Training) were obtained on the DGX H100
system, containing, in addition to 8 H100, two Xeon processors (56 cores)
and running the Ubuntu 20 distribution. Data analysis for the DGX A100
system with 8×A100-SXM-80GB in benchmarks that give comparable
results to the H100 shows that the calculation time on the H100 is about
two times less than on the A100, with the exception of the NLP benchmark,
where the H100 is 3.8 times faster.

At the end of June 2023, data on the performance of H100 and
A100 appeared on the new version of MLPerf Training v3.0 [295], and
in September — on the new version of MLPerf inference datacenter
v.3.1 [298], which are illustrated in Table 18 and Table 19.
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Table 18. Performance data for H100 and GH200 in MLPerf
inference datacenter v. 3.1 benchmarks (all data in the category
"closed"/"available"); data have been selected for maximum
comparability for 99% accuracy and rounded to 2 significant
digits

GPUs 1 2 4 8
Image Classification/ResNet

H100-PCIe-80GB 47(55)1 106(115)2 206(200)2 368(443)1

H100-SXM-80GB 73(89)3 312(354)3 584(704)4

GH200-96GB 77(93)
A100-PCIe-80GB 147(158)5

A100-SXM-80GB 305(340)6, 290(326)7

NLP/BERT
H100-PCIe-80GB 4.6(5.7)1 9.1(12)2 18(23)2 35(46)1

H100-SXM-80GB 7.3(8.8)3 29(36)3 56(70)4

GH200-96GB 7.7(10)
A100-PCIe-80GB 12(13)5

A100-SXM-80GB 25(28)6, 25(28)7

The performance data (number of querues in the server scenario and number of
samples - in parentheses - in the offline scenario) is reported per millisecond
instead than per second.
All calculations were carried out using TensorRT 9.0.0 and CUDA 12.2.

1 Data from Nvidia on Gigabyte G482-Z54, with 2×EPYC 7742;
2 Data from Dell on Dell PowerEdge R760x with 2×Xeon Platinum 8480+
3 Data from Dell on Dell PowerEdge XE9640 with 2×Xeon Platinum 8468
4 Data from Nvidia on DGX H100 with 2×Xeon Platinum 8480C
5 Data from Dell on Dell PowerEdge R750x with 2×Xeon Gold 6338
6 Data from HPE on HPE ProLiant XL675d Gen10 Plus with 2×EPYC 7763
7 Data from Oracle on Oracle BM.GPU.A100-v2.8 with 2×EPYC 7J13

Data for these tables were selected to provide the greatest possible
comparison of performance, but since they were actually obtained after the
completion of data selection for review, they are not analyzed in detail here.

Table 18 shows selected data from the MLPerf inference datacenter
version 3.1 benchmarks suite. The data in this table shows the H100’s clear
performance gains over the A100, the H100-SXM’s more subtle performance
gains over the H100-PCIe, and the 96GB GH200’s increased performance
over the H100-SXM (and in more so over the H100-PCIe). This demonstrates
the increase in performance for AI area when working with a single H100
GPU in the Grace-integrated GH200 variant with 96 GB HBM-memory.
In addition, these data show good scalability at the number of GPUs used
in the server increases from 1 to 8.
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Table 19. Machine learning performance in MLPerf Training
v3.0 benchmarks [295] in minutes

GPUs 2 4 8
Image classification

A100-PCIe 581, 612 323

A100-SXM 544 275

H100-PCIe 826 452, 397 208, 219

H100-SXM 2710, 2611 1312, 1313

Image segmentation (medical)
A100-PCIe 471, 482

A100-SXM 474 235

H100-PCIe 676 322, 317 198, 189

H100-SXM 2210, 2211 1212, 1213

Object detection, light-weight
A100-PCIe 1711, 1762

A100-SXM 2224 795

H100-PCIe 1142, 1077 548, 569

H100-SXM 7210, 7211 3712, 3713

Object detection, heavy-weight
A100-PCIe 861, 812 473

A100-SXM 834 385

H100-PCIe 622, 557 288, 289

H100-SXM 4010 1912, 2013

Speech recognition
A100-PCIe 631, 642

A100-SXM 554 295

H100-PCIe 776 512, 457 238, 289

H100-SXM 2710, 2711 1912, 1913

Natural languages processing
A100-PCIe 451, 512

A100-SXM 324 15
H100-PCIe 436 108, 109

H100-SXM 1110, 1111 5.412, 5.413

Recommendation (DLRM)
A100-SXM 8.45

H100-SXM 8.810 4.314, 4.312

1 Data on ESC4000-E11 with 2×Xeon Platinum 8462Y+
2 Data on R750x with 2×Xeon Gold 6338
3 Data on ThinkSystem SR670 V2 Server with 2×Xeon Platinum 8360Y
4 Data on XE8545 with 2×EPYC 7763
5 Data on XE9680 with 2×Xeon Platinum 8480+
6 Data on D54Q-2U with 2×Xeon Gold 6430
7 Data on R760x with 2×Xeon Platinum 8480+
8 Data on ESC8000A-E12 with 2×EPYC 9654
9 Data on AS-4125GS-TNRT with 2×EPYC 9554
10 Data on SYS-421GU-TNX with 2×Xeon Platinum 8460H
11 Data on XE8640 with 2×Xeon Platinum 8468
12 Data on XE9680 with 2×Xeon Platinum 8470
13 Data on AS-8125GS-TNHR with 2×EPYC 9634
14 Data on G593-SD0 with 2×Xeon Platinum 8480+

All data in the table refers to "available on-premise" and was obtained on a GPUs with
a memory capacity of 80 GB and rounded to two significant digits. For information
about the AI models used in the benchmarks and the underlying datasets used, see [295].
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Table 19 shows a sample of approximately one-sixth of the MLPerf
Training v3.0 benchmark data table presented in [295], where are, for
example, also results for a larger number of GPUs used. Such a large amount
of data presented in this table allows to compare the performance of the
H100-SXM, H100-PCIe and A100-SXM/PCIe with different numbers of GPUs
used in the server, using different software and different hosts.

The data in this table shows that possible reasonable variations in the
host hardware (of course, CPUs containing dozens of cores were used here)
and software chosen by server manufacturers for these benchmarks do not
have a strong impact on the achieved performance and are therefore not
analyzed here.

The data in this table in almost all benchmarks shows good scaling
with the number of GPUs in the server up to 8. As a zero approximation for
comparing performance, we can assume that the dependence of performance
on the number of GPUs is linear, although this is not always the case— for
example, when moving from 4 to 8 H100-PCIe speedup in the medical
image segmentation benchmark was only 70 percent.

The table data shows that noticeably higher performance is achieved
when working with the H100-SXM compared to working with the H100-PCIe
(for example, one and a half times more for 4 GPUs in image classification
and image segmentation benchmarks); or that the performance of the
H100-SXM is twice as high as that of the A100 on the same benchmarks
with the same number of GPUs; or that H100-PCIe is one and a half times
faster than A100 under the same conditions, and so on. It also happens
that scaling with the number of GPUs is rather insufficiently high for AI
(for example, when moving from 4 to 8 H100-PCIe in the medical image
segmentation benchmark), but such an analysis, for obvious reasons, is not
carried out here.

4.3. Nvidia GPUs Summary

Despite the emergence of alternative Nvidia GPUs from AMD and
Intel, there are no signs of weakening in the position of Nvidia GPUs
in hardware and software terms— their use in quantitative terms will
continue to develop rapidly. Software tools for Nvidia GPUs are the most
widely available, and new software tools are usually released for them
earlier than for competitive GPUs. New generation GPU architectures from
Nvidia provide a high level of compatibility with earlier GPU models.
Accordingly, the portability of the software to newer models is significantly
higher than that achieved when switching to work with competitor GPUs.
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While Nvidia’s GPU market share could theoretically fall in the global
market due to the introduction of AMD and Intel GPUs, the global
increase in AI efforts will boost the adoption of Nvidia GPUs. The possible
performance advantages of Intel and AMD GPUs need to be proven in real
applications. From an HPC perspective, it’s worth paying attention to
Nvidia’s increasing focus mainly on AI area.

5. Next generation GPUs from AMD

The new generation GPUs in this review include GPUs that appeared
after the basic Nvidia V100 and A100 GPUs. AMD has come a long
way in recent years not only in the field of successful competition with
Intel x86 processors (AMD EPYC is pushing aside Intel Xeon not only
in the market of traditional servers, but also in the market of servers
with GPUs). The introduction of the MI100 [296] at the end of 2020, and
the MI200 family the following year [297,299] showed that competition
with Nvidia GPUs is starting. It was the GPU MI100 and MI200 that became
the first representatives of GPUs produced, classified in this review as a new
generation.

The MI100 was sometimes seen as a precursor to AMD GPUs in upcoming
supercomputers (the Spock cluster with MI100 in nodes is a predecessor
to Frontier [254]; the MI100 began to be used in the nodes of LUMI,
which took third place in the June Top500 list, when its nodes already
began using the MI250X [42]). The MI100 architecture has already
been discussed in publications— see, for example, the review [21]. By
analogy with the V100, here we will limit ourselves only to the summary
technical characteristics of the MI100 (see Table 20) and Table 21, but
we will analyze data on the achieved performance of this GPU, including
in comparison with other GPUs considered in the review.

The relevance of the analysis of GPUs from the MI200 family is increased
by the fact that they have now been used to build not only the No. 1
supercomputer in the Top500, which for the first time in the world crossed
the 1 EFLOPS barrier (Frontier), and the third in the Top500 (LUMI) list,
which belongs to the European Union (since LUMI is installed in Finland—
this also demonstrates significant European success in the supercomputing
field): MI250X GPUs are used in 2% of supercomputers from the Top500,
which also reflects another success of the manufacturer, HPE/Cray, in whose
hardware the MI250X was placed.
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Table 20. Specifications of modern AMD and Nvidia GPUs

GPUs MI100 MI210 MI250 MI250X A100 with
PCIe

A100 with
SXM4

H100 with
PCIe

H100 with
SXM5

TSMC technology, nm 7 6 7 4
Number of active cores
(stream processors)1 7680 6656 13312 14080 6912 6912 14592 16896

Number of active CUs2 120 104 2× 104 2× 110 108 108 114 132

GPU base/boost clock
(MHz) 1000/1502 1000/1700

765/1410
or

1065/1410

1095/1410
or

1275/1410
1095/17554 1590/19804

Peak performance: FP64
(TFLOPS) 11.5 22.6 45.3 47.9 9.7 9.7 25.6 33.5

FP64 with tensor cores
(TFLOPS) No 45.3 90.5 95.7 19.5 19.5 51.2 66.9

FP32 (TFLOPS) 23.1 22.6 45.3 47.9 19.5 19.5 51.2 66.9
FP32 with tensor cores
(TFLOPS) 46.1 45.3 90.5 95.7 No support: lower precision inputs

FP16/BF16 (TFLOPS) 184.6/
92.3 181 362.1 383 78/3123 2053 2683

INT8 (TOPS) 184.6 181 362.1 383 624 1513 1978.9
1 Low-level SIMD cores with support for multiply-and-add commands are also called CUDA processors by Nvidia (matrix/tensor

cores are not taken into account here);
2 for Nvidia— streaming multiprocessors (SM);
3 when using sparsity— twice as high; Performance with FP16, BF16 and INT8 relates to tensor kernels.

Performance with FP16, BF16 and INT8 refers to tensor cores.
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Table 21. Specifications of modern AMD and Nvidia GPUs (continuation)

GPUs MI100 MI210 MI250 MI250X
A100
with
PCIe

A100
with SXM4

H100
with
PCIe

H100
with SXM5

GPU memory type HBM2 HBM2E HBM3
Memory bus, bit 4096 8192 5120
Memory capacity, GB 32 64 2× 64 40 or 80 805

Memory clock, MHz 1200 16006 1215 or
1512

1215 or
1593 1593 1313

Its bandwidth, GB/s 1229 1638 3277 (2× 1638.4) 1555 or
1935

1555 or
2039 2039 1681

Interconnect of GPU with
GPU or with CPU

Infinity
Fabric

2.0
Infinity Fabric 3.0 with CPU:

PCIe v4
NVLink-

3.0
with CPU:
PCIe v5

NVLink-
4.0

Its bandwidth, GB/s 3× 92 3× 100 6× 100 with CPU:
64 600 with CPU:

128 900

L1 cache, KB 16 on CU 192 on SM 256 on SM
L2 cache, MB 8 16 40 or 80 40 50

TDP, W4 ; 300
PSU: 700

; 300
PSU: 700

500; 560
PSU: 900

500; 560
PSU: 900

250 or
300 PSU:

700
400

PSU:800
350 PSU:

750
700 PSU:

1100

4 There is a model with HBM3/96 GB and a different GPU clock.
5 for tensor operations with reduced (less than FP32) precision, the boost clock is lower;
6 TDP: the number after the semicolon for AMD is peak, PSU: suggested power for Power Supply Unit;

This table data are taken from the database [185] and from manufacturers websites.
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5.1. GPUs AMD MI200

5.1.1. Microarchitecture and technical characteristics of different MI200
models

The MI200 family includes three different models— MI210 [300],
MI250 [301] and MI250X [302], of which the top model MI250X appeared
and was the first to be supplied to the Frontier supercomputer [303], the
leader of the Top500 list.

As AMD transitioned from producing its traditional Radeon Instinct
graphics processors to next-generation GPUs, the architecture also changed.
If earlier AMD graphics processors used the GCN (Graphics Core Next)
architecture, then CDNA (Compute DNA) was developed for MI100
(Compute DNA) [304], and in MI200 it was upgraded to the second version
CDNA 2 [305]. When these architectures change, naturally, a certain
continuity is maintained, primarily in the computing units, the improvement
of which largely occurs in technological and quantitative indicators.

For the analogue of the basic computing unit SM in Nvidia GPUs for
AMD GPUs, the term CU is used (see Table 1), which is also used in BR100.
Sufficiently detailed information on the construction of the CU and its
main blocks for CDNA is available in [304]. The CU in CDNA 2 contains,
in particular, a dispatcher for working with threads, files of ordinary and
vector registers, cores (including matrix ones, see below), L1 cache and LDS
(Local Data Share) memory [305]. LDS shared memory (often also called
LSM, Local Share Memory) is used by threads inside a warp (wavefront
in AMD terminology, see Table 1) [305].

The L1 cache capacities for the MI100 and various MI200 models, as
well as other important indicators of these AMD GPUs, in comparison with
the A100 and H100 are shown in Table 20 and Table 21. Taking into
account the delays in PVC supplies and the possible freeze in production
of the BR100, the greatest interest in this review and for comparison
purposes GPUs in general currently represent the GPUs from this table.

But first of all, we should point out the technological indicators. MI100
began to be produced using TSMC 7 nm technology (like the A100), and
MI200— using 6 nm technology (only in the latest H100 that Nvidia
introduced, used 4 nm technology). The MI100 contains 25.6 billion
transistors with die size of 750 mm2 — and the MI250X already has 58.2
billion (with a smaller die size 724 mm2) [185]. These indicators are
important, among other things, because they are associated with possible
cost indicators and TDP values.
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These data show the similarity of such indicators for MI100 and V100
(see also Table 10). At the same time, in MI250X the number of transistors
is slightly larger than in A100 (there are 54.2 billion of them), and the
MI250X die size is noticeably lower (in A100— 826 mm2). Accordingly,
ideas arise about the possible comparability of MI100 and V100, as well as
MI250X and A100— which has been tested in a number of publications with
performance data. As for the comparison of the technological indicators
of the MI250X and A100, it requires fundamental clarification, which will
be discussed below.

To compare the MI250X with the A100, we should add a comparison
with the H100, which will appear in 2023. Here, the new 4 nm technology
level allowed Nvidia to place 80 billion transistors with a reduced die size
(compared to the A100) 814 mm2.

The main indicators of GPU MI100, MI200, A100 and H100 are given
for comparison in Table 20, 21, and Figure 18 shows a higher (than CU)
level of computing power scaling in CDNA 2— GCD, which also has 4
Compute Engine’s (CE), each containing 28 CUs (two columns of 14 CUs
each in the figure [305]. Two CUs of the 112 physical CUs are disabled [41]—
accordingly, Table 20 indicates 110 CUs.

The GCD die is of fundamental importance for AMD technology: the
top MI250 and MI250X models each contain by two GCDs [305], connected
as a chiplet [299].

As GCD interconnect the Infinity Fabric 3.0 (discussed in the next
section of the review) is used, but its bandwidth is much lower than
the GPU memory bandwidth (see Table 21). When programmed, MI250
and MI250X will be treated as two different GPUs [305]. Accordingly,
returning to the technological comparison with the A100 and H100 GPUs,
MI250/MI250X can also be perceived as GPU pairs. And per one GCD in the
MI250X, the number of transistors in it, roughly speaking, is 2 times less
than in the A100.

If we move from the CDNA 2 architecture to the supplied MI200
models, they differ in the number of active CUs (see Table 20). According
to [305], each CU contains 64 cores (64 shader cores or stream processors
in AMD terminology, equivalent to four SIMD blocks with vectors of
16 numbers)— these are some analogues of CUDA cores in Nvidia GPUs.
Each such core can perform multiply-and-add commands with FP64
numbers. Then the peak GPU performance (FLOPS) is twice the product
of the number of such GPU cores and the clock frequency. According to
the established tradition, manufacturers use the accelerated frequency
in calculations of peak performance— such numbers are given in this table.
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Figure 1a –Block diagram of the AMD Instinct™ MI200 Graphics Compute Die (GCD)

Figure 18. General construction of a GCD die (Figure
from [305])

In CDNA2, the ALUs located in the CU became 64-bit, and it became
possible to pack two FP32 numbers in place of one FP64, and work with
them, for example, in multiply-and-add instructions [305]. The MI250X’s
peak performance with packaged FP32s doubles to 95.7 TFLOPS without
using matrix cores.

In CDNA (in CUs), matrix cores have appeared (analogues of tensor
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Table 22. The number of results obtained per clock cycle
on one CU in CDNA (MI100) and CDNA 2 (MI200)

Format By vector units By matrix units
CDNA/MI100 CDNA 2/MI200 CDNA/MI100 CDNA 2/MI200

FP64 64 FLOPS 128 FLOPS — 256 FLOPS
FP32 128 FLOPS 128 FLOPS 256 FLOPS 256 FLOPS
FP16 — — 1024 FLOPS 1024 FLOPS
BF16 — — 512 FLOPS 1024 FLOPS
INT8 — — 1024 numbers 1024 numbers

Data from [307]. It also lists the number of clock cycles required to perform each
type of MFMA operation. Running mixed format MFMA with FP32 results gives
1024 FLOPS per clock cycle.

cores in Nvidia GPUs), which can execute MFMA (Matrix-Fused-Multiply-
Add) commands— “multiply-and-add” on small-sized matrices using mixed
precision, but there the maximum precision is FP32 [304], as in the V100.
And in CDNA 2— and accordingly in MI200 (similar to A100) MFMA can
also work with the FP64 format. Acceptable sizes of matrices with FP64
(M ×N ×K in formula (1)): 16× 16× 4 or 4× 4× 4 [299].

It is useful to note here the peculiarity of the MFMA command set (it
is a set, since for each combination of number formats used in different
matrices there is its own version of the MFMA command) and similar
WMMA commands in Nvidia GPUs. They perform the operation expressed
by formula (1) with α = β = 1, but the result is placed in another matrix
D instead of C on the left side of this formula. There is no support for
working with specific sparse matrices for AI area (as in the A100) in CDNA
2. ISA documentation for CDNA 2 is available at [306].

To calculate the peak performance of MI100 and MI200, you need to
know the number of results obtained per clock cycle in one CU; this data is
presented in Table 22. For example, each CU in CDNA 2 has 4 matrix cores,
each of which produces 64 FP64 results per clock cycle [305], which after
multiplying the total number of matrix cores in the GPU by 64 and by
the clock frequency gives the peak performance shown in Table 20 when
working with matrix cores.

In general, if we compare the peak performance data presented
in Table 20, we can see that when working with vector cores, the MI100 is
ahead of the A100 (and naturally the V100, see Table 12) for FP64 and
FP32 in this indicator, giving this an potential advantage for all (working
with vectors) HPC applications (unless performance is limited by matrix
multiplication). There is no support for FP64 in the MI100 matrix cores,
and with an accuracy below FP32, the MI100 is competitive with the V100
in this performance indicator, being much inferior to the A100.



New generation of GPGPU and related hardware 403

On vector cores, the MI250 and MI250X models containing two GCDs
each outperform the A100 in peak floating point performance. The same
occurs when working with matrix/tensor cores (with the exception of FP32).
However, A100 for the field of AI, when using special sparsity of matrices
with tensor cores when working with reduced precision relative to FP64, is
ahead in terms of peak performance.

The actual performance achieved fundamentally also depends on other
factors, primarily the memory hierarchy— but first you need to decide how
the comparison is made: logically, the MI250 and MI250X models are
presented as two GPUs. If we divide the peak performance of these two
models presented in Table 20 by two, then for FP64 all MI200 models are
still significantly ahead of the A100, and for FP32 their advantage is small
(for tensor cores the A100 also shows higher performance, but the original
data are not supported in standard FP32 format).

When compared with one GCD, the newly released H100 already
surpasses the MI200 in peak performance with FP64, and at lower precisions
this superiority is large. It should be noted that the peak performance
of one GCD MI250X for the FP64 format is very close to that of the
H100-PCIe (see Table 20). A systematic comparison of these GPUs based
on the actual achieved performance during the preparation of the review
was impossible due to the lack of relevant publications, and in practical
terms, a comparison of the H100/GH200 with the expected MI300 may
become relevant in the near future.

There are other execution units in CDNA 2 that are relevant to
working with images and video, but they are not discussed here— for
example, GCD has two VCN blocks for machine learning tasks in working
with images and video (see Figure 18).

Now we should turn to the memory hierarchy— the second main
component that determines GPU performance. The most detailed data
on the entire MI200 memory hierarchy is presented in [299]. The L1 cache
here has a structure traditional for AMD GPUs, including not only division
into an instruction cache and data cache, but also division of the latter into
a vector cache (for working with a vector register file) and a scalar cache.
And it is impossible to directly compare the capacity of the L1 D-cache
in CDNA 2 with the capacity of such a cache in the A100 due to the fact
that CDNA 2 also has a separate LDS shared memory with a capacity of
64 KB per CU [41]. And in V100 and A100, the corresponding cache (the
size of which is given above in Table 21) is unified, and includes L1 and
shared memory.
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The L2 cache located in the GCD has a capacity of 8 MB and is a 16-way
set-associative cache. The L2 cache in GCD has a total data transfer rate
with lower level caches of 4096 KB per clock [299]. More precisely, the L2
cache in GCD consists of 32 slices, each of which transfers 128 bytes/cycle,
or a total of 6.96 TB/s [41]. Through the 3rd generation Infinity Fabric
interconnect, L2 cache data can communicate with HBM2E memory at a
speed of 2 KB per clock. Attached to a single GCD, the HBM2E memory
has a capacity of 64 GB with a bandwidth of 1.6 TB/s [299].

Models MI250 and MI250X each have two GCDs. Accordingly, at the
level of the entire model, the indicators listed in the previous paragraph are
doubled, as shown in Table 21. And Infinity Fabric in CDNA 2 began to
ensure cache coherence between GCDs, and the HBM2E memory, as well
as the L2 cache of both GCDs, are shared [299]. If the mapping to the
A100 is done relative to a single GCD, then the capacity and throughput
of HBM2E in CDNA 2 is higher than that of the A100-40GB. But Nvidia
then began producing A100 models with double the capacity of the HBM2E
(80GB), which have more capacity and bandwidth than the single GCD
in the MI250/MI250X.

Comparing the listed memory indicators in Table 21, we can say that
they are comparable in different AMD and Nvidia GPU models (MI100 and
V100, MI200 and A100; H100 is not taken into account here). However, the
striking difference is in the capacity of the L1 and L2 caches: in the A100
they are much larger than in the GCD, which can have an important impact
on the performance achieved. The MI250/MI250X L2 cache capacity
per GCD remains the same as the MI100 (8 MB), slightly larger than the
V100 (6 MB) [185]. But in the A100 this capacity was sharply increased
and became several times larger than that of the MI200. As for the L1
cache, in the MI100 its capacity was only 16 KB (plus 64 KB LDS) on the
CU [262] versus 128 KB on the SM in the V100 (where this memory is
partially used as shared memory) [185]. The MI200 CU also has the same
L1 cache capacity as the MI100 (and also has a separate LDS memory).

But the capacity of the L1 cache is 8 times less than that of the unified
V100 cache, and additional LDS may not compensate for this— even after
allocating part of the capacity of the unified V100 cache to shared memory,
the remaining capacity for the L1 cache may be much larger than in MI100
and MI200. This has already caused performance problems (see Subsection
5.3.2.2 on MI250/MI250X performance further on this), so compared to the
A100, the MI200 cache is potentially bottlenecked place.
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In any case, the performance publications discussed below have already
noted the shortcomings of the cache memory in the MI100 and MI200. It is
possible that to optimize applications for MI200, it is advisable to use not
a simple roofline model, but an empirical one taking into account cache
memory.

If we compare the TDP (see Table 21), then for the MI200 GPUs
compared (to the A100), these indicators are also quite close, although the
TDP of the A100-SXM models is higher. It should also be noted that the
numbers indicated in this table in the TDP line for AMD GPUs refer, as
indicated in documents [300–302], to TBP (Total Board Power).

In general, everything already discussed above suggests that at the
hardware level, the performance indicators of the MI100 are comparable to
the V100, and those of the MI200 (per GCD) are basically comparable
to the A100, which makes it interesting and relevant to compare the
corresponding actually achieved indicators of their productivity.

The last thing to discuss in this section is PCIe support in the
MI100 and MI200 GPUs. Previously, this bus was used for communication
between the device and the host, and its limited bandwidth could become
a bottleneck for GPU performance. When multi-GPU servers began to be
offered, this bus could also be used for communication between GPUs, which
would also become a bottleneck in the server. In the GPUs discussed in this
section of the review, they all have a special high-speed interconnect
for communication between GPUs (Infinity Fabric for AMD, NVLink for
NVidia). But to communicate between a host and a device, the use
of such a specialized interconnect requires its hardware support by the host
processor.

This has always been done on AMD GPUs since Infinity Fabric was
originally focused on communication between AMD CPUs. This is not the
case for NVLink— and required the use of PCIe to communicate with
conventional x86-64 server processors. Therefore, the advantage of IBM
Power9 was its support for an interface with NVLink for communication
with the V100, thanks to which Power9 is also used in such famous
supercomputers as Summit and Sierra. All GPUs compared in the Table 21
(except H100) have support for PCIe-v4 ×16 with a bandwidth of 64 GB/s.

But here there is a fundamental difference between these GPUs from
AMD and from Nvidia: PCIe in AMD GPUs is not used for communication
with the EPYC CPU, but is a commonly used PCIe interface to which
network cards are connected, for example, for communication between
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cluster nodes. The use of Infinity Fabric in AMD GPUs gives them an
advantage in connection bandwidth to the CPU, including compared to the
A100-PCIe. And the PCIe interface available in the MI100/MI200 is aimed
at using it in conjunction with MPI versions that support these GPUs for
exchanging messages between servers without involving the CPU— this is
used, for example, in the SLATE dense linear algebra library, focused
on similar systems with distributed memory [309].

The consideration of GPU interconnects in this review is carried out
in sections devoted to GPU-based computing systems and is considered
as additional special hardware for the GPU, as well as possibly special
processors that support the corresponding interface. Infinity Fabric is
therefore discussed in the next section.

5.1.2. Computing systems based on MI200

First of all, an analysis of the Infinity Fabric interconnect is required
here. It was originally close to PCIe and is currently used for communication
between EPYC processors in servers. Like NVLink, new versions of Infinity
Fabric appeared as development progressed; in CDNA 2 this is already the
third generation [299].

The MI200 has different Infinity Fabric connection options, selected
for optimal work in different physical conditions (for example, for short
connections between GCDs within the same GPU, a special interconnect is
used). One Infinity Fabric channel is 16 bits wide in one direction (this was
also the case in MI100). The bandwidth of one such channel in CDNA
2 is 50 or 100 GB/s in one or two directions, and between two GCDs
in one GPU 4 channels are used with a total bandwidth of 400 GB/s [299]
(see Figure 19 with communication topology in the nodes of the LUMI
supercomputer [41]).

For communication between GCDs from different GPUs, a multi-GPU
server uses one or two Infinity Fabric channels with bidirectional bandwidth
of 100 or 200 GB/s, respectively. Finally, to communicate the MI250X with
EPYC CPU, uses another Infinity Fabric variant with 72 GB/s bidirectional
bandwidth to communicate with each GCD; In addition, host interconnects
such as the Cray Slingshot-11 [41,305] (see Figure 19).

The MI200-containing servers themselves may use a single or dual
EPYC CPU option, and different interconnect topologies are possible
there [305]. Figure 19 [41] shows the topology for a server with 4 MI250X
and one EPYC— this corresponds to the LUMI [41] and Frontier [303]
supercomputer nodes used.
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Figure 19. Using Infinity Fabric in a LUMI supercomputer
node with 4 MI250X (Figure from [41])

Figure 19 corresponds to the flagship node topology for HPC; for
it, [299] reports a total Infinity Fabric bandwidth of 1.54 TB/s. [305]
presents another server topology with 4 MI250s coupled to two EPYC
CPUs via a PCIe switch as a "mainstream" for HPC and AI, and illustrates
another topology for a flagship server for AI with 8 MI250s and two
EPYCs.

The MI210, which has one GCD, has its own modifications to work with
Infinity Fabric. The MI210 provides 64 GB/s of bandwidth to the CPU
without the need for PCIe switches, and the MI210-MI210 interconnect can
use 3 Infinity Fabric lanes for a total of 300 GB/s of bandwidth. Finally,
for a multi-GPU server with MI210, flagship and “mainstream” options are
also offered [305].

Different topologies can also occur in Nvidia multi-GPU servers.
However, the presence of different types of Infinity Fabric connections can
complicate the optimization of highly scalable programming in multi-GPU
servers with MI200. However, in [308], which examined various Infinity
Fabric interconnect options on a server with 4 MI250X GPUs, no significant
NUMA effects were identified on the CPU-GPU communication bandwidth
at the HIP API level.

The Frontier supercomputer nodes use one 64-core EPYC 7A53
processor (operating at 2 GHz) with 4 MI250X. This CPU, codenamed
Trento, was created specifically to working with the MI250X in Frontier
nodes. The L3 cache capacity of this CPU is 32 MB for each of the eight
8-core groups (256 MB total per CPU). The CPU is configured as 4 NUMA
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nodes, each of which is connected to 128 GB of memory, so its capacity
in the server is 512 GB (8 channels of DDR4-3200) [41,299,303]. The
possible topology for using Infinity Fabric in multi-GPU servers with
MI250X was discussed above (see Figure 19); [41] points out the importance
of proper NUMA node binding to the GPU, which can be critical to optimizing
application performance. Frontier was built by Cray/HPE and uses the
Slingshot-11 interconnect to connect the server nodes [299].

The third-place Top500 supercomputer, LUMI, uses the same hardware
as Frontier [41,42]. Here we must also point out the Crusher system,
which is actively used in research, containing 192 of the same nodes as
Frontier (9408 nodes) and LUMI (2560 nodes), and is used for testing and
development. And even earlier, the predecessor of Frontier was considered
the Spock cluster, which had 36 nodes containing by 4 MI100 [310] (see
Table 23 below).

Naturally, almost all the world’s leading server manufacturers supply
models containing the MI200 GPU. Their use in modules of the standard
OAM (OCP Accelerator Module) form factor [305] contributes to the rapid
and widespread adoption of such servers. Servers are available in a variety
of sizes from 1U to 4U, as well as 6U and 10U, containing from 1 to 8 GPUs
(as well as 10 and 20) MI100, MI210 and MI250. These servers can have
1–2 AMD EPYC CPUs of Zen 2 and Zen 3 architectures, as well as 2nd and
3rd generation Intel Xeon Scalable processors. A list of such servers is
available at [311].

To achieve maximum performance when working with the MI250/MI250X
GPU, liquid cooling is required (without it, it is usually impossible to have
more than 500 W). A classic example of this is the HPE Cray accelerator
blade EX235a [46], used in related supercomputers.

5.2. SDK for MI100 and MI200

The discussion of SDKs in this section of the review is very limited, since
most of the corresponding components from AMD are direct analogues
of the SDKs from Nvidia described above, the names of which are also often
very similar. AMD’s SDK for the GPUs in question is called ROCm (Radeon
Open Compute, and m stands for "multi-GPU computing" at the heart
of these tools [312]). One advantage of AMD’s SDK is that it is available
in source code [312], while Nvidia’s SDK is simply freely available.
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If in 2020, when MI100 appeared, version ROCm 4.0 was available [312],
then by mid-2023, before the appearance of the June Top500 list, version
ROCm 5.5.1 was already available [313]. If the basis of NVidia’s SDK
should be considered the CUDA API, then the basis of AMD is the HIP
API[58]. HIP as a programming model is extremely close to CUDA, and
similar terms are used there (see Table 1). In HIP, when working with
AMD GPUs, a warp (wavefront in AMD terminology) is used with a size of
64 threads [313], and not 32 (as for SM in Nvidia), which is related to the
CU architecture.

But programs from Nvidia GPUs began to be portabled to AMD GPUs
regardless of the appearance of the MI100. Thus, information on the
achieved performance when porting various software systems from a popular
area of application of modern GPUs, classical molecular dynamics, is
presented in [314].

As an advantage of HIP over CUDA, we can point out the possibility
of using HIP when working on Nvidia GPUs, which makes it possible to port
software for AMD GPUs to Nvidia hardware. But here two important
clarifying points arise. Firstly, we need data on the comparison of the
performance achieved when running HIP relative to that achieved using
CUDA (this will be discussed below). Since HIP uses certain CUDA backends
when working with Nvidia GPUs, this eliminates possible problems.

It is generally believed that using HIP causes almost no performance
degradation compared to direct CUDA encoding [42]. Data actually
demonstrating this for one of the algorithms for solving a CFD problem with
an unstructured mesh are available in [168]. But the new version of CUDA
for H100 has extensions, the most striking of which can be considered
a change in the hierarchy of the used sets of threads (a cluster of thread
blocks has appeared). Accordingly, potential HIP performance issues for
Nvidia GPUs may remain.

The ROCm software stack at the lowest level includes drivers. Currently,
ROCm support is provided on Linux (drivers are included in the kernel
module, which can be installed on Ubuntu, RHEL and SLES distributions).
It is clear that ROCm includes all the typical components for an SDK.
There is a compiler, now called ROCmCC (with support for HIP, OpenMP
and OpenCL), which is based on Clang/LLVM [313]. Naturally, there is
a profiler, debugger and performance tracing library.
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Math libraries come with the prefix roc or hip. The roc prefix is used
in the names of libraries optimized for AMD GPUs, and the hip prefix is
used for libraries where tools for Nvidia GPUs are used as a back-end [313].
Given the prefix the full names of these libraries make their purpose
obvious and are not given here. There are also communication libraries
similar to the corresponding tools from Nvidia. For example, Nvidia’s
ROCm counterpart to NCCL is RCCL.

Even due to the syntactic similarity between HIP and CUDA, it seems
natural that ROCm would have a conversion tool from CUDA to HIP,
HIPIFY [313]. But in the general case, this should be considered as
the first semi-automatic step towards such a transformation, which may
require further manual modification, if only because not all CUDA APIs
are supported in HIP (see, for example, [42]). Here we should point out
a certain analogy between HIPIFY and Intel DPCT tools.

It is important to point out here the open source hipSYCL project
(now called AdaptiveCpp ) at the University of Heidelberg (Germany), an
implementation of SYCL targeting CPUs and GPUs from different manufac-
turers. And in [165] an attempt has already been made to implement
oneAPI without the DPC++ compiler, using hipSYCL. A comparison of the
performance of MI250X using different implementations of SYCL, DPC++,
as well as HIP and OpenMP on different applications is carried out in [176].

Another important project for working with AMD GPUs is the
GPUFORT project [315]. These tools transform one source code into
another source code. There are two possible options for such transformation
of the source text. First, from CUDA Fortran (or possibly OpenACC) to
a Fortran variant with OpenMP version 4.5 directives. The resulting text
can then be compiled using AOMP (a Clang/LLVM-based compiler with
a Fortran front end). Secondly, it is possible to use HIPFORT tools, which
provide a Fortran and HIP runtime interface and access to math libraries.
If compiled to run a program on an Nvidia GPU, HIPFORT provides an
interface to the CUDA runtime tools and associated math libraries [316].

As for Fortran, it should be noted that there is support for the
AMD GPUs under consideration outside of ROCm— in the famous HPE
Cray Fortran, which also has support for OpenACC, which is missing
in ROCm.

https://github.com/AdaptiveCpp/AdaptiveCpp
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It is clear that the operation of the more traditional parallelization
tools MPI and SHMEM is also ensured. In [317], the performance of a
number of MPI variants that support working with CDNA and CDNA 2—
OpenMPI, Cray MPICH, MVAPICH2-GDR (as well as RCCL tools) was
studied, including when using the Cray Slingshot-10 interconnect in the
famous Spock cluster (it has nodes with 64-core EPYC 7662 and four
MI100).

We’re not talking about the AI frameworks included with ROCm here,
since they’re AI-specific and the review is primarily focused on HPC— but
ROCm is naturally integrated with the major frameworks [313].

In conclusion of this section, it can be noted that both the hardware
and software of the GPU MI100 and MI200 do not show such a strong focus
primarily on AI (and on HPC— rather secondary) as in the GPU H100 (and
partly in the A100). At Nvidia, this it shows up not only in documentation,
but also in the new supercomputers that are emerging: unlike the more
“traditionally oriented” Frontier with AMD MI250X, the H100 is used
in supercomputers from the Top500, focused on AI. Nvidia produces
AI-ready, high-performance computing systems up to the supercomputing
level.

5.3. MI100 and MI200 performance data in benchmarks and
applications

By the time the June Top500 list appeared, many articles had become
available that examined the performance of these GPUs in different bench-
marks and on different applications, including performance comparisons
with respect to the V100 and A100. In most cases, when there were
sufficient publications for the specific AMD GPU models under consideration,
this review prioritized HPC-related works for analysis (but many data on AI
are also provided). Among these publications, we also selected articles
related to performance data on widespread and relevant mathematics
problems. From publications on applications in this review, traditional areas
known in HPC, for example, computational chemistry or CFD problems,
were also selected, with priority given to world-known applications.
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But here it is necessary to highlight the work on the ECP project and
the summary data of a review nature on more than 20 applications (more
precisely, projects) specifically focused on exascale— for example, [262].
There is a large number of performance comparison data for the MI100,
MI250X, V100 and A100. Since performance estimates in the limiting case
are interesting for a specific application or at least an application in the
relevant domain, in many cases it is useful to look at the data in [262],
where performance is also presented at the single GPU level.

However, it must be borne in mind that the ECP does not mainly use
globally used applications, but their special versions (possibly parts) made
to focus on exascale, or new developments. And this may be completely
ineffective and does not provide accurate estimates for performance in more
typical applications, for small computing systems, or for calculations of not
so complex objects. In addition, this is just the initial data from ongoing
work on various projects using early versions of ROCm in AMD GPUs, and
the results will clearly be improved (some clarifying articles related to
specific projects have already appeared). Accordingly, a very large number
of criticisms appeared here regarding many ROCm components of different
versions from 4.2.0 to 4.5.0, which AMD tried to quickly fix

Since much of the following data on the performance of the MI100 and
MI200 GPUs was obtained using well-known supercomputers (including
those from among the leaders in the Top500), brief information about such
computing systems (including those used for comparison with Nvidia GPUs)
is summarized in Table 23.

5.3.1. Performance of MI100

Comparative performance data of the MI100 compared to the V100
and A100 will be discussed here (everything relative to the MI200 is
discussed below).

As for comparing the performance of GPU MI100 and A100, although
the data in Table 20 shows slight advantages of MI100 in terms of peak
performance (for example, with FP64), limited attention should be paid to
these indicators for GPUs— no less often performance is correlated with
memory bandwidth, and more precisely, more important is to look at the
roofline model data. The available data from articles generally clearly
indicate large (often several times) performance advantages of the A100
relative to the MI100, although there are exceptions.
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Table 23. Computing systems whose nodes were actively
used in publications on GPUs performance cited in this review;
for supercomputers from the Top500, their number in the list
is given in parentheses

Computing system
Number and
type of GPUs
in the node

Number and type
of CPUs in the node

Interconnect (between
nodes)1

Frontier (1) [303] 4×MI250X 1×EPYC
7A53(Trento) 4×HPE Slingshot-11

LUMI (3) [318] 4×MI250X 1×EPYC
7A53(Trento) 4×HPE Slingshot-11

Crusher [319] 4×MI250X 1×EPYC
7A53(Trento) 4×HPE Slingshot-11

Spock [320] 4×MI100 1×EPYC
7662(Rome) 1×HPE Slingshot-10

Leonardo (4) [205] 4×A100-40GB 1×Xeon Platinum
8358

4×Nvidia Infiniband
HDR

Perlmutter (8) [206] 4×A100-40GB 1×EPYC 7763 4×HPE Slingshot-11
ThetaGPU [321] 8×A100-40GB 2×EPYC (Rome) 8×Infiniband HDR

Polaris (19) [322] 4×A100-40GB 1×EPYC 7543P
(Milan) Slingshot-10

Summit (5) [323] 6×V100-16GB 2×Power9 2×Mellanox
Infiniband EDR

1 The interconnects used in the publications cited in the review are indicated.

Therefore, we will present here only a few confirmations of this, mainly
in an integral sense (with a wide scope of applications)— and not based
on individual specific examples. For example, in [45] data corresponding to
the above are presented on 6 different applications and mini-applications
(from different fields of science) included in the ECP project or related
mini-applications. According to data from [45] we calculated how many
times the achieved performance of A100 was higher than MI100: for
AMR-Wind (CFD part of the ExaWind, Exascale Predictive Wind Plant
Flow Physics Modeling project)— on three different kernels in 1.7-5.3 times;
in the quantum chemical mini-application GAMESS RI-MP2— 5.8 times;
in the TestSNAP mini-application for the SNAP quantum potential, which
is then used in the LAMMPS molecular dynamics application (from the
EXAALT project for nuclear fusion problems) on three different kernels—
2.2-7.9 times, and so on.

As another example of performance data covering even more projects and
applications from ECP, we point out slightly more recent publication [262]
(see also [324]); comments about [262] are given above. Our calculations
of relative performance based on data from [262] show that the A100 was
about two times faster on CFD problems (NekRS), and three times faster
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Figure 3: Elapsed time per iteration (s) for STREAmS-2 using different HPC architectures for grid: (420×250×320).
Comparisons between central and WENO flux evaluation schemes. CPU average time is based on a full node of 128
cores.

We evaluate the performance of STREAmS-2 on different CPU and GPU architectures (fig-
ure 3). Table 1 describes the configurations of the GPU architectures used for this plot. The grid
size (420× 250× 320) for each case was chosen with a maximum memory allocation on the V100
GPUs (16 GiB) that are part of the Marconi100 cluster. All simulations performed for figure 3
use a 6th order central scheme and a 5th order WENO scheme, which are generally adopted for
production runs. Additional discussion of the impact of different orders of accuracy on run time
will be provided later. For the CPU architecture, we consider a full compute node on the CPU
partition of LUMI (LUMI-C) using MPI parallelisation. The decision to perform this study is
not only to have comparable times between CPUs and GPUs, but also to ignore any intra-node
CPU effects (which typically limit scalability) and to provide comparisons between independent
units. For the GPUs, we consider a single card for NVIDIA V100, NVIDIA A100 and AMD MI100
GPUs. However, for AMD MI250x, we choose one of the two Graphics Compute Dies (GCDs) that
make up a GPU card. The two GCDs are managed by two MPI processes in STREAmS-2 and the
scheduler also identifies them as two GPU units.

GPUs are generally much faster than a single full CPU node on LUMI. In particular, GPU
times range from two to four times faster than the CPU configuration under consideration. The
trends in GPU results unsurprisingly follow their release dates (for the same vendor) and peak
predictions. However, later in this section we will see that the real performance does not strictly
follow the expected predictions as we try to understand the reasons for the observed discrepancies.
For example, the performance of the MI250x GCD is similar to that of the old generation V100
GPU, although the peak performance is remarkably different. Comparing the results of the central
and WENO schemes, we see that the GPU trends are very similar, while the CPU results for the
central scheme are slightly worse when compared to the GPU data.

We now look at the individual kernel performance across the GPU architectures (figure 4).
Table 2 provides a description of the kernels used in the comparison. The results are reported in
seconds unless otherwise stated in the figure. We have considered kernels based on three types

16

Figure 20. Time per iteration (seconds) for STREAmS-2
with a 420× 250× 320 grid for two calculation schemes: the
central flow estimation scheme and the WENO scheme (figure
from [325])

on quantum chemistry (Gamess, Fock matrix construction) and molecular
dynamics problems (LAMMPS). For TestSNAP, the A100 was 2.8 times
faster than the MI100.

A newer version of ROCm 4.5.2 on another CFD application, STREAmS-
2 [325], also produced similar MI100 performance lag values (see Fig-
ure 20) [325]. These data are discussed in more detail below in english-
sec:5.3.2.2]Subsection 5.3.2.2. It is unlikely that progress in new versions
of ROCm can completely eliminate such a lag.

In [225] performance using MI100, A100, and V100 was examined
on SPEChpc 2021, which contains components from applications in different
HPC fields, but the data for MI100 was obtained in a different "small" suite
of SPEChpc than was not used for other GPUs.

Application performance is the most practically relevant, but corre-
sponding data on the performance of MI100 relative to A100, showing
similar data above, is also available for specific mathematical methods—
for example, for FFT [251], for QR decomposition of square matrices using
the MAGMA library for single and double accuracy [241], for BabelStream
bandwidth benchmarks [42]. There is also other data on BabelStream
benchmarks for their implementation using DO CONCURRENT Fortran
tools [236], where the memory bandwidth of MI100 was slightly different
from the C++ version of BabelStream (sometimes Fortran gave better
results). The bandwidth for both A100-80GB and A100-40GB in [236],
was naturally found to be much greater than that of MI100.
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Modern GPUs, their SDKs, and the applications that use them are
complex applications require different parameters for optimization for
different GPUs, and there are exceptions to all rules. Thus, in [241] data
on the same QR decomposition with rocBLAS show the advantage of MI100
over cuBLAS with A100. And in [326] within the AnySeq/GPU code for
bioinformatics tasks using FP32 cores in MI100, V100 and A100, the
performance (in trillions cell updates per second, TCUPS) was 3.8, 1.7 and
3.3 TCUPS, respectively. But in general, in publications, the strong lag
between the MI100 and the A100 in terms of performance is shown quite
clearly.

But comparing the performance of MI100 with V100 seems more
relevant, including as a possible addition or basis for comparing A100 and
MI200. Here the achieved performance is indeed quite comparable, and the
peak FP64 performance of the MI100 is still noticeably higher than that
of the V100. This gives the MI100 a chance to achieve higher performance
for compute-intensive applications (in roofline model terminology). Let
us immediately give a striking example of this in [262], where, using
the quantum chemical application NWChemEX in calculations with the
computationally intensive method of coupled clusters (CCSD), a comparison
of the performance of Spock nodes (4 MI100 each) and Summit (6 V100
each) showed the advantage of Spock. NWChemEx used CUDA on Summit
and HIP (ROCm 4.3.0) on Spock.

The acceleration values of Spock relative to Summit that we calculated
(according to Table 11 in [262]) show that on one Spock node the total
time of CCSD calculation is 1.5 times less than on the Summit node, and
the time of an additional more complex calculation of the correction T (for
triple excitations) are 1.9 times fewer than on the Summit node.

As the number of nodes increases to 4, the performance advantage
of Spock at an equal number of nodes quickly decreases, and at 4 nodes
Spock is only faster in terms of computation time of T [262]. It must be
said that probably most modern GPU applications are more memory-bound,
and the V100 is less behind the MI100 in memory bandwidth.

The article [262] provides comparative data on the performance
of deep learning for MI100 and V100 within the framework of two ECP
projects— CANDLE (precision medicine for oncology) and ExaLearn
(the goals of the project are clear from its name). In CANDLE, BERT
performance is moderately greater on the MI100 than on the V100, but not
to the extent that the relative performance of these GPUs would indicate
(obviously in [262] referring to peak hardware performance). And for
ExaLearn, [262] indicates a much lower performance of the MI100.
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Q) pairs on a Nvidia V100 (CUDA 11.2) and an AMD
InstinctTM MI100 (ROCm 4.2) GPUs.

sizes encountered in the MFEM-libCEED BP3 [16]
benchmark for triangle or tetrahedron non-tensor
elements. The figure considers an NVIDIA V100
GPU and initial experience with an AMD MI100
GPU. The best-performing routine of MAGMA and
the vendor-provided BLAS is shown for each GPU.
We see that batching the GEMM operation across
the n dimension achieves a better performance than
launching a single GEMM operation for these sizes,
with the speedup relative to the single GEMM in-
dicated above each batched GEMM bar.

To determine the best possible combination of
routine (vendor BLAS or MAGMA library) and
batch size η (with a standard, non-batch call corre-
sponding to η = n), we use data from offline bench-
mark parameter sweeps to construct a lightweight
abstraction layer. This layer automatically selects
the best choice for the non-tensor GEMM oper-
ations. In [27], we show that for higher orders
of basis functions, the benefit of the optimized
GEMM formulation is clear in comparison to the
pure CUDA kernels in the “cuda-ref” backend (up
to 10× speedup for the MAGMA formulation on
the V100 GPU).

2.3. MFEM

MFEM [12] is a general-purpose finite element li-
brary that since version 4.0 supports hardware ac-
celerators, such as GPUs, as well as programming
models and libraries, such as CUDA, HIP, OCCA
[24], libCEED [17], RAJA [28] and OpenMP. The
goal of the MFEM developments in CEED is to pro-
vide state-of-the-art optimized performance high-
order kernels to applications in an ease of use, flex-
ible form.

The MFEM performance portability approach is
based on a system of backends and kernels work-
ing seamlessly with a lightweight memory spaces
manager. A distinctive feature of this approach is
the ability to select the backends at runtime. For
instance, different MPI ranks can choose different
backends (like CPU or GPU), allowing applications
to take full advantage of heterogeneous architec-
tures. Another important aspect of MFEM’s ap-
proach is the ability to easily mix CPU-only code
with code that utilizes the new backends, thus al-
lowing for selective gradual transition of existing ca-
pabilities. Most of the kernels are based on a single
source, while still offering good performance. For
performance-critical kernels, where a single source
does not provide good performance, the implemen-
tation introduces dispatch points based on the se-
lected backend and, in some cases, on kernel pa-
rameters such as the finite element order.

Figure 5 illustrates the main components of
MFEM’s modular design for accelerator support.
The Library side of MFEM (on the left) represents
the software components where new kernels have
been added. Kernels and memory management are
the two ingredients most programming models have
to deal with when providing such an abstraction to
address code portability for HPC platforms. Simi-
larly to Figure 1 the MFEM design allows for a vari-
ety of runtime-selectable backends that can execute
its kernels on both CPU and GPU hardware. Un-
like the libCEED figure though, Figure 5 includes
the kernel abstraction for a much broader range of
meshing, finite element and linear algebra features
that a general finite element library like MFEM
needs to support. For more details, see [12, 16]
and Section 3.
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Figure 5: Diagram of MFEM’s modular design for acceler-
ator support, combining flexible memory management with
runtime-selectable backends for executing key finite element
and linear algebra kernels.

5

Figure 21. Performance of MI100 and V100 on DGEMM
(Figure from [242])

It is important that in addition to higher peak performance, MI100
showed higher memory bandwidth than V100 on all components of the
BabelStream test using a wide range of different programming models [42].
In the same work, the performance of the miniBUDE (molecular docking)
application on MI100 turned out to be higher than on V100-32GB and
almost coincided with the performance of A100-40GB.

A very relevant comparison is the performance of MI100 and V100
on DGEMM, which was carried out in [242] for batch and conventional
implementation of matrix multiplication. The corresponding data is
presented in Figure 21 using ROCm 4.2 (hipBLAS) for MI100 and CUDA 11.2
(cuBLAS) for V100. The parameters m,n,k on the abscissa here correspond
to the dimensions of the matrices M , N , K in formula (1). It can be seen
that MI100 can be ahead of V100. [242] also provides data for CEED
benchmarks from ECP, showing comparable performance between MI100
and V100, and performance on NekRS, where MI100 was 15% behind V100.
The same 15% lag is indicated in [265].

In [327] calculations were carried out using the QUICK quantum
chemical application in combination with the AMBER molecular dynamics
application (according to the QM/MM scheme). In the starting tests, the
MI100 gave performance two times less than the V100, due to the excessive
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use of registers in AMD kernels. After improvements in QUICK, in the
calculations of large-sized systems, the performance of MI100 and V100
turned out to be comparable (on small systems, V100 was much faster).
The kernel, which calculates the gradient of the exchange-correlation
potential, calculated much faster on the MI100 than on the V100 [327].

ECP-related work [328] compared the performance of MI100 (on Spock)
and V100 (on Summit) on the well-known CFD benchmark HipBone
(which is GPU-focused, based on the well-known C++-based NekBone
benchmark, but does not cover all its functionality [142]), and compared
the performance at different degrees of the polynomial of the kernel of the
Poisson operator, which actually determines the performance of HipBone.
HipBone uses FP64, but some preprocessing subtasks use FP32.

On one GPU, the performance of MI100 (with ROCm v4.5.0) obtained
in [328] is approximately the same as the performance of V100 (with CUDA
v11.0.3) at all degrees of the polynomial— sometimes MI100 is faster, and
sometimes V100. The highest performance is achieved with the highest
polynomial degree used (N=15): for V100— 2101.4 GFLOPS, for MI100—
2135.2 GFLOPS; good scalability was also shown on Spock and Summit
nodes with the number of MPI ranks up to 32 and 48, respectively [328].

In report [262] based on data for some ECP projects, the comparability
of the performance of MI100 and V100 is noted— this is said, for example,
for AMR-Wind data (our estimate of the acceleration of V100 relative to
MI100 according to Figure 20 in [262] is 1.4 times).

In the ExaSMR project (simulation of a small modular reactor core by
combining two parts, neutron physics and CFD— NekRS is used for the
latter), the Shift code with HIP (ROCm 4.2) for the first part was at first
inferior to V100 with CUDA by a factor of two, but after optimization the
lag was only 20%. In the NekRS part of ExaSMR, in some kernels, the
MI100 was only a few percent behind the V100 on Summit [262]; our
calculation according to tables 42 and 43 from [262] gives an acceleration
of V100 relative to MI100 by 10–20%.

In other software components of other ECP projects, [262] indicated
a more severe performance lag in MI100. On the QMCPACK application
(quantum Monte Carlo calculations), nickel oxide supercell calculations
achieved very different lags in different cases, but overall the MI100
gave significantly lower performance, and AMD compilers were criticized.
In TestSNAP, MI100 in Spock lags behind V100 in Summit by approximately
2 times (our calculation using Table 19 in [262]). In the ECP project with
the Gamess quantum chemical application, for ock matrix calculation
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in different basis types with lengths from 4 to 12 thousand orbitals, MI100
is 1.4-2.6 times slower (our calculation according to Table 15 in [262]).
Naturally, there is a lot of other data available in [262] comparing the
performance of V100 and MI100.

Authors of [329] compared the performance of MI100 and V100 using
mini-application, MiniMDock for molecular docking. In variants optimal for
GPU performance (with HIP and CUDA), MiniMDock, when using medium
and large ligands, MI100 (Spock, ROCm 4.5) was inferior in performance
to V100 (Summit, NVHPC 21.11) by 32 and 39%, respectively, but on small
ligands MI100 was slightly faster than V100.

Authors of [330] optimized some critical important kernels for the CFD
application FUN3D, whose performance on the A100 was discussed above.
For all of them except the viscous flow kernel, MI100 (with ROCm 4.2.0)
was 18–53% slower than V100 (with CUDA 11.2).

Naturally, MI100 is used in a variety of areas, not only in HPC, but also
for AI, for example, for deep learning in the DLRM model [331].

We can say that the MI100 is comparable in performance to the V100,
although the MI100 often lagged behind. Much of the MI100 performance
data reported above refers to preliminary results obtained shortly after the
MI100 became available, and these results may still be quite significantly
improved on new versions of ROCm (CUDA versions seem much more
stable). But due to the clear advantages of all indicators of MI210 relative
to MI100, not only those indicated in Table 20 and Table 21, but also all
others known to the author at the time of writing the review, interest
in MI100, in the author’s opinion, relates to the use of MI100 as already
purchased, and the acquisition of a new MI100 is not practical compared to
MI210. Therefore, a more complete review of the available performance
data for the MI100 is not provided here.

5.3.2. Performance of MI200

Looking at the data in Table 20 and Table 21, it is clear that on a
per-GCD basis, the MI210 and MI250 models are almost the same, but the
GCD in the MI250X has a slight increase in the number of CUs, which should
provide a slight increase in performance. Therefore, although we will begin
the analysis of the achieved performance with a number of current articles
known to the author (at the time of preparation of the review) with data
on the MI210, this may also be of interest for evaluations of two others
models of the MI200 family.
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5.3.2.1. Performance of MI210. As a basic indicator of the achieved
performance of the MI210, we first point out the data Dell presented for
its PowerEdge R750x servers— for double and single precision matrix
multiplication (DGEMM and SGEMM) [332], including in comparison
with data for the MI100. Dell’s calculations on the MI210 used tensor
(matrix cores and ROCm 5.1.3. A performance of 28.3 TFLOPS was
achieved for DGEMM, and 32.2 TFLOPS for SGEMM. These data [332]
indicate a large acceleration in MI210 relative to MI100 for DGEMM— 3.6
times (but in MI100 there is no FP64 support in tensor cores), and a low
achieved percentage of the peak performance in MI210 (62.5%).

For SGEMM on MI210, performance was 9% higher than on MI100 [332].
But FP32 is supported in the MI100 tensor cores, which gives the MI100
even slightly higher peak single-precision performance than the MI210 (see
Table 20 and Table 21).

In the HPL benchmark, the performance of MI210 reaches 18.2 TFLOPS
per 1 GPU and grows almost linearly up to 4 GPUs (up to 72.6 TFLOPS),
while the performance of MI100 per 1 GPU is several times less and grows
more slowly with the number of GPUs in the server [332].

For HPL, there is also data from AMD itself, which allows us to
demonstrate the possible impact of the ROCm version [333]. Here, using
the newer ROCm 5.2.0 and rocHPL 6.0.0 on a single GPU, the HPL benchmark
gave 21.07 TFLOPS (1.16 times faster than Dell), on 4 GPUs— 81.097
TFLOPS (1.12 times faster), on 8 GPUs— 159.73 TFLOPS. As noted
in [333], performance may also vary depending on the driver version. We
assume that the influence of differences in other components of the servers
used in the benchmarks in [333] and [332] here is negligible.

On the HPL-AI benchmark with mixed precision FP16/FP32/FP64 on
4 GPUs in [333], a performance of 444.77 TFLOPS was obtained.

Dell [332] provides data on the performance of MI210 relative to MI100
in the LAMMPS molecular dynamics application for its several different
types (including reactive molecular dynamics) and potentials— when
working with FP64, MI210 is 18–30% faster, and with FP32— by 12%.
Data on the performance of LAMMPS for reactive molecular dynamics are
also reported by AMD using a more newer version of ROCm [333].

The first articles with MI210 performance data began to appear for
applications in various fields. For example, [334] provides performance
data on the Uni-Dock molecular docking application developed in this
paper, which is superior in performance to the well-known AutoDock-GPU
application (although detailed Uni-Dock performance data is provided
in [334] for V100 and MI100).
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Among the works that compare the performance of MI210 and
Nvidia GPUs, we point out CFD data [268] for the FUN3D application
mentioned above in the section on A100 performance with its FLUDA
library for GPUs. Based on the data in Table 4 in [268] we find that the
A100-40GB is 1.44 times faster than the MI210 (and the MI210 is 1.29
times faster than the V100-16GB).

In [335], the performance of MI210 and A100-40GB was compared
when running the PyTorch deep learning framework (PyTorch 2.0-20230102
was used) using ROCm 5.4.2 and CUDA 11.8 stacks. This article proposed
TorchBench, a new set of benchmarks for the PyTorch software stack.
In comparison, the classic MLPerf deep learning benchmark suite, whose
GPU results were discussed earlier in this review, includes 8 deep learning
models, while TorchBench has 48. TorchBench is open source and, thanks
to its wide variety of representative models, allows for e.g. and identify
situations with decreased performance when running PyTorch on a GPU.

Comparison made in TorchBench’s 32-bit (default) configuration. The
A100’s TF32 support gives increased performance at the cost of reduced
precision, so not all models can use it. For deep learning and inference of a
trained neural network with FP32, the MI210 was faster in some models
and the A100 in others, which does not give a clear performance advantage
to one of these GPUs [335].

In general, MI210 immediately began to be used for tasks related to AI.
For example, [336] developed a DLRM-oriented technique for overlapping
communication and computation and created a kernel for MI210. And
in [337], an improved algorithm was proposed and implemented on MI210
to improve the performance of a convolutional neural network (CNN),
which, using the MIOpen deep learning library and ResNet50 source data,
allowed to obtain 74% of the peak single-precision performance of MI210.

5.3.2.2. Performance of MI250/MI250X. As for the MI250/MI250X
GPUs, each containing 2 GCDs, their potential competition with the
A100 in terms of performance was demonstrated by the developers
themselves. In June 2022, Nvidia cited data demonstrating the superior
performance (and power efficiency) of the A100-SXM-80G relative to the
MI250 in single- and quad-GPU servers (counting the MI250 as one
GPU) on classic molecular dynamics applications AMBER, GROMACS,
LAMMPS, NAMD, and OpenMM [338], and in August 2022, AMD
provided opposite performance data for all of these applications except
GROMACS— but instead of showing data for this program, it showed
a performance advantage on the HPCG benchmark [339]. It is clear that such
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a comparison requires additional data about the versions of applications
and SDKs of the companies used, those used in the calculations of molecular
systems and types of potentials, and so on. The performance analysis
of the MI250/MI250X below also includes published data on molecular
dynamics performance.

That the performance of the MI250X is high is evident from the success
of AMD GPUs in the Top500, where Frontier and LUMI supercomputers
take first and third places with HPL performance of 1194.0 and 309.1
PFLOPS, respectively, and HPCG performance of 14.1 and 3.4 PFLOPS
respectively [4]. A fairly broad comparison of the performance of 8 different
applications from different areas of HPC (mostly not from those widely
used in the HPC world) on Frontier and Summit was carried out in [340],
where showing the advantages of Frontier, a general starting comparative
assessment of the performance of MI250X and V100 is given.

But since such successes on supercomputers are largely associated with
a high level of scaling with the number of nodes, we present here just one
more illustration based on a comparison of the performance of nodes with
the A100 and with the MI250X— in the Perlmutter supercomputer and
the Crusher cluster (brief data on these computing systems is available
in Table 23). Their nodes contain 4 GPUs A100 and MI250X, respectively.

In [341] the performance of X-ray tracing code using Kokkos tools
(as well as a version with CUDA) was studied on different numbers
of Perlmutter and Crusher nodes (there, CUDA and HIP were used as back
ends, respectively). Most of the computing time on the GPU there is
taken up by the nanoBraggSpots kernel; Using Kokkos, nanoBraggSpots
achieved over 60% performance improvement per Crusher node compared
to Perlmutter [341]. The data in Figure 2 of this article shows that the
performance of nanoBraggSpots with an equal number of nodes from 32 to
128 is several times greater on Crusher. And the use of Kokkos gave
noticeably higher performance than the usual use of CUDA.

But then we need to keep in mind which comparison of Nvidia and
AMD GPUs is most interesting. AMD MI250 and MI250X each have
two logical GPUs (2 GCDs each), while the A100 is a single GPU. From
a programming point of view, MI250 or MI250X are two GPUs, and it
is interesting to compare the A100 with one GCD, which was often (but
not always) done in publications. And then the question arises about
costs— if they are comparable for the A100 and MI250X, it would be
interesting to compare them with the whole MI250X. But here there is no
comparison of cost indicators or TCO (it not only depends on where the GPU
is purchased and used, but also changes over time).
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Basic benchmarks and math libraries performance tests. The
most important baseline benchmarks for the Frontier and Crusher nodes
are available on the website of the US Oak Ridge National Laboratory,
which owns both these supercomputers and Summit [342]. Some of this
data also applies to the host CPU (EPYC 7A53). To work with MI250X
(with one GCD), ROCm 5.3.0 is used there.

Article [342] provides information on the achieved bandwidth of MI250X
memory, CPU-to-GPU and inter-GPU communications. It presents data
on bandwidth in all five kernels of the BabelStream benchmark (classic
version with FP64) using HIP and OpenCL, depending on the dimension
of one-dimensional used in benchmarks arrays.

According to [342], the HBM bandwidth achieved in BabelStream is
77–86% of the peak value (82–90% is achieved for a CPU with its DRAM).
The highest values were achieved here when running the copy (slightly less
in mul) kernel of BabelStream using hipcc, a maximum of about 1.38 TB/s.
But in some kernels of BabelStream, using OpenCL gave higher bandwidth
than hipcc, and with the dot product kernel, hipcc (unlike OpenCL) gave
abnormally low bandwidth.

The memory bandwidth of MI250X (one GCD) in [324] was also studied
by executing SpMV from the Ginkgo library using different sparse matrix
storage formats.

CPU-GPU bandwidth (measured by hipMemcpy) in [342] was 25.6
GB/s (71% of peak), and between GPUs in the osu_bw MPI test from
OSU microbenchmarks [343] (using Cray MPICH 8.1.23)— from 37.6
GB/s (75.2% of peak) on one Infinity Fabric channel to 145.3 GB/s
(72.7% of peak) on four Infinity Fabric channels [342]. In [342], the latest
measurements are for one-way transfers—and Table 19 of that review gives
a peak value of 100 GB/s per channel for two-way transfers.

Article [342] also provides data on the performance of MI250X
on GEMM (using hipBLAS), including DGEMM. For GEMM with FP16,
a specific test CORALGEMM [344] was used, the performance of which
increased up to the highest matrix dimension of over 8 thousands. For FP32
and FP64, in addition to this test, another specific test gpu_xgemm [345]
was used in [342] (see Figure 22).

The choice of one or another specific test does not give fundamental
changes in performance here— it is mainly determined, of course, by the
choice of FP32 or FP64. The use of hipBLAS does not give any outstanding
results (such as achieving 90% or more of the peak value). But it’s
interesting whether the jumps in the performance curves depending on the
matrix size are related to its “optimal” parity.
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Figure 22. GEMM performance on one MI250X GCD (Figure
from [342])

Article [342] also presents mixbench test data, but these results, as
above in the section for A100, are not considered here, since they are more
interesting for AI.

Benchmarks [333] presents data on the performance of MI250 (with
ROCm 5.2.0) in the HPL (with rocHPL 6.0.0), HPL-AI (with HPL-AI-1.0.0)
and HPCG 3.0 benchmarks. On one GPU the achieved performance was 40.45
TFLOPS (about 90% of the peak vector value), and on 4 GPUs it was
161.97 TFLOPS. Note that the results in [333] are for full GPUs with two
GCDs. On HPL-AI (module with FP16/32/64) on 4 GPUs, performance
reached 930.44 TFLOPS. On HPCG, 488.8 GFLOPS were obtained for one
GPU and 1927.7 TFLOPS for 4 GPUs.

Computational Chemistry. Considering that AMD and Nvidia actively
compared the performance of the MI250X and A100 on molecular dynamics
problems, we will begin our presentation here with this area of computational
chemistry. It should be noted right away that achieving high performance
when porting molecular dynamics applications from Nvidia GPUs to
AMD GPUs is not an easy task. The transfer of such software packages from
CUDA to HIP is discussed in [314] (although the models analyzed in this
review were not considered there).

AMD reports its LAMMPS 2022 molecular dynamics application
performance across several famous of this application benchmarks on the
MI250 and MI210 GPUs and compares them to results on the A100 [346].
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A single MI250 outperforms the A100 on all benchmarks (while the MI210
containing a single GCD tends to lag behind the A100-PCIe-80GB). AMD
has also demonstrated good performance scaling of LAMMPS up to 4 GPUs
per server [346].

Authors of [254] conducted a detailed and in-depth study aimed
at improving the performance of LAMMPS after porting it from Nvidia
GPU hardware (Summit with V100 and AFW HPC11 computing system with
A100-40GB used in the article) to MI100 GPUs (in the Spock cluster) and
MI250X (in the Crusher cluster). LAMMPS uses the Kokkos library to
support work with different hardware. To optimize the performance (studied
for the normal FP64 format) of LAMMPS on Nvidia and AMD GPUs,
roofline models were used for each kernel, and performance estimates
involved 6 different potentials and calculations of liquid, metallic, granular,
biological and polymer systems up to size 55 million atoms.

Support for LAMMPS operation on GPUs with long-range interaction-
oriented PPPM potential was implemented in [254] using FFT, for which
rocFFT tools were used on AMD GPUs. When running at ReaxFF potential
on a 256K atoms molecular system, about 20% (5.6 TFLOPS) of the peak
FP64 performance of a single GCD in Crusher was achieved.

In [254], despite a large amount of careful and extensive research done,
the obtained performance estimates are indicated as preliminary, which is
probably due to the active development of ROCm noted in this article
(ROCm v4.5.0 was used in this work).

The pointed out different performance behavior when changing Kokkos
parameters for AMD and Nvidia GPUs. This can be taken as an illustration
of the difficulty of porting software from one type of GPU to another while
maintaining efficient code optimization.

In [262] the performance of the SNAP quantum potential (as part
of the EXAALT ECP project), then used as part of the work with LAMMPS,
is analyzed. Although more performance information was obtained here for
the MI100, which the MI250X was, of course, far ahead of, the GCD MI250X
alone at the very beginning of 2021 was significantly behind even the V100
in this calculation, and much more behind the A100. This was due to the
lack of L1 cache capacity in the MI250X CUs— the V100 and A100 used
a capacity of 96 KB per SM for SNAP, 6 times more than the MI100 and
MI200 per CU (see Table 20 and Table 21).
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Table 24. Performance (ns/day) of AMBER 22 on diffe-
rent GPUs

Test A100-PCIe
performance1

MI250
performance2

H100-PCIe
performance1

JAC Production
NVE 4fs 1199.22 1871 1479.32

JAC Production
NPT 4fs 1194.5 1794 1424.90

STMV Production
NPT 4fs 52.02 80.65 70.15

1 data from [349] (data as of 03/21/2023). Used Amber 22 Update 1, AmberTools
22 Update 1, Nvidia CUDA 11.4

2 data from [333], used ROCm 5.2.0 and Amber container 22.amd_100

Work on optimizing the SNAP kernels continues [262], but although
these were rather preliminary results, further progress is expected primarily
in terms of the use of Kokkos here. [262] states that SNAP’s L1 cache hit
rate is (for the largest SNAP kernel) 66% for the MI250X versus 90% for
the V100.

In [347], AMD demonstrated good scalability of the NAMD molecular
dynamics application on the famous APOA1 and STMV NVE benchmarks
using up to 8 MI250.

Above, at the very beginning of sec:5.3.2.2, it was noted that there was
no data provided by AMD on GROMACS performance on MI250/MI250X
in 2022, which was obviously due to temporary problems with porting the
GROMACS code, and was quickly corrected.

In [333], there is data on the performance of MI250 on the most
famous molecular dynamics applications AMBER, GROMACS, LAMMPS
and NAMD. Let us give a number of examples. For GROMACS, in the well-
known STMV (Satellite Tobacco Mosaic Virus) benchmark, a performance
of 34.2 ns/day was obtained on one MI250X, and 89.26 ns/day on 4
MI250Xs. For NAMD 3.0, in the standard STMV NVE benchmark,
a performance of 19.87 ns/day was obtained on one MI250X, and 77.132
ns/day on four MI250Xs.

The GROMACS 2023.1 version uses SYCL as a back-end for the
MI200, what has shown good scaling of the achieved performance in the
STMV benchmark when using up to 8 MI250X. It has been discovered that
not all the features of CDNA 2, which can provide a significant increase
in GROMACS performance, are yet used by the AMD compiler [348].

For AMBER22, here are performance data on 8 known AMBER
benchmarks. Thus, on the Cellulose Production NPT 4fs benchmark,
a performance of 227.2 ns/day was obtained. We have compared the data
from [333] with the results available in [349], and summarized these data
in Table 24.
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But here we need to make important clarifications about compar-
ing the performance data of different molecular dynamics applications
on different GPUs. The calculation data provided relate primarily to the
molecular system being calculated (where the total number of atoms is
important), which is determined by the name of the benchmark itself. But
the calculation time also depends on other parameters— the potential used,
the time-step (often measured in femtoseconds, fs in Table 24) and the
cutoff radius of interactions. Therefore, the data provided on the achieved
performance may not be comparable, and the use of the same parameters is
required, which are not even always given. The author is not aware of such
a coincidence of parameters in different data sources of Table 24.

It should be borne in mind that in this table the data from [349]
was obtained with a far from new version of CUDA; AMD itself compared
in [333] with CUDA 11.6, the old version of CUDA may not be effective
enough for the H100— in the publications cited in this review, CUDA 12.2
was also used. But these data, as well as those presented above in this
review, indicate that the MI250 has real competition in molecular dynamics
performance with the A100 (and maybe with the H100), perhaps even
ahead in performance, and the dependence on the versions of the SDKs used
is obvious.

Another article [350], which examined the performance of MI250, is
at the intersection of molecular dynamics and AI. In [350], using the
V100, A100 and MI250 GPUs, a fairly large number of calculations were
carried out using the DeePMD-kit software package for molecular dynamics
simulation using machine learning potentials (instead of using the QM/MM
method for this). DeepMD-kit allows these potentials to be integrated with
LAMMPS, Amber, OpenMM and GROMACS applications. Based on Table
IV from [350], we computed the performance speedups of A100-80GB over
a single MI250 GCD. For LAMMPS molecular dynamics calculations for
FP64 they ranged from 6% to 2.5 times. The lack of details in [350] about
the software versions used (for example, about the LAMMPS version
ported to the AMD GPU, used for molecular dynamics calculations) allows
these values to be attributed rather to preliminary estimates, but still
providing some information about the performance of the MI250.

The paper [351] can also be partly (in a certain mathematical sense)
considered of interest for molecular dynamics problems— here, to calculate
the Euclidean minimum spanning tree using an algorithm improved by the
authors, A100 (with NVCC 11.5) and MI250X (1 GCD, with ROCm 4.5)
and Calculations were carried out on 12 different data sets. Based on the
obtained performance data in Figure 6 from [351], we calculated the
relative speedup of A100 compared to 1 GCD, it is in the range of 1.5-1.7.
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Table 25. Calculation time of correction, T (in seconds)
on GPUs [352]

GPU Programming model
SYCL CUDA HIP

MI250X (1 GCD) 17.41 — 15.56
MI250X (2 GCD) 8.97 — 8.12
A100 18.23 16.14 —

In general, it seems that stable reliable data on comparing the
performance of the MI200 with Nvidia GPUs in molecular dynamics problems
is still rather absent (in the sense that new and improved indicators are
appearing).

In [352], data on the achieved performance within the framework
of the NWChemEX project in ECP using MI250X and A100 in Crusher and
Polaris supercomputer nodes, respectively, were studied (see Table 23).
NWChemEX is also focused on calculations using the high-precision
quantum chemical method CCSD(T), in which the main calculation
time is spent on the correction due to triple excitations (T), which is
a perturbation to CCSD, requiring O(n7) calculations, where n is the
dimension of the basis. The kernel for calculating this correction was
implemented in different versions using HIP, CUDA and DPC++; or this, the
compilers clang-16, gcc-10.3.0 and CUDA-11.4.4/ROCm-5.1.0 were used (for
Polaris/Crusher, respectively), and for parallelization between nodes,
Cray-mpich 8.1.16 was used.

Table 25 shows the obtained times for calculating the correction T for
the molecular fragment of ubiquitin (these are data from Table III in [352])
on one GPU. From these data it follows that one GCD in the MI250X was
slightly faster than A100-40GB (both on HIP versus CUDA and using
SYCL), and on two GCDs the performance of the MI250X increased by 1.9
times. At the same time, the performance achieved using DPC++ turned out
to be quite close to that obtained using CUDA or HIP.

But in [352] on the A100 it was also found that in the SYCL
implementation, the kernel for calculating T places very high demands
on the L1 and L2 caches, and the generated PTX code showed a large
number of loads and stores into local (private in SYCL terms) memory.
Adding one clang key gave a 2.5 times increase in performance. Changing
another #pragma option to clang increased performance by another 20%.
But this PTX code did not use FMA multiply-and-add operations, and after
adding another clang key, the additional performance improvement was
about 20% [352]. The results in Table 25 include optimization.

In addition, scalability up to a large number of nodes in Crusher and
Polaris was demonstrated, which is highly dependent on the basis types
used.
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Table 26. Strong and weak performance scaling (in TFLOPS)
of the Dirac operator HISQ on Perlmutter and Frontier nodes

GPU in a
node

Number
of GPUs (for
MI250X—
number

of GCDs)

Performance (strong
scaling)

Performance (weak
scaling)

A100-40GB 1 — 1.35746
4 5.06892 4.53759

MI250X

1 — 0.92974
2 1.63049 1.51439
4 3.00675 2.89454
8 4.69513 5.57654

For strong scaling, a global lattice was used 964; for weak scaling— local lattice 324.
The table use data from [354].

In [353], using the still “pilot” state of the LUMI-G supercomputer
(LUMI subcluster with MI250X GPU in the nodes), calculations were carried
out using the well-known quantum chemical application CP2K with the
authors’ improved methods for the exchange part of the Hartree-ock
method and correlation methods with periodic boundary conditions, but
using a Gaussian basis, which makes it possible to use block-by-block
sparsity. Good performance scalability and parallelization efficiency up to
32 LUMI-G nodes were obtained.

Lattice quantum chromodynamics (LQCD). In [354], the perfor-
mance of the SIMULATeQCD application for quantum chromodynamics,
available on GitHub, was studied when running on one or several nodes
(multi-GPU servers) of cluster systems, including Perlmutter and Frontier
(see Table 26). Although the MI250X performance data here, as in many
other publications, is considered preliminary, the comparison made here
with the performance of the A100-40GB is interesting (although it is clear
that using more modern versions of ROCm and additional optimization
of the program code the performance achieved may increase significantly
in the coming times).

SIMULATeQCD uses CUDA or HIP codes as a backend. [354] provides
performance data using up to 256 A100s and GCDs; We will limit ourselves
here to data from benchmarks of the Dirac operator HISQ with scaling
within one node (see Table 26).

Although the results for the MI250X were reported as preliminary, the
performance achieved was lower than what the authors expected based
on the MI250X specifications. In general, here, as a first approximation, we
can say that one GCD is somewhat behind the A100 in terms of performance,
while the full MI250X (2 GCDs) is somewhat ahead of it.
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In [355], the performance on nodes of the Big Red 200 (4 A100-40GB
per node) and Crusher (4 MI250X per node) supercomputers was compared
using the well-known QUDA program for lattice quantum chromodynamics.
Due to poor scaling with the number of nodes in both systems, we will
only point out performance data for one node— a node with an MI250X
(with 8 GCDs) was 16% faster than a node with an A100. The advantage
of the MI250X in [355] was attributed to the memory-bound performance
of QUDA (with the MI250X has 2×the memory bandwidth over that A100
model, see Table 21).

Computational fluid dynamics (CFD). We begin the analysis of data
on the performance of MI250X and MI250 in CFD applications with AMD
data [333] on the performance of MI250 in the standard (for OpenFOAM
CFD application) HPC Motorbike benchmark (662.3 sec. on one MI250 and
209.84 sec. on four MI250).

In [356], for the numerical simulation of realistic combustion devices,
a special PeleLMeX solver was used, the performance of which was studied
on Crusher with MI250X and Summit with V100. With a small number
of GPUs used, the performance of the MI250X was found to be one and
a half times greater than that of the V100.

In [357], multi-particle collision dynamics calculations were carried
out to particle-based description of hydrodynamic interactions using
the Cabana 1.0-dev library based on Kokkos 3.5.00, using A100 and
MI250. A comparison of multi-GPU servers containing 4 A100 or 4 MI250
showed that with smaller sizes of the calculated system, MI250 is 7%
faster, and with a larger size, A100 is 19% faster (according to data from
Figure 3 in [357]). This allows us to talk about the comparability of the
performance of a full (with two GCD) MI250 and one A100.

A very interesting and relevant article comparing the performance
of MI250X, MI100, A100 and V100 [325] concerns the solution of the Navier-
Stokes equations for compressible flow using finite difference discretization—
for wall bounded turbulent flows. There, the implementation of the
STREAmS-2 application, portable to x86-64 CPUs, AMD and Nvidia GPUs,
developed on the basis of the object-oriented (using Fortran 2008) application
STREAmS-1, was considered.

To work with Nvidia GPUs, [325] uses CUDA Fortran tools (HPC
SDK 22.11), and with AMD GPUs, HIPFORT (ROCm 4.5.2 on MI100
and ROCm 5.0.2 on MI250X). To port STREAmS code from CUDA
Fortran to HIPFORT, [325] created its own PyconvertSTREAmS tools,
since GPUFORT, according to the authors of [325], was rather at the
research stage of development. But for optimization, the code obtained
in PyconvertSTREAmS may also require subsequent manual modification.
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Calculations with analysis of performance scaling on several nodes were
carried out in [325] in EuroHPC JU clusters: for MI250X— on LUMI, for
A100— on Leonardo (see Table 23).

When comparing calculations on one GPU in MI250X, one GCD was used;
data on the corresponding calculation times for two different calculation
schemes in STREAmS-2 are shown above in Figure 20. The dimensions
of the grid used in the calculations were chosen to be maximum for possible
placement in the V100 memory capacity [325].

The data in Figure 20 indicates the similarity of the achieved perfor-
mance between one GCD MI250X and V100; The MI100 was significantly
slower than the V100, and the A100 was significantly faster than the
GCD alone. As noted in [325], this does not correspond to the peak
performance ratios (with FP64) of these GPUs, and there was a more
thorough analysis of the execution times of individual kernels, which showed
similar results for kernels with the A100 clearly leading in performance.
Exmples of unexpected increases in GCD performance achieved with small
changes in kernels are also given in [325].

An analysis in [325] using a roofline model (considering only the HBM)
found that calculations on the GCD, as expected for CFD, were always
memory-bound, and on the A100 were often in the computationally
intensive region. Data movement for GCD was found to be significantly
higher than for A100, meaning the A100 fetches registers and caches more
often than GCD. In addition, [325] pointed out the large use of registers
in the weighted essentially non-oscillatory (WENO) scheme used.

It is advisable to add additional comments to the above-described data
from article [325]. As for the data on the higher performance of the V100
relative to the MI100, this seems rather natural (this was mentioned above
in the section on MI100 performance). However, the V100 comes in two
models [185]— with a memory capacity of 16 GB and (which appeared
later) with 32 GB, and the V100 model used in [325] with 16 GB when
working with a large grid size (but fits in 32 GB MI100) will simply be
unacceptable.

Regarding the MI250X, firstly, the assumption of possibly weaker
caching is consistent with the MI250X cache disadvantages noted above
compared to the A100 (see also Table 20 and Table 21). Secondly, [142]
points out a disadvantage of the AMD compiler (in ROCm v4.5.2) compared
to the Nvidia compiler (in CUDA v11.0.3): CUDA uses significantly fewer
registers per warp than the AMD compiler and provides much higher warp
load on SM, which contributes to higher performance of Nvidia GPUs.

https://eurohpc-ju.europa.eu/
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Table 27. NekRS performance data on a single GPU using
CUDA and HIP for Nvidia and AMD GPUs respectively

System Device Relative Performance

Summit V100-16GB 1.00

ThetaGPU A100-40GB 1.57

Perlmutter A100-40GB 1.62

Polaris A100-40GB 1.62

Spock MI100-32GB 0.84

Crusher MI250X-64GB (1 GCD) 1.32

Thirdly, it is also actual to compare the performance of the full MI250X
(the performance of the cheaper MI250 should probably be close) with the
A100, which was not carried out in [325]. If we make a natural assumption
about the good scalability of STREAmS-2 within the whole MI250X, then
dividing the calculation time with MI250X in Figure 20 by two as an initial
approximation, we will obtain calculation times comparable to the A100.
In addition, one must keep in mind the lack of sufficient information about
the level of optimization achieved when working with HIPORT. All this
does not contradict the fact that STREAmS-2 achieves a higher percentage
of the peak performance of the A100 compared to GCD.

Preprint [325] also obtained data showing the high scalability
of STREAmS-2 performance — for example, efficiency of more than
80% when using up to 16 Leonardo nodes and up to 32 LUMI nodes, and
good results on a larger number of nodes, giving for STREAmS-2 high
potential for using in compressible fluid dynamics.

Argonne National Lab [144] conducted performance studies of the
Nek5000/RS application on a range of supercomputers using MI250X,
A100 and V100 GPUs on nodes, scaling from a single GPU to many nodes.
Calculations were carried out using an upgraded version of Nek5000 for GPU
operation (NekRS version 22.0) as part of the ECP ExaSMR project to
generate virtual nuclear reactor simulation datasets with high-fidelity
coupled physical models of reactor phenomena. Table 27 shows the
performance of NekRS for singlerod simulation on a single GPU.

According to this table, a single GCD on a Crusher provides 1.32×the
performance gain for solving the Navier-Stokes equation compared to
a single V100 on a Summit. The A100 outperforms a single GCD, and
overall, according to [144], the performance of a single GCD is about 85%
of that of a single A100.
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In [144], in particular, a comparison was made of performance scaling
on Frontier (with ROCm 5.1.0 and Cray-mpich 8.1.17) and Crusher (with
different versions of the SDK— ROCm 5.1.0, ROCm 5.2.0, Cray-mpich
8.1.16 and Cray-mpich 8.1.19). On Crusher, ROCm 5.1.0 gave performance
2–5% faster than ROCm 5.2.0, and performance on Frontier was better
than on Crusher.

In [358], for large-eddy simulation problems, the performance of the
NekRS and AMR-Wind codes for modeling flows in the atmospheric
boundary layer using the Summit and Crusher supercomputers (with nodes
containing V100 and MI250X, respectively) was studied in strong and weak
scaling variants. For NekRS, a single GCD MI250X on a Crusher has been
shown to provide performance comparable to a single V100 on a Summit.

In [142] presents the performance of the MI250X (compared to
the MI100 and V100) using the NekBone-based HipBone benchmark
(the HipBone proxy application was discussed above in the A100 and
MI100 performance sections) using the libParanumal finite element library
(developed within the ECP ) with OCCA tools for abstraction between
different parallel programming models— for example, OpenMP, OpenCL,
CUDA, HIP and SYCL. HipBone, like Nekbone, uses a regular mesh
of hexahedral elements.

The calculations in [142] were carried out on the Summit, Spock and
Crusher computing systems (see Table 23) using CUDA 11.0.3, ROCm 4.5.0
and ROCm 4.5.2 in their nodes, respectively. Testing was conducted
on a single GCD, allowing for potentially more than half of the MI250X’s
total compute capabilities and higher clock speeds than running the same
workload on both GCDs simultaneously. However, there was no significant
difference in performance between kernels running on one GCD or on both
GCDs simultaneously in the MI250X. It was also found that the Nvidia
compiler uses significantly fewer registers per warp compared to the AMD
compiler, resulting in much higher warp utilization on the SM.

Article [142] also carried out a detailed study of strong and weak
scaling in the used computing systems, which is not discussed here.

Report [359] indicates performance data on MI250X, MI100, V100
and A100 for the NekRS application and the HipBone proxy application.
Computing systems Summit, Spock, Crusher and ThetaGPU were used for
calculations (see Table 23).
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The performance of the Poisson operator (as well as that of other
operators in mesh methods— calculating the result of the operator’s apply
to a function at mesh points), which determines the calculation time
of HipBone, for different degrees of the polynomial used for one GCD is
20–30% greater than for V100 (see Figure 43 in [359]).

All devices achieved the highest HipBone performance at the highest
polynomial degree used (15)— 2101.4 GFLOPS in V100, 2135.2 GFLOPS
in MI100, 2774.9 GFLOPS in a single GCD [142,359]. For NekRS, one GCD
on Crusher on different kernels gave from 57% to 88% of the performance
of A100, in terms of total calculation time— 71% [359].

A number of publications have been discussed above regarding the
performance of GPU-oriented software NekRS and subsequent NekBone and
HipBone. All are focused on being portable across different types of GPUs,
are heavily involved in ECP work, and use C++ tools (although NekBone
has a version with CUDA Fortran [358], and all are based on Nek5000,
which used Fortran).

But this direction using C++ has an alternative, which is also based
on Nek5000 and is focused on portability to different types of accelerators,
and it was also used in studies of the achieved performance using the GPUs
discussed in the review. In [171], for the field of direct numerical simulations
of turbulence with applications in sustainable shipping, a simulation of the
flow around a lettner rotor (at Re = 30000) and its interaction with
a turbulent boundary layer was carried out on clusters with multi-GPU
servers in nodes using A100 and MI250X.

For this purpose, Neko software for working with unstructured meshes,
also based on Nek5000, was used and modernized in [171]. Neko uses
the object-oriented capabilities of modern Fortran standards to control
memory allocation and provide multi-layered abstractions of the solver
stack, enabling computation on a variety of architectures from conventional
CPUs to different types of accelerators.

In [171], a device abstraction layer is used to manage device memory,
data transfer, and kernel execution from Fortran, and CUDA and HIP
backends are developed. The calculations here were performed on an
Alvis cluster having by 4 A100-SXM4 per node (CUDA version 11.1.1 was
used) with a Mellanox ConnectX-6 interconnect (2× 400 Gb/s)— using
OpenMPI 4.0.5, and on an HPE Cray EX cluster, having by 4 MI250X
per node (version ROCm 4.5.2 was used) with an HPE Slingshot 10
interconnect— using Cray MPICH 8.1.14. On the hosts in Alvis gcc 10.2
was used, in HPE— Cray cce 13.0.



434 Mikhail B. Kuzminsky

Karp et al. 9

Figure 5. Two zoomed-in visualizations of the flow around our simulated Flettner rotor. We show the velocity magnitude where a
lower velocity is darker violet and a higher velocity becomes white then orange. At the top we show a cut at z = 0 and at the bottom
we show a plane at y = 0.1. The coordinate axes reflect the mesh as shown in Figure 3, but are zoomed in to better visualize the
turbulence close to the cylinder.

32 64 128
Number of CPUs or logical GPUs

0.2

0.5

1

[s / time step]
Strong Scaling

Nvidia A100
AMD Instinct MI250X
AMD EPYC 7742

Figure 6. Performance in time per time step as well as shaded
areas for the standard deviation. The orange and blue lines
represent the GPU systems, while the green line represents the
baseline CPU system. We illustrate linear scaling with dotted
lines for each platform.

A100, and the AMD EPYC 7742 CPU baseline. First,
comparing the two GPUs, it is clear from the time per time
step that two logical GPUs on the MI250X correspond to
two A100s with regards to performance. We observe that
the perfromance of one A100 and one GCD of the MI250X
matches very well in all measurements. The average time per
time step between the two architectures differs by less than
5%, comparing two A100 to one MI250X. This is in contrast

to a recent report by Kolev et al. (2022) where they observed
that one GCD of the MI250X performs closer to 79% of one
A100 for a single rod simulation with NekRS, a similar code
based on Nek5000 (Fischer et al. 2021). They also share
our impression during code development that kernels that
work well with CUDA/Nvidia do not necessarily map well
to HIP/AMD, but need to be modified to properly exploit
AMD GPUs. Comparing the two architectures in Tab. 1, and
considering that we expect to be memory-bound as has been
discussed in Karp et al. (2021); Kolev et al. (2021), we see
that the fraction between the bandwidth of two A100 vs one
MI250X GPU is 1.05, indicating that they should perform
similarly. As many solvers in the wider HPC community are
memory-bound, we anticipate that several other codes will
obtain similar performance numbers to ours on upcoming
GPU supercomputers powered by the AMD Instinct MI250X
relative to systems using the Nvidia A100. The relation
between the floating-point performance is significantly larger
than the observed difference, considering we do not use
the tensor cores. The difference in peak FP64 performance
suggests that compute-bound applications in FP64 might see
larger performance improvements with the MI250X.

We observe a slightly higher standard deviation for the
GPUs, compared to the CPU, and this can primarily be
attributed to the projection scheme that is used in Neko. This
scheme resets every 20-time steps on the GPU, effectively
leading to a time variation with a period of 20 for the wall
time per time step. On the CPU the projection space is not
reset but a more complex scheme where the space is re-
orthogonalized is used instead, and we see a lower standard

Prepared using sagej.cls

Figure 23. Performance in time per time step: shaded areas
refer to standard deviation. The orange and blue lines represent
GPU systems. There are two logical GPUs in each MI250X
(picture from [171])

The hosts in both clusters had 512 GB of DDR4 memory (with two
Intel Xeon Gold 6338 per Alvis node and an AMD EPYC 7A53 per HPE
node).

Neko calculations were memory-bound, which the authors believe
allows compute-intensive applications to benefit from the higher peak FP64
performance of the MI250X [171]. [171] concluded that the two GCDs
in the MI250X match the two A100 in terms of performance. The average
time per time step differs by less than 5% when comparing two A100 to
one MI250X (see Figure 23). But this contrasts with data discussed above,
for example [359], that a single MI250X GCD has performance closer to 71%
of that of a single A100.

A number of publications that provide performance data for the MI250 or
MI250X relate to magnetohydrodynamics. The article [360] presented a new
Idefix code for nonrelativistic fluid dynamics and magnetohydrodynamics
based on Kokkos, which in benchmarks for magnetohydrodynamics on a
server with 4 MI250X showed performance 2.57 times faster than on a
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server with 4 V100. Also [360] shows much higher power efficiency with
the MI250 than with the CPU.

In [361], calculations were carried out using the Athena++ program
(more precisely, the AthenaK code was used to work with the GPU) for
general relativistic magnetohydrodynamics using Crusher nodes (with 4
MI250X per node) and Polaris (with 4 A100 per node). Compared to the
same number of logical GPUs (i.e., comparing the GCD number for the
MI250X to the A100 number), Polaris is, roughly speaking, a couple
of times faster for any number of logical GPUs (see Figure 32 in [361]),
and still scales good in both computing systems. This suggests that
when comparing the A100 to the entire MI250X, they are competitive
in performance.

Article [362] provides data on the performance of MI250X, MI100, A100-
40GB and V100-16GB in cluster systems using PARTHENON-HYDRO—
a mini-application (based on the astrophysical magnetohydrodynamics code
Athena++), consisting of about 1.4 thousand lines of C++ for 1D, 2D and
3D compressible hydrodynamics on uniform and multilevel meshes.

The obtaining performance (here considered simply as some relative
value) is 5.7— for the MI250X (two GCDs, with ROCm 5.1.0); 4.2— for
A100 (with CUDA 11.5); 2.7 and 2.15— for V100 and MI100, respectively.
This means that the full MI250X is well ahead of the V100 and MI100
in performance, and faster than the A100 (although when calculated on a
single GCD, the MI250X lags behind the A100). Data on the achieved
strong and weak scalability in the systems used for calculations were also
considered in [362], but this is not analyzed here.

Plasma physics. In principle, this area also belongs to CFD, but
is highlighted here as a separate part, since there have been a number
of publications in plasma physics that have used the MI250/MI250X and
obtained interesting performance data.

Thus, in [363], a higher performance of the MI250 compared to the
V100 was shown in solving the Vlasov kinetic equation for the dynamics
of plasma charged particles.

In [364] studied the performance of the CGYRO code, which solves
five-dimensional gyrokinetic-Maxwell equations describing the evolution
of plasma microturbulence in magnetic fusion devices. To work with GPUs
(MI250X in Frontier and A100 in Perlmutter), OpenACC tools were used
(from HPE Cray Fortran for MI250X and from Nvidia Fortran for A100), as
well as the cuFFT and hipFFT libraries for A100 and MI250X, respectively.
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In the initial test, CGYRO on the MI250X node was significantly
slower than on the A100 node, but after optimization it became faster with
the MI250X. But in [364], calculations were compared with the same
number of nodes and GPUs of these supercomputers; accordingly, the full
MI250X of two GCDs turned out to be faster than the A100.

In [365], the calculation time of the HiPACE++ application for
modeling plasma accelerators with a quasi-static particle-in-cell algorithm
was compared for the A100-80GB and MI250X (one GCD). In this case, all
the main data for the calculation is located entirely in the GPU memory
during the calculation. CUDA 11.0 was used on the A100, and early test
access to Crusher was used for calculations on GCD (probably with HIP).
FFT was used in the calculations, and rocFFT, according to [365], then had
poor performance at grid sizes other than a power of two. The calculation
time on the GCD at two different types of calculation stages ranged from 0.7
to 1.6 and from 0.9 to 3.7 times compared to the time on the A100.

AMD cites the PIConGPU application, which also uses the particle-in-
cell algorithm, as an example of a plasma physics application adapted to
run on the MI200 GPU by using the ALPAKA (Abstraction Library for
Parallel Kernel Acceleration) backend running on top of HIP/ROCm [366].

The particle-in-cell method is generally widely used in plasma physics
applications, and it was also used in calculations using MI250X. In [367]
3D modeling of laser-matter interaction was studied on the massively
parallel WarpX PIC code using GPUs on Frontier, Summit and Perlmutter
(a similar study was also carried out in [368]).

Preprint [369] analyzed the performance of the linear iterative solver
TFQMR using Kokkos (including a faster batch version) available in the
PETSc (Portable Extensible Toolkit for Scientific Computing) library. This
is interesting for plasma physics when working with the Landau collision
operator. The performance of the MI250X and A100 here was evaluated
using Perlmutter and Crusher cluster nodes.

The above-mentioned articles [365,367,368] are directly related to
projects from ECP. Like many of the other publications used in Subsection
5.3.2.2, the latest data obtained in the newly appeared computing systems
with GPU MI250/MI250X are used here; this data was often considered
preliminary due to the possible rapid progress of new versions of the SDK
from AMD.
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Artificial intelligence tasks. Although AMD didn’t put AI exactly
first place of potential applications for the MI200, these GPUs were
immediately use for AdI applications. Thus, in [28], the integration
of HPC and deep learning was used: for the Monte Carlo application (for
thermodynamic calculations in materials science), a set of surrogate deep
learning models was developed and calculations were performed on many
nodes of two supercomputers: Summit c V100 (using the CUDA stack) and
Crusher with MI250X (using the ROCm stack). On different model sizes,
one GCD was up to 15% faster than the V100 (and the whole MI250X was
correspondingly faster by up to 2.3 times). Crusher also showed better
performance scaling relative to Summit.

These GPUs have become used for AI tasks in a wide variety of fields that
use AI. Thus, in [370], MI250X was used for mitochondrial segmentation
tasks.

And after the deployment of the European supercomputer LUMI
with MI250X, probably due to the use of different languages in Europe,
publications on natural language processing on MI250X began to actively
appear there, including using their own modified BERT models (see, for
example, [371–374]).

5.4. AMD GPUs Summary

The above performance data for the MI200 GPUs— mostly the MI250
and MI250X— certainly suggests that these GPUs are somewhat competitive
with the A100. Both AMD with ROCm and application developers are
actively pushing forward to achieve higher performance.

It’s clear that the performance data already reported often doesn’t meet
expectations based on the higher peak performance of these AMD GPUs
compared to the A100 (meaning even a single GCD). Although in many cases
the benchmarks were memory bound rather than compute-intensive in the
roofline model, this still does not correlate with the many performance
gaps relative to the A100, as well as the sometimes identifiable performance
"sinks" of the MI250X (see, for example, data [328]).

In a number of publications, this is associated with the insufficiently
large cache size (mainly L1) relative to the A100, and the use of too many
registers in the codes generated by AMD compilers compared to Nvidia
CUDA tools, although in some cases the reasons for insufficient performance
compared to expected performance remain unclear. The existing comments
regarding AMD’s SDK software correlate with the clear indication in many
of the above publications that the performance data obtained is preliminary,
therefore suggesting improvements due to the rapid development of the SDK.
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Since there are also data on higher performance of MI250/MI250X, the
fact that the comparative performance of these GPUs relative to the A100 is
not sufficiently predictable at this point in time should be considered
important.

Here one cannot try to be based on a “statistical analysis” of comparative
performance data, but must be based on data for specific applications
and objects of study (which, to a first approximation, are also available
in this review), as well as on similar (in purely mathematical sense)
methods used, and take into account the already discovered shortcomings
of MI250/MI250X and their SDK (the latter may possibly be corrected
in new versions).

But it is necessary to keep in mind the possible opposite conclusions
about the efficiency of the MI200 when taking into account comparative
prices and TCO, and accordingly choose to compare the full MI250/MI250X
or individual GCDs with the A100.

At the time of writing this review, the MI300 and the EI Capitans
supercomputer are expected to appear (in 2023, at the Lawrence Livermore
National Laboratory (USA)), with the integration of Zen 4 architecture
CPUs into the MI300. This confirms AMD’s likely progress in GPUs and
supercomputers in the near future. [375] pointed out the continued small
size of the L1 cache— this could be a potential weak point of the MI300.

In relation to HPC, it is worth pointing out AMD’s great focus on this
area compared to Nvidia’s greater focus on AI, which is evident in the new
supercomputers included in the Top500.

Conclusion

In this review, the advantages and possible disadvantages of GPUs were
discussed above. As for specific performance data, a lot has been said
about them above, and it is advisable to combine them with cost indicators
(including energy consumption indicators), which are not discussed here.
What follows is a mostly general summary of a slightly different, more
general and/or briefer nature.

1. There is competition among modern GPU developers in terms of per-
formance and other indicators, including not only from the USA, but
possibly also from China; a European accelerator is also expected,
which can also be used on exascale supercomputers. Accordingly,
current Nvidia GPUs near-monopoly will likely diminish little by little.
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2. The general technological direction of building GPUs is the use
of multi-chip technologies (chiplets), which were probably first actively
used by AMD [376]. This enables performance scalability that can be
implemented in a cost-effective manner with currently negligible
latency increases, including for interconnects between compute cores.

3. The general trend may be the integration of CPU and GPU (AMD
MI300, Intel Falcon Shore, Nvidia GH200), as well as several GPUs
within one model (as in AMD MI200 and Intel PVC).

4. The ultra-fast development of GPUs leads to the fact that attempts to
standardize any hardware components are still being implemented to
a limited extent. Thus, the use of the OAM form factor standard
in MI200, PVC and BR100 is combined with Nvidia’s use of its own
SXM form factors, which looks quite understandable in the light
of Nvidia’s supply of its own ready-to-run computing systems— from
multi-GPU servers to clusters.

Standardization is even more difficult for GPU interconnects— all
of the GPUs reviewed used their own, different selection from the
competition. Here, the reason for the orientation not towards standards
is rather the competitive struggle for leadership in performance.

5. The general direction is to expand the use of multi-GPU systems for
AI and HPC tasks. In the corresponding servers, it is necessary to use
two processors containing dozens of processor cores, which include
not only Intel Xeon and AMD EPYC, but also ARM processors (the
classic option would be Nvidia Grace or GH200). An alternative may
be to use one server processor containing over fifty cores (both AMD
and Intel offer such CPUs today).

Traditional for HPC quantum chemistry problems previously
used GPUs primarily for calculations in plane wave basis sets or
computationally more complex methods taking into account electron
correlation, where the bulk of the calculation time was spent on general
mathematical methods. But for widespread quantum chemistry
problems, performance is limited by the time it takes to calculate
two-electron integrals in a Gaussian basis (in the HF and DFT
methods). Here, high efficiency of GPU calculations, which gives
good performance scalability when working with multiple GPUs, was
achieved only very recently (the corresponding data is presented
in the review). This makes it possible to more actively use multi-GPU
systems also for quantum chemistry problems.
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6. As for the BR100, they may be relevant primarily to software
developers, including in the scientific field (since there are practically
no applications running on the BR100)— and, perhaps, especially
in countries where program developers and GPU consumers have
significant financial restrictions. However, the absence of the FP64
format in the BR100, traditional in the classical HPC field, will likely
lead to the BR100’s main focus on AI tasks. But the prospects for
the use of BR100 are unclear due to US sanctions.

7. Given certain development delays in Intel’s semiconductor technology
and delays in the start of shipments of Ponte Vecchio compared
to Intel’s original plans, and the emerging need to move to work
with the DPC++ /oneAPI software model, it can be assumed that
much faster progress with GPUs by Intel can be expected after the
appearance of the Falcon Shores GPU or a subsequent x86-integrated
device (rather after the implementation of the new promising 18A
technology).

Intel’s most striking contribution to the development of GPU
applications today seems to be the development and support of the
DPC++ programming model.

8. There is no doubt that the adoption of Nvidia’s H100 GPU will
continue to expand rapidly (with faster growth of H100 using for AI
tasks). Both the already released and the upcoming Nvidia H100 GPUs
(GH200 also actually contain the H100) will be very relevant for AI
and HPC tasks. But the most powerful leap forward in performance
scalability seems to be the ability to build clusters with the H100
using NVLink networks.

The advantage of Nvidia hardware primarily for AI tasks is the
delivery of AI-ready DGX server systems and DGX SuperPOD
clusters, which are at the supercomputing level. Although such
systems can be used for HPC tasks, applications ready for them are
needed. Another advantage of the H100 is its huge set of SDKs for HPC
and AI that interact effectively and complement each other.

9. GPUs from AMD, as an alternative to Nvidia GPUs, seem to be most
relevant at present, primarily for calculations on applications that
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have already shown high performance on the AMD MI200, or are
expected to do so in the very near future, as well as a field for the
development of new software, including porting existing applications.
In terms of potential application use in the near future, this could
make sense for any HPC and AI fields.

The use of these GPUs will obviously expand primarily in science
and in the activities of software developers. There is a certain degree
of comparability in performance with the Nvidia GPUs reviewed,
which means that price points data are of increased importance.

10. Taking into account current trends, it can be assumed that the use
of universal software development tools on GPUs will expand, rather
than those focused on a specific manufacturer’s architecture.
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Appendix. Abbreviations used in sections of the review (for GPUs
from different manufacturers)

Abbreviations for hardware

ALU Arithmetic Logic Unit . . . . . . . . . . . . . . . . 1, 5.1

ASIC Application-Specific Integrated Circuit . . . . . . . . 1

CXL Compute Exress Link . . . . . . . . . . Introduction, 2, 3.1

CPU Central Processing Unit . . . . . . . . . . . . . . . . . .
. . . . . . . Introduction, 1, 2, 3.1, 3.2, 3.3, 4.1, 4.2, 5, 5.1, 5.2, 5.3, 5.4

ECC Error-correcting Code . . . . . . . . . . . . . . . . 4.1, 4.2

ECP Exascale Compute Project . . . . . . . . . . . 3.1, 4.1, 5.3

EPI European Processor Initiative . . . . . . . . . . . . . . .

GPU Graphics Processing Unit . . . . . . . . . . . . . . . . .
. . Introduction, 1, 2, 3, 3.1, 3.2, 3.3, 4, 4.1, 4.2, 4.3, 5, 5.1, 5.2, 5.3, 5.4

GPGPU General-purpose GPU . . . . . . Introduction, 3.1, 4.1, 4.2

HBM High Bandwidth Memory . . . . . . . 3.1, 4.1, 4.2, 5, 5.3

ISA Instruction Set Architecture . . . . . . 1, 3.1, 4.1, 4.2, 5.1

NUMA Non-Uniform Memory Access . . . . . . . . . . 2, 4.2, 5.1

OoO Out-of-order . . . . . . . . . . . . . . . . . . . . . . . 4.2

PIM Processing-in-memory . . . . . . . . . . . . . . . 2, 3.1, 4.1

SIMT Single Instruction, Multiple Threads . . . . . . . 1, 4.1

SoC System-on-Chip . . . . . . . . . . . . . . . . . . . 3.1, 4.2

SVE2 Scalable Vector Extension 2 (ARM) . . . . . . . . . 4.2

TCO Total Cost of Ownership . . . . . . . Introduction, 5.3, 5.4

TDP Thermal Design Power . . . . . 2, 3.1, 3.3, 4.1, 4.2, 5, 5.1

Abbreviations for mathematical and programming fields

API Application Programming Interface . . . 1, 4.1, 5.1, 5.2

BLAS Basic Linear Algebra Subprograms . . . . . . 1, 4.1, 5.3

FFT Fast Fourier Transform . . . . . . . . . . . . . . . 4.1, 5.3

HPC High Performance Calculations . . . . . . . . . . . . . .
. . . . . . Introduction, 1, 3.1, 3.2, 3.3, 4, 4.1, 4.2, 4.3, 5.1, 5.2, 5.3, 5.4
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HPCG High Performance Conjugate Gradients . . . . . . . 5.3

HPL High Performance Linpack . . . . . . Introduction, 3.2, 5.3

LLVM Low Level Virtual Machine (early abbreviation; now — a
famous set of compilers and tools) . . . . . . . . 4.1, 4.2, 5.2

PGAS Partitioned Global Address Space . . . . . . . . . . 4.1

SDK Software Development Kit Introduction, 1, 3, 4.1, 5.2, 5.3, 5.4

Abbreviations for areas of use of GPUs and applications that use them

CFD Computational Fluid Dynamics . . . 3.2, 4.1, 4.2, 5.2, 5.3

DFT Density Functional Theory . . . . . Introduction, 4.1, 5.4

DLRM Deep Learning Recommendation Models . . 4.1, 4.2, 5.3

BERT Bidirectional Encoder Representations from Transformers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 4.2, 5.3

NLP Natural Language Processing . . . . . . . . . . . . 2, 4.2

Abbreviations common to GPUs from different companies

SU Special Function Units . . . . . . . . . . . . . . . . . 4.1

OAM OpenCompute Accelerator Module . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . Introduction, 2, 3.1, 5.1, 5.3, 5.4

Abbreviations for Nvidia GPUs

CUDA Compute Unified Device Architecture . . . . . . . . . .
. . . . . . . . . Introduction, 1, 2, 3.2, 3.3, 4.1, 4.2, 5, 5.1, 5.2, 5.3, 5.4

GPC GPU (or Graphics) Processing Clusters . . . . 2, 4.1, 4.2

GTC GPU Technology Conference . . . . . . . . . . . . . . . .

MIG Multi-Instance GPU . . . . . . . . . . . . . . . . 2, 4.1, 4.2

NCCL Nvidia Collective Communications Library 4.1, 4.2, 5.2

PTX Parallel Threads execution . . . . . . . . . . 4.1, 4.2, 5.3

SM Streaming Multiprocessor 1, 3.1, 4, 4.1, 4.2, 5, 5.1, 5.2, 5.3

SXM Server PCI Exress Module 2, 3.1, 3.3, 4.1, 4.2, 5, 5.1, 5.3, 5.4

TPC Texture Processing Clusters . . . . . . . . . . . . 4.1, 4.2
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Abbreviations for Intel GPUs

AIC Add-in Card . . . . . . . . . . . . . . . . . . . . . . . 3.1

DPC++ Data Parallel C++ Introduction, 1, 3.2, 3.3, 4.1, 5.2, 5.3, 5.4

DPCT DPC++ Compatibility Tool . . . . . . . . . . . . 3.2, 5.2

PVC Ponte Vecchio . . . . . . . . . . . . 3, 3.1, 3.2, 3.3, 5.1, 5.4

Abbreviations for AMD GPUs

CU Compute Unit . . . . . . . . . . . . . 1, 2, 5, 5.1, 5.2, 5.3

GCD Graphics Compute Die . . . . . . . . . . . 3.1, 5.1, 5.3, 5.4

HIP Heterogeneous Computing Interface for Portability . .
. . . . . . . . . . . . . . . . Introduction, 1, 3.2, 3.3, 4.1, 5.1, 5.2, 5.3

Abbreviations for GPU BR100

CU . . . . . . . . . . . . . . . . . . . . . . . 1, 2, 5, 5.1, 5.2, 5.3

SVI Secure Virtual Instance . . . . . . . . . . . . . . . . . 2
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