
PROGRAM SYSTEMS: THEORY AND APPLICATIONS ISSN 2079-3316

© Iakusheva S. F., Khritankov A. S. 2024 CC-BY-4.0

Review Article optimization methods and control theory

UDC 004.415.53
DOI 10.25209/2079-3316-2024-15-2-37-86

A systematic review of methods for deriving
metamorphic relations

Sofia Fedorovna Iakusheva1, Anton Sergeevich Khritankov2

1, 2 Moscow Institute of Physics and Technology, Moscow, Russia
2 Higher School of Economics, Moscow, Russia

1 yakusheva.sf@phystech.edu

Abstract. Metamorphic testing is one of the most effective methods
of testing programs with the test oracle problem. This problem declares that
it is impossible to know whether the test answer is correct for one reason or
another. Metamorphic testing uses metamorphic relations to check the program
correctness. Metamorphic relation is a function of several test inputs and
corresponding outputs of the program. Developing metamorphic relations can be
a non-trivial task.

This systematic review is dedicated to identifying general derivation techniques
for metamorphic relation as well as techniques pertinent to particular domains.
As a result, we propose a classification of techniques into six main types and
compile a comparative table of input data transformations for testing tasks
in different domains. Findings of this review will help researchers to apply
metamorphic testing in practice.

Key words and phrases: metamorphic testing, metamorphic relation, software
testing, test oracle problem

2020 Mathematics Subject Classification: 97P99; 97U99

For citation: Sofia F. Iakusheva, Anton S. Khritankov. A systematic
review of methods for deriving metamorphic relations. Program Systems:
Theory and Applications, 2024, 15:2(61), pp. 37–86. https:
//psta.psiras.ru/read/psta2024_2_37-86.pdf

psta.psiras.ru/index_en.htm
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2024-15-2-37-86&domain=pdf&date_stamp=2024-05-14
http://scs.viniti.ru/udc/
https://doi.org/10.25209/2079-3316-2024-15-2-37-86
http://mipt.ru//
http://www.hse.ru/en
mailto: yakusheva.sf@phystech.edu
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=97P99
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=97U99
psta.psiras.ru/index_en.htm
psta.psiras.ru/index_en.htm
https://psta.psiras.ru/read/psta2024_2_37-86.pdf
https://psta.psiras.ru/read/psta2024_2_37-86.pdf

62 Sofia F. Iakusheva, Anton S. Khritankov

input
X program

test oracle

answer
Y’

right
answer

Y

Figure 1. An example of checking the test. The role of the
oracle is to compare the answer with the right one.

Introduction

Software quality control is a crucial part of the development process.
At this stage, one verifies that the software meets all the set requirements,
which means it will behave in an expected and previously known manner.
Software deviations from the stated requirements regularly become the
causes of aircraft crashes, self-driving car accidents, failures of space
missions, and data security breaches [1]. Non-compliance with the
requirements is a good reason for modifying the developed system or
decommissioning the one already in use.

Software testing is one of the methods for quality monitoring during
the software development process. Software testing identifies incorrect
program behavior, violations of functional and non-functional requirements,
and usage scenarios not provided in the documentation. A test oracle [2] is
a function that determines the correctness of a program’s response. The
simplest test oracle compares the program response with a previously
known answer (see Figure 1).

A more complex example could be an oracle that checks the correctness
of the Hamiltonian path in a graph: it is enough to check the inclusion
of all vertices of the graph in the path with the connecting edges; this test
does not require an answer known a priori. In poorly formalized cases, if
the requirements are inaccurate or a high level of expertise is necessary,
then a user, an expert, or another program can be taken as a test oracle.

When testing knowledge-intensive, non-deterministic, distributed
software systems, the so-called test oracle problem became a significant

A systematic review of metamorphic testing 63

obstacle. The test oracle problem [3] is the difficulty in devising test
oracles, especially automatic ones. The problem is relevant in situations
that require exhaustive search to find an exact solution. Such situations
appear in bioinformatics and combinatorics, in machine learning tasks due
to the costly process of test data collection and labeling or tasks of creating
artistic objects due to the need for human evaluation of conformance to
the poorly stated requirements. However, there are various methods to
approach this problem. Property-based testing, for instance, checks the
fulfillment of a given relationship between the inputs and outputs of a
program. Metamorphic testing is a variation of this method.

1. Metamorphic testing

1.1. Definitions and examples

Metamorphic testing [4] is used in many areas and has several
development directions [5, 6]. The idea of the method is to check
a metamorphic relation between stimuli and responses instead of the
correctness of each specific program response. A metamorphic relation is
a function calculated on several program inputs and outputs:

R(x1, x2, . . . , xn, f(x1), f(x2), . . . , f(xn)) −→ {0, 1},(1)

where n ⩾ 2 denotes the number of runs in the test case, xi — input data
for the i-th run in the test case, f(xi)— the i-th output. The metamorphic
testing technique consists of the following steps. First, we set the procedure
for obtaining input data which can involve using a data generator. Next,
we run the program on generated inputs in the test case and check the
if the relation holds. If there are input data for which R is zero, then
there are errors or non-compliances with the requirements. Thus, instead
of directly checking the answers, the method uses the so-called derived test
oracle [6]. The construction of such a relation for a number of problems
can naturally follow from the properties of the problem solved by the
program and can be simpler for a program developer or researcher.

64 Sofia F. Iakusheva, Anton S. Khritankov

program
O(X,Y)

output
X

output
Y

I(X,Y)

input X

input Y

Figure 2. A simple example of metamorphic testing. The
metamorphic relation is a function R(x, y,X, Y) = I(x, y) ∩
O(X,Y). Presence of dependence I(x, y) between test inputs
should cause the presence of the dependence O(X,Y) between
outputs.

A common metamorphic relation has the following statement. If two
elements of the input data sequence satisfy some relation I, then the two
corresponding program responses must satisfy the relation O (see Figure 2):

(2) R(x1, x2, . . . , xn, f(x1), f(x2), . . . , f(xn)) =

= I(x1, x2, . . . , xn) ∩O(f(x1), f(x2), . . . , f(xn)),

where I is the transformation of the input data, O is the expected
relationship between the outputs, n ⩾ 2 is the total number of test runs
in the test case, xi is the input data for the i-th run in the test case, and
f(xi) is the i-th program output (see Figure 2). We will consider relations
under the conditions that test runs are independent and that the initial
state of the program in each run is known.

As an example, let us describe several metamorphic relations for
checking the correct execution of queries to a relational database containing
a table T = a|b|c|..., where a, b, c are the table columns.

• Let A and B be two search conditions. Then the answer of a query
with condition A ∩ B is a subset of the answer of a query with
condition A (similar to B).

• Let A be a search condition. The answers to the query with condition
A and the query with condition ¬A do not intersect.

A systematic review of metamorphic testing 65

• Let A be a search condition. The number of answers to a query with
condition A when sorting in ascending order of column a and when
sorting in descending order of column a is the same.

1.2. Terminology

Metamorphic testing is rarely discussed in Russian scientific literature,
so it does not have a common terminology in Russian. Some researchers
use the term метаморфное тестирование which is the literal translation
of the English term metamorphic testing.

Authors use terms тестирование инвариантами (invariant testing)
for metamorphic testing and тестовый инвариант (test invariant)
for metamorphic relation in Russian text. Such terms are much easier
to understand and to remember due to the simple close relation with
the definition. In mathematical literature, invariant means a value or
a property that is constant in the situation under observation. Test
invariant usually means a function that preserves its value if the parameters
change as expected. In physics, an invariant has a similar meaning, for
example, in the phrase time translation invariance. The formula 1.1 defines
such a function, so by meaning metamorphic relation we assume a test
invariant. Moreover, a test invariant can be derived as a corollary from a
mathematical model of the problem solved by the program. So the used
terms тестовый инвариант and тестирование инвариантами are
suitable translations from English.

2. Research goals and methods

At the current stage of the development of metamorphic testing,
one of the unsolved problems is developing a methodology for devising
metamorphic relations. A widely applicable method is still missing for
programs that solve different applied problems in many areas. This leads
to a effort-intensive compilation of metamorphic relations practically from
scratch in each specific case.

In this study, we set the following tasks to overcome difficulties
in devising metamorphic relations.

(1) Identify common and reusable techniques (patterns) for devising
metamorphic relations in different problem areas. The results are
given in Section 4.

66 Sofia F. Iakusheva, Anton S. Khritankov

(2) Determine specific traits of metamorphic testing for machine learning
and data analysis programs that may allow for constructing more
effective relations. More details are in Section 5.

(3) Identify indirect methods for obtaining the relations, as well as ways
to combine relations with other methods in order to simplify the
use of metamorphic testing in non-standard cases. The results are
collected in Section 7.

(4) Identify omissions and opportunities for further development of meth-
ods for devising metamorphic relations. The results are given in
Section 3 and Section 6.

We apply a systematic review method [7] to achieve the goals of the
study. B. Kitchenham proposed this method for conducting meta-research
(secondary study) in software engineering. This method can improve the
reproducibility of the results and the validity of the conclusions.

To select publications, the following criteria were used: novelty,
publication in the period from 2018 to 2023, accessibility to the reader,
relevance to the research topic, detailed and clear description of the test
invariants used, the presence of practical results in the work, and the
possibility of generalizing the ideas used and techniques. The quality of the
proposed invariants was not considered a search criterion, since the total
number of studies on the topic is not enough to apply statistical methods
for determining the average effectiveness of a particular invariant.

In order to outline the basic results of invariant testing, the review also
includes seminal works in each area, some of which were published before
2018. To select them, the following criteria were used: relevance to the
topic, citation, depth and versatility of the proposed ideas and methods,
and practical value. The search followed the same rules, but no publication
date restriction was applied. During the search, lists of sources from the
most famous English-language review articles [4,6] on this topic were
additionally used. Also, seminal works have been replaced by sources that
cite and reuse test invariants from these earlier works without significant
modifications.

A systematic review of metamorphic testing 67

We searched for publications in Google Scholar in English using
the keywords “metamorphic testing”, “metamorphic relation”, “neural
network”, “classification”, “maps”, “graphs”, “natural language processing”
and combinations of these words. We identify some additional publications
by reviewing the reference lists from these publications. The presence
of the word “metamorphic” in the source text is necessary since there are
no alternative names for this method in the English literature. The search
excluded patents and citations, review articles on related fields and various
testing methods, and articles that only mentioned usage of metamorphic
testing. The search was conducted from June 14 to September 13, 2023.

We found more than two thousand publications using the keywords
“metamorphic testing” for the period from 2019 to 2023. This fact indicates
the relevance and interest of researchers in this topic. We selected and
studied about 120 papers and included 66 of them in this study.

We also searched for Russian-language publications in eLibrary. We
found only one work on the topic, a short paper [8], and one article from
a related field of verification of flowcharts [9].

We reviewed a description of the subject area, the solved problem,
and the relations proposed in each publication. Then, we grouped this
information by subject areas and identified the most popular ideas and
techniques in each area. We also selected a brief description of the method
from the reviewed articles that describe techniques for devising the relations.

Finally, we generalize the selected approaches. At this stage, we form
a classification of methods for developing metamorphic methods based
on input data transformations. Using this classification, we describe
patterns for developing relations that can be applied in many areas.

3. Classification of metamorphic relations

An analysis of the selected metamorphic relations showed that they
could be rewritten in the same form (2). We formulated a classification
of metamorphic relations based on the types of input data transformations

68 Sofia F. Iakusheva, Anton S. Khritankov

Table 1. Classification by transformation of input data

Transformation Meaning

LT linear transform linear transformation (including increasing or
decreasing, multiplication by a constant)

SM symmetry reflectional and rotational symmetries,
symmetrical relations and others

PR permutative permutation of elements of initial data

IE inclusive / exclusive inclusion/exclusion of elements from a set

BC blur / change replacement or modification,
adding random noise

UD unite / divide merging or splitting input data

I (see table 1). These transformations allow us to obtain the input data
I(x1, x2, . . . , xn) for metamorphic relations.

The classification we describe does not include a few rare metamorphic
relations tied to a specific problem so that their generalization is currently
of no interest. A few examples of such relations are described in section 4.2.

4. Patterns for devising metamorphic relations

In this section, when we describe the methods used in the literature for
compiling metamorphic relations, we will immediately indicate in parenthe-
ses, which of the previously identified classes it belongs to. For example,
multiplying numerical parameters by a non-zero constant can be classified
as linear transformations (LT).

4.1. Common techniques

Popular techniques for testing models and algorithms are changing
parameters, rearranging equivalent parameters, and adding noise.

Often, researchers use a parameter change (LT) to clearly predict the
change in the result (whether it will improve, worsen, change by a known
amount, or not change at all). Examples include changing the number
of computing devices [10], changing the parameters of the epidemiological

A systematic review of metamorphic testing 69

model [11,12], parameters and hyperparameters of neural network models
[13].

Permutations of equivalent parameters or inputs (PR) are a popular
method. Frequently, one can expect the same output of the program
execution. For example, permutation of users of cloud services [10],
operations performed under multi-threading conditions [14], and input
data in stochastic optimization [15] should not affect the program output.
The order in which one adds requirements when booking a hotel using
a bot [16] should not affect the search results.

Adding noise (BC) is a widely used technique: errors [17,18], noise
[19–21], distortions [22], use of language features [23]. Usually, researchers
expect that the added noise will not change the output, or at least will not
improve it. If one replaces the original data (BC), the result usually be
expected to change. For example, we can cite the already mentioned
relation from section 1 with the conditions A and ¬A. With such a change
in the input, the output should completely change and not intersect with
the previous one.

Adding or removing parts of the source data (UD) is less common. For
example, adding new users of cloud services [10], adding and removing
language units from the text [24], parts of the input data [18,25].

The technique of using symmetrical inputs is fruitful in the areas
of imagery and geoinformatics. For example, reflection of a chessboard [26]
when testing chess playing algorithms, reflection of images relative to the
axes [27], time reversal of video sequences [27], rotations and reflections
of card images [28], reflections of detected data clusters over a line [29].

4.2. Using the properties of the mathematical model and the
subject area

One can use the properties of a mathematical model of the problem or
a program to obtain metamorphic relations. For example, Guderlei et al.
[30] compare the sampling results to the given statistical distribution.
Researchers test deep neural network compilers [31] by adding source code
that leads an equivalent program but changes the resulting computational
graph (IE). Both the properties of the chessboard and the ranking of the
pieces are used to test chess algorithms [26], for example, reflections of the
board (SM), replacement of the pieces with ones of a different color (PR),

70 Sofia F. Iakusheva, Anton S. Khritankov

or stronger or weaker ones (BC). In article [32], the authors propose
to apply matrix transformations (LT) and modulo operations (LT) to
construct metamorphic relations for testing hashing algorithms that use
matrix transformations and the RSA algorithm. Removing particular bits
in the message (IE) and splitting the message into parts (UD) are applied
to test another hashing algorithm [33]. In these cases, the hash value
should change after transformations.

Sometimes, domain features are useful for constructing metamorphic
relations. Testing a comparative genetic analysis system [34] uses the
ability to separate mutations into non-overlapping classes. The work
on testing driver assistant systems [35] uses some considerations about
labeled maps; for example, highways and buildings do not have common
areas, and forbidden parts of some paths do not intersect other paths. The
work on testing an application with a microservice architecture [36] uses
the features of the payment system. For example, the sum of creditor
and debtor balances should remain the same after moving data from one
microservice to another.

5. Methods for devising metamorphic relations in different areas

5.1. Search algorithms

When testing search algorithms, one checks if the program output
changes in the expected way after adding or removing search conditions
(IE). New elements should not appear in the output after adding a new
condition [36,37], and old ones should not disappear after removing
a condition. A paper on testing the hotel booking bot uses changing the
order of adding search terms (PR) [16]. Another paper [27] uses symmetry:
search results sorted in descending order can be obtained from the results
sorted in ascending order after reversing (SM). The product price should
not depend on the search query (BC) [27], and the search results should be
the same for different languages (BC) [27] and for users around the world
(BC). Such a relation would test if outputs differ due to the inconsistencies
among different database replicas in a distributed system.

5.2. Machine learning and data analysis

Due to the complexity of testing machine learning systems and data
analysis algorithms, researchers propose many interesting techniques

A systematic review of metamorphic testing 71

and transformations of input data. One of the common techniques is
a repartition of the training dataset (UD). For example, adding or excluding
an element from the data sample [29,39,40], adding or excluding entire
classes [39,40], duplicating elements of the training set [39], changing
labels of data elements (BC)[40], addition and exclusion of features
(IE) [29,39,40]. The exclusion of non-important features should not
significantly change the classification quality, and the exclusion of significant
ones should not improve. Permutations (PR) of features [39,40], class
labels [39,40], elements of the training set [29], as a rule, should not
significantly change the final quality of the classifier. A paper on testing
prediction tools for protein properties [41] uses transformations of proteins
that are guaranteed to change their function (BC), and the model should
also change the prediction.

Linear transformations (LT) are less popular in this area. One can
use the application of an affine transformation to sample features [40],
rotations, and transformations of the coordinate system in space [29]
(such transformations should not significantly affect the program output).
Xie et al. [29] propose several more techniques for testing clusterization
algorithms: compressing selected clusters to their centers (LT), adding
elements inside the convex hull of clusters (UD), and adding outliers (UD).
The idea of symmetry (SM) results as a technique of reflecting clusters over
a line [29].

5.3. Deep learning and neural networks

One can use the methods proposed for testing machine learning models
to test deep neural networks. For example, linear feature transformation
(LT) [13,19,42]), permutation of class labels (PR) [13], repartition
of data into train and test samples (UD) [13], data duplication (UD) [13],
increasing or decreasing the learning algorithm parameters (LT) (e.g.
learning rate, the α parameter in the nonlinear activation function ReLU,
the number of training epochs, the number of neurons in layers [13]).

Another set of techniques is applied for testing image processing
algorithms. Checking for quality of facial recognition uses changing the
hair color, eyebrows, and sex, and adding glasses, mustache, and beard
(BC) [43]. Testing of self-driving cars involves changing the weather (BC)
[44,45] or replacing the background (BC) [46] on the pictures. Xu et al.
[47] propose the idea of using inequalities for the detection logits on the

72 Sofia F. Iakusheva, Anton S. Khritankov

image and on its parts (UD). Other techniques use symmetries (SM):
reflection [27], video reversal [27], as well as perspective transformations
(LT) [48] and brightness change (LT) [48]. A new idea is to add watermarks
(BC) and masks (UD) [48]. Park et al. [49] add new objects to the images
(UD) to test the model.

One can check robustness of the model with noise reduction (BC)
[19–21] and data distortion (BC) [22]. Another technique is to use the
permutations of elements of the training sample (PR) [42], training and
target features (PR) [42], image channels [48].

5.4. Natural language processing

A connection between changes in the text and changes in its meaning
or other parameters under consideration is unclear. Therefore, input
data transformations that do not change the system output are the most
popular for testing natural language processing systems. Thus, techniques
for input data transformation use the spelling and grammar features
of languages, for example, English and Chinese.

A common technique is to add a substitution that should not change
the program output (BC). Replacement of a morphological or semantic
entity property, for example, gender [50], is used to recognize discrimination.
Robustness check uses the replacement of a word with its synonym,
translation into another language or an unrelated word [16, 23, 51],
replacement of symbols with similar ones (visually or phonetically) or
with ’*’ [23]. Other transformations are voice change (BC), replacement
of certain words, for example, «before» with «after» (BC), change in the
order of sentence members (PR) [51], noise with typos (BC) [23], word
skipping (IE) [16]. Wang et al. [23] propose several more ideas for systems
to analyze the Chinese language: splitting words and characters into parts
(UD), merging letter combinations (UD), rearranging letters in a word
(PR), abbreviating to an acronym (UD), inserting special offers-indicators
(IE) for recognition. Such transformations can be fruitful for assessing the
robustness of the model.

In automatic translation, the replacement of a noun for another
helps to determine translation consistency (BC) [52]. One can also use
symmetries (SM): the source text and its back translation from another
language [27,53]; direct translation from language A to language B and
translation from language A to language B via a third language C [54].

Researchers successfully apply metamorphic testing to named entity
recognition systems. An article [24] on recognizing entities in the text uses

A systematic review of metamorphic testing 73

transformations that preserve existing entities: paragraph permutations
(PR), permutations of a list of added random words (PR), and sentence
merging. Adding and deleting random words, sentences, and paragraphs
(UD) should not result in the disappearance of previously recognized
entities. Sun et al. [55] use swapping entities (SM) and replacing entities
(BC) to test a system that searches for relationships between entities.
These transformations do not affect the existence of the relationship and
use its symmetry.

5.5. Graph models. Geoinformatics

Graph models are used for various tasks like searching for routes [28]
and modeling gene interactions [17]. One can structurally modify the
graph model by adding or removing vertices and edges. For example, Chen
et al. [17] consider a tool for modeling gene regulatory networks. They use
transformations that obviously increase or decrease indicators, for example,
changes in the edge or vertex parameter (LT), adding or removing vertices
and edges with different properties (IE). The work [56] on testing a model
that simulates the spread of news in a social network also uses changes
in parameters with predictable results: changes in weights, types, and
parameters of neighboring vertices, and others.

Important mathematical properties of the graph model for geographical
data are the symmetry of the reachability and the triangle inequality.
Based on them, several authros propose to swap the beginning and the
end of the route (SM) [27,28] and apply the triangle inequality to the
lengths of routes A-C-B and A-B (UD) [28] and to their costs (UD)
[38]. The triangle inequality also applies when adding and removing
obstacles (IE) [28], adding conditions (IE) [38]. Some relations use
robustness assumptions (BC): a small change in the starting points does
not dramatically change the program output [38], and the same request
after a short period of time results in the same output [27].

In cartography and route planning software, researchers additionally
use transformations that change only the presentation of the map image.
For example, changing the coordinate system [28] (LT), rotational
symmetries, and reflecting the map over a line [28] (SM). As a result, such
transformations do not change the output. When the scale of the image is
changed, they change the path length proportionally.

Iqbal et al. [35] use domain-specific features of labeled maps. They
check that each path has at least one start and one finish, every roundabout
has an entrance and an exit, and the forbidden parts of some paths do not
intersect other paths.

74 Sofia F. Iakusheva, Anton S. Khritankov

5.6. Bioinformatics (texts)

Metamorphic testing is applied to testing aligners. An aligner is
a program that determines the coordinates of small sections of nucleic acids
read by a sequencer (so-called reads) on the reference genome. If an aligner
calculates the read coordinates successfully, this read is called mapped;
otherwise, it is called unmapped.

The use of inverted reads [17, 18] is an example of reflections.
Researchers also propose changing the order of reads in the input (PR)
[18], permutation of letters in the alphabet (PR) [17], adding [18,25] and
deleting [18] reads (UD), using only mapped or unmapped reads (UD)
[18,25], reads expansion (IE) [18], adding and removing sets of reads (UD)
[17], changing the maximum allowed number of mismatches [17]. Also, one
can add [17] and remove [17,18] errors in reads (BC), replace errors
with errors of a different type (BC) [17]. These operations may require
a comparison of reads with the corresponding regions of the reference
genome.

5.7. Compilers

A compiler is a program that converts code written in a programming
language into a set of machine codes. The main idea used to test compilers
is to create a program equivalent to the original one. Donaldson et al. [57]
add dead code and identity functions (IE). Le et al. [58] use program
reduction (BC) through sophisticated code coverage analysis.

Nowadays, some specialized compilers transform a high-level deep
neural network model into optimized executable code. Xiao et al. [31] add
complex constructions to test such a compiler. These constructions create
a duplicate of the initial program but change the resulting computation
graph (IE).

6. Analysis of the application of methods for relation construction
by areas

We compile a summary table 2 based on the input data transformations
patterns. The table cells contain objects, parameters, and properties.
The column indicates the method of input transformation, and the row
indicates the area. One can note that these transformations often change
the minimal indivisible units from the area under consideration, such as
a vertex or an edge of a graph, a sample element, a language unit, or their
representation in computer memory.

A
sy

stem
atic

r
ev

iew
o
f

m
eta

m
o
r
ph

ic
testin

g
7
5

Table 2. Transformations of input data for metamorphic relations

Area LT SM PR IE BC UD

Search
algorithms output order order

of conditions a condition
language,
send
position

Machine learning a scale, pa-
rameters

symmet-rical
object

equivalent
properties properties a label a sample

Deep neural
networks

properties,
hyperpa-
rameters

symmet-rical
object

properties,
classes new objects

an object,
a back-
ground

a sample,
an image

Geoinformatics coordinate
system

coordinate
system,
relations

a start and
a finish
of the path

obstacles,
conditions a point paths

Graph models an edge
a start and
a finish of the
path

vertices paths

Natural language
processing

languages,
entities

language
items

words,
indicators

language
and items

language
items

Bioinformatics reads, an
alphabet

reads, an
alphabet

reads,
mutations,
genes

reads,
errors reads

Compilers syntax
constructions

text of the
program

76 Sofia F. Iakusheva, Anton S. Khritankov

We were not able to find relations of all six identified types for all the
considered areas, which may serve as a direction for further research.
In addition, discovered relations have not yet used transformations of all
possible units of the areas under consideration. For example, one can add
noise to the capacities and other characteristics of vertices and edges in a
graph (BC) and rearrange the edges themselves (PR) when storing the
graph in the form of adjacency lists. In natural language processing, one can
try to use the vector representation of words to apply linear transformations
(LT). In object detection, collage images can help to compare results (UD).
For search queries, one can change the filter parameter (LT) and compare
the number of responses for different parameter ranges (UD). For example,
the total number of responses equals the sum of the number of responses
for the two halves of this range.

Thus, the resulting table shows the following algorithm for compiling
relations. Researchers consider the minimal units in the subject area and
apply transformations from the six specified groups. One can obtain
a metamorphic relation if it is possible to say unambiguously what change
in the output the transformation should lead to.

7. Other methods for metamorphic relations

In addition to obtaining relations directly from the problem statement
or model properties, it is possible to make compositions of already existing
metamorphic relations, combine them with the methods of mathematical
statistics for application to stochastic systems, and combine them with
other methods. These techniques also help to obtain new, sometimes more
effective, relations, so let us consider them in more detail.

Application of statistical methods in metamorphic testing.
Random errors may occur during the testing of stochastic systems with
metamorphic testing, so one can use statistical approaches to verify the
correctness of relations. One of the first works on statistics in metamorphic
testing [30] considers testing the properties of a specific statistical
distribution implementation as an example. More recent works use
statistical methods to determine the fulfillment of relations (ANOVA [54],
Spearman’s rank correlation [59], a criterion for testing the presence
of statistically significant differences [60, 61]). The work on testing
multi-armed bandits [74] proposes another generalization: the relation is
defined as a composition of the procedure for obtaining a sample and
a statistical criterion.

A systematic review of metamorphic testing 77

Search for relations. Relations are not always easily derived from
the problem statement or model of the solution algorithm. In addition, this
process is currently poorly automated. Therefore, a separate direction
in metamorphic testing considers searching for approaches for metamorphic
relations [62,63]. Zhang et al. [64] propose an approach for searching
metamorphic relations as polynomial functions, and Sun et al. [65] search
the relations dynamically by categories of inputs and outputs. The work
[66] proposes the SVM algorithm application on program graphs to predict
relations. Blasi et al. [67] propose to search for descriptions in natural
language that can be converted into metamorphic relations.

Special types and compositions of relations. One of the early
works in this field [68] proposes iteratively selecting input data for test
cases. The paper [69] develops this idea and applies it to testing the linear
model. The output of the first test run is used to get the next one. The
work [39] proposes the idea of multidimensional metamorphic relations.
The work on spectrum-based fault localization [70] introduces the concept
of a metamorphic slice.

An early work on relation composition [71] examines non-trivial
composition functions and shows that the defect discovery effectiveness
of the composition usually exceeds the total effectiveness of individual
relations. Authors of [72] conduct a theoretical study of the possibilities
of composition and discuss some examples. The article on checking
geographic systems [73] uses relations compositions of the form z(y(x()))
with 2-4 functions, and uses the simple relations intended to check various
properties: test requirements, program properties, algorithm properties, etc.
The work on testing a bioinformatic pipeline [34] proposes a method for
compiling compositions of metamorphic relations for systems using logical
functions.

Combinations with other methods. Metamorphic testing can be
combined with fuzzing. hlZhou et al. [21] slightly distort the LIDAR
data, which makes it possible to evaluate the system’s robustness. An
interesting technique is the use of metamorphic testing and adaptive
random testing [75]: when generating a subsequent test, the distance to
the three previous ones is measured. In addition, metamorphic testing is
used in spectrum-based fault localization [70] and in combination with
genetic algorithms [76].

78 Sofia F. Iakusheva, Anton S. Khritankov

Conclusion

This systematic review examines methods and patterns for constructing
metamorphic relations in various fields of knowledge. We analyze the
available literature, identify the most frequently applied techniques, and
examine popular application areas of metamorphic testing in detail.

As a result of the study,

• We have identified six common types of input data transformations
that are used in the formulation of metamorphic relations: linear
transformations, symmetries, permutations, adding or removing
elements, replacing or adding noise, and merging or splitting into
parts.

• We have analyzed and compared relations for problems from different
fields of knowledge;

• We have considered indirect methods for obtaining relations, such as
creating compositions of existing ones, using statistical approaches,
and combining them with other methods;

• We have obtained a summary table of the variable units in each area
and identify opportunities for compiling new relations.

The results of this analysis can contribute to the development of a
general theory of building metamorphic relations, the popularization
of metamorphic testing, and the creation of new test automation technologies
and applications. We hope our work will help researchers apply metamorphic
testing more easily and quickly.

References

[1] W.E. Wong, V. Debroy, A. Surampudi, H. Kim, M.F. Siok. “Recent
catastrophic accidents: Investigating how software was responsible”, 2010
Fourth International Conference on Secure Software Integration and Reliability
Improvement (09-11 June 2010, Singapore), 2010, pp. 14–22. https://doi.org/10.1109/SSIRI.2010.38↑62

[2] W. Howden. “Theoretical and empirical studies of program testing”, IEEE
Transactions on Software Engineering, SE-4:4 (1978), pp. 293–298. https://doi.org/10.1109/TSE.1978.231514↑62

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo. “The oracle problem
in software testing: A survey”, IEEE Transactions on Software Engineering,
41:5 (2015), pp. 507–525. https://doi.org/10.1109/TSE.2014.2372785↑63

[4] T. Y. Chen, S. C. Cheung, S. M. Yiu. Metamorphic testing: a new approach for
generating next test cases, 2020, 11 pp. arXivarXiv 2002.12543 ↑63, 66

https://doi.org/10.1109/SSIRI.2010.38
https://doi.org/10.1109/TSE.1978.231514
https://doi.org/10.1109/TSE.2014.2372785
https://arxiv.org/abs/2002.12543

A systematic review of metamorphic testing 79

[5] T. Y. Chen, T. Tse. “New visions on metamorphic testing after a quarter of a
century of inception”, Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 1487–1490. https://doi.org/10.1145/3468264.3473136↑63

[6] T.Y. Chen, F. -C. Kuo, H. Liu, P. -L. Poon, D. Towey, T. Tse, Z.Q. Zhou.
“Metamorphic testing: A review of challenges and opportunities”, ACM
Computing Surveys, 51:1 (2018), pp. 1–27. https://doi.org/10.1145/3143561↑63, 66

[7] B. Kitchenham. Procedures for performing systematic reviews, Keele University
Technical Report TR/SE-0401, Keele University, Keele, UK, 2004, 33 pp. [URL] ↑66

[8] R.R. Fal’kovskij. “Metamorphic testing of image enhancement programs”,
XIX Mezhdunarodnaya telekommunikacionnaya konferenciya molodyx uchenyx i
studentov “MOLODEZh’ I NAUKA”, Tezisy dokladov. V. 3, NIYaU MIFI, M.,
2015, ISBN 978-5-7262-2223-3, pp. 176–177 (in Russian). https://lib-repository.mephi.ru/conferences_mephi/2015_MOLODEZH_I_NAUKA_CHast3.pdfURL ↑67

[9] A.M. Mironov. “Verification of programs by the method of invariants”,
Intellektual’nye sistemy. Teoriya i prilozheniya, 21:4 (2017), pp. 31–49 (in
Russian). http://mi.mathnet.ru/ista27MN ↑67

[10] A. Núñez, P. C. Cañizares, M. Núñez, R. M Hierons. “TEA-Cloud: A formal
framework for testing cloud computing systems”, IEEE Transactions on
Reliability, 70:1 (2020), pp. 261–284. https://doi.org/10.1109/TR.2020.3011512↑68, 69

[11] L. L. Pullum, O. Ozmen. “Early results from metamorphic testing of
epidemiological models”, 2012 ASE/IEEE International Conference on
BioMedical Computing (BioMedCom) (14-16 December 2012, Washington, DC,
USA), IEEE, 2012, pp. 62–67. https://doi.org/10.1109/BioMedCom.2012.17↑69

[12] A. Ramanathan, C. A. Steed, L. L. Pullum. “Verification of compartmental
epidemiological models using metamorphic testing, model checking and
visual analytics”, 2012 ASE/IEEE International Conference on BioMedical
Computing (BioMedCom) (14-16 December 2012, Washington, DC, USA),
IEEE, 2012, pp. 68–73. https://doi.org/10.1109/BioMedCom.2012.18↑69

[13] J.D. Ellis, R. Iqbal, K. Yoshimatsu. “Verification of the neural network
training process for spectrum-based chemical substructure prediction using
metamorphic testing”, Journal of Computational Science, 55 (2021), id. 101456.
https://doi.org/10.1016/j.jocs.2021.101456↑69, 71

[14] C. -A. Sun, H. Dai, N. Geng, H. Liu, T. Y. Chen, P. Wu, Y. Cai, J. Wang. “An
interleaving guided metamorphic testing approach for concurrent programs”,
ACM Transactions on Software Engineering and Methodology, 33:1 (2023),
id. 8, 21 pp. https://doi.org/10.1145/3607182↑69

[15] S. Yoo. “Metamorphic testing of stochastic optimisation”, 2010 Third
International Conference on Software Testing, Verification, and Validation
Workshops (06-10 April 2010, Paris, France), IEEE, 2010, pp. 192–201. https://doi.org/10.1109/ICSTW.2010.26↑69

[16] J. Bozic, F. Wotawa. “Testing chatbots using metamorphic relations”, Testing
Software and Systems, 31st IFIP WG 6.1 International Conference, ICTSS 2019
(15-17 October 2019, Paris, France), Lecture Notes in Computer Science,
vol. 11812, eds. Gaston C., Kosmatov N., Le Gall P., Springer, Cham, 2019,
ISBN 978-3-030-31279-4, pp. 41–55. https://doi.org/10.1007/978-3-030-31280-0_3↑69, 70, 72

https://doi.org/10.1145/3468264.3473136
https://doi.org/10.1145/3143561
https://www.researchgate.net/publication/228756057_Procedures_for_Performing_Systematic_Reviews
https://isbnsearch.org/isbn/978-5-7262-2223-3
https://lib-repository.mephi.ru/conferences_mephi/2015_MOLODEZH_I_NAUKA_CHast3.pdf
http://mi.mathnet.ru/ista27
https://doi.org/10.1109/TR.2020.3011512
https://doi.org/10.1109/BioMedCom.2012.17
https://doi.org/10.1109/BioMedCom.2012.18
https://doi.org/10.1016/j.jocs.2021.101456
https://doi.org/10.1145/3607182
https://doi.org/10.1109/ICSTW.2010.26
https://isbnsearch.org/isbn/978-3-030-31279-4
https://doi.org/10.1007/978-3-030-31280-0_3

80 Sofia F. Iakusheva, Anton S. Khritankov

[17] T.Y. Chen, J.W. Ho, H. Liu, X. Xie. “An innovative approach for testing
bioinformatics programs using metamorphic testing”, BMC bioinformatics, 10
(2009), id. 24, 12 pp. https://doi.org/10.1186/1471-2105-10-24↑69, 73, 74

[18] E. Giannoulatou, S. -H. Park, D. T. Humphreys, J. W. Ho. “Verification and
validation of bioinformatics software without a gold standard: a case study of
BWA and Bowtie”, BMC bioinformatics, 15 (2014), id. S15, 8 pp. https://doi.org/10.1186/1471-2105-15-S16-S15↑69, 74

[19] Y. Tian, K. Pei, S. Jana, B. Ray. “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars”, Proceedings of the 40th
International Conference on Software Engineering (27 May 2018-3 June
2018, Gothenburg, Sweden), ACM, New York, 2018, ISBN 978-1-4503-5638-1,
pp. 303–314. https://doi.org/10.1145/3180155.3180220↑69, 71, 72

[20] C. Wu, L. Sun, Z.Q. Zhou. “The impact of a dot: Case studies of a noise
metamorphic relation pattern”, 2019 IEEE/ACM 4th International Workshop
on Metamorphic Testing (MET) (26 May 2019, Montreal, QC, Canada), IEEE,
2019, pp. 17–23. https://doi.org/10.1109/MET.2019.00011↑69, 72

[21] Z. Q. Zhou, L. Sun. “Metamorphic testing of driverless cars”, Communications
of the ACM, 62:3 (2019), pp. 61–67. https://doi.org/10.1145/3241979↑69, 72, 77

[22] S. Nakajima, T. Y. Chen. “Generating biased dataset for metamorphic testing
of machine learning programs”, Testing Software and Systems, 31st IFIP WG
6.1 International Conference, ICTSS 2019 (15-17 October 2019, Paris, France),
Springer, 2019, pp. 56–64. https://doi.org/10.1007/978-3-030-31280-0_4↑69, 72

[23] W. Wang, J. -t. Huang, W. Wu, J. Zhang, Y. Huang, S. Li, P. He, M. R. Lyu.
“Mttm: Metamorphic testing for textual content moderation software”, 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE),
IEEE, 2023, pp. 2387–2399. https://doi.org/10.1109/ICSE48619.2023.00200↑69, 72

[24] M. Srinivasan, M. P. Shahri, I. Kahanda, U. Kanewala. “Quality assurance of
bioinformatics software: a case study of testing a biomedical text processing
tool using metamorphic testing”, Proceedings of the 3rd International Workshop
on Metamorphic Testing (27 May 2018-03 June 2018, Gothenburg, Sweden),
ACM, New York, ISBN 978-1-4503-5729-6, pp. 26–33. https://doi.org/10.1145/3193977.3193981↑69, 72

[25] M. Troup, A. Yang, A. H. Kamali, E. Giannoulatou, T. Y. Chen, J. W. Ho. “A
cloud-based framework for applying metamorphic testing to a bioinformatics
pipeline”, Proceedings of the 1st International Workshop on Metamorphic
Testing (14-22 May 2016, Austin, Texas), ACM, New York, 2016, ISBN
978-1-4503-4163-9, pp. 33–36. https://doi.org/10.1145/2896971.2896975↑69, 74

[26] M. Méndez, M. Benito-Parejo, A. Ibias, M. Núñez. “Metamorphic testing of
chess engines”, Information and Software Technology, 162 (2023), id. 107263.
https://doi.org/10.1016/j.infsof.2023.107263↑69

[27] Z.Q. Zhou, L. Sun, T.Y. Chen, D. Towey. “Metamorphic relations for
enhancing system understanding and use”, IEEE Transactions on Software
Engineering, 46:10 (2018), pp. 1120–1154. https://doi.org/10.1109/TSE.2018.2876433↑69, 70, 72, 73

[28] J. Zhang, Z. Zheng, B. Yin, K. Qiu, Y. Liu. “Testing graph searching based
path planning algorithms by metamorphic testing”, 2019 IEEE 24th Pacific
Rim International Symposium on Dependable Computing (PRDC) (01-03
December 2019, Kyoto, Japan), IEEE, 2019, id. 158, 9 pp. https://doi.org/10.1109/PRDC47002.2019.00046↑69, 73

https://doi.org/10.1186/1471-2105-10-24
https://doi.org/10.1186/1471-2105-15-S16-S15
https://isbnsearch.org/isbn/978-1-4503-5638-1
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/MET.2019.00011
https://doi.org/10.1145/3241979
https://doi.org/10.1007/978-3-030-31280-0_4
https://doi.org/10.1109/ICSE48619.2023.00200
https://isbnsearch.org/isbn/978-1-4503-5729-6
https://doi.org/10.1145/3193977.3193981
https://isbnsearch.org/isbn/978-1-4503-4163-9
https://isbnsearch.org/isbn/978-1-4503-4163-9
https://doi.org/10.1145/2896971.2896975
https://doi.org/10.1016/j.infsof.2023.107263
https://doi.org/10.1109/TSE.2018.2876433
https://doi.org/10.1109/PRDC47002.2019.00046

A systematic review of metamorphic testing 81

[29] X. Xie, Z. Zhang, T.Y. Chen, Y. Liu, P. -L. Poon, B. Xu. “METTLE: A
METamorphic testing approach to assessing and validating unsupervised
machine learning systems”, IEEE Transactions on Reliability, 69:4 (2020),
pp. 1293–1322. https://doi.org/10.1109/TR.2020.2972266↑69, 71

[30] R. Guderlei, J. Mayer. “Statistical metamorphic testing testing programs with
random output by means of statistical hypothesis tests and metamorphic
testing”, Seventh International Conference on Quality Software (QSIC 2007)
(11-12 October 2007, Portland, OR, USA), IEEE, 2007, pp. 404–409. https://doi.org/10.1109/QSIC.2007.4385527↑69, 76

[31] D. Xiao, Z. Liu, Y. Yuan, Q. Pang, S. Wang. “Metamorphic testing of deep
learning compilers”, Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 6:1 (2022), id. 15, 28 pp. https://doi.org/10.1145/3508035↑69, 74

[32] C. -A. Sun, Z. Wang, G. Wang. “A property-based testing framework for
encryption programs”, Frontiers of Computer Science, 8 (2014), pp. 478–489.
https://doi.org/10.1007/s11704-014-3040-y↑70

[33] N. Mouha, M. S. Raunak, D.R. Kuhn, R. Kacker. “Finding bugs in
cryptographic hash function implementations”, IEEE Transactions on
Reliability, 67:3 (2018), pp. 870–884. https://doi.org/10.1109/TR.2018.2847247↑70

[34] S. Iakusheva, A. Khritankov. “Composite metamorphic relations for integration
testing”, Proceedings of the 2022 8th International Conference on Computer
Technology Applications (12-14 May 2022, Vienna, Austria), ACM, New York,
2022, ISBN 978-1-4503-9622-6, pp. 98–105. https://doi.org/10.1145/3543712.3543725↑70, 77

[35] M. Iqbal. “Metamorphic testing of advanced driver-assistance systems:
Implementing Euro NCAP standards on OpenStreetMap”, 2023 IEEE/ACM
8th International Workshop on Metamorphic Testing (MET) (14 May 2023,
Melbourne, Australia), IEEE, 2023, pp. 1–8. https://doi.org/10.1109/MET59151.2023.00008↑70, 73

[36] G. Luo, X. Zheng, H. Liu, R. Xu, D. Nagumothu, R. Janapareddi, E. Zhuang,
X. Liu. “Verification of microservices using metamorphic testing”, Algorithms
and Architectures for Parallel Processing. V. I, 19th International Conference,
ICA3PP 2019 (9-11 December 2019, Melbourne, VIC, Australia), Springer,
2020, pp. 138–152. https://doi.org/10.1007/978-3-030-38991-8_10↑70

[37] S. Segura, J.A. Parejo, J. Troya, A. Ruiz-Cortés. “Metamorphic testing of
RESTful web APIs”, Proceedings of the 40th International Conference on
Software Engineering (27 May 2018–3 June 2018, Gothenburg, Sweden), ACM,
New York, 2018, ISBN 978-1-4503-5638-1, pp. 882. https://doi.org/10.1145/3180155.3182528↑70

[38] J. Brown, Z.Q. Zhou, Y. -W. Chow. Metamorphic testing of navigation
software: A pilot study with Google Maps, University of Wollongong Research
Online, 2018, 12 pp. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2349&context=eispapers1URL ↑73

[39] M. Jia, X. Wang, Y. Xu, Z. Cui, R. Xie. “Testing machine learning classifiers
based on compositional metamorphic relations”, International Journal of
Performability Engineering, 16:1 (2020), pp. 67–77. https://doi.org/10.23940/ijpe.20.01.p8.6777↑71, 77

[40] P. Saha, U. Kanewala. “Fault detection effectiveness of metamorphic
relations developed for testing supervised classifiers”, 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest) (04-09 April 2019,
Newark, CA, USA), IEEE, 2019, pp. 157–164. https://doi.org/10.1109/AITest.2019.00019↑71

https://doi.org/10.1109/TR.2020.2972266
https://doi.org/10.1109/QSIC.2007.4385527
https://doi.org/10.1145/3508035
https://doi.org/10.1007/s11704-014-3040-y
https://doi.org/10.1109/TR.2018.2847247
https://isbnsearch.org/isbn/978-1-4503-9622-6
https://doi.org/10.1145/3543712.3543725
https://doi.org/10.1109/MET59151.2023.00008
https://doi.org/10.1007/978-3-030-38991-8_10
https://isbnsearch.org/isbn/978-1-4503-5638-1
https://doi.org/10.1145/3180155.3182528
https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2349&context=eispapers1
https://doi.org/10.23940/ijpe.20.01.p8.6777
https://doi.org/10.1109/AITest.2019.00019

82 Sofia F. Iakusheva, Anton S. Khritankov

[41] M.P. Shahri, M. Srinivasan, G. Reynolds, D. Bimczok, I. Kahanda,
U. Kanewala. “Metamorphic testing for quality assurance of protein function
prediction tools”, 2019 IEEE International Conference On Artificial Intelligence
Testing (AITest) (04-09 April 2019, Newark, CA, USA), IEEE, 2019,
pp. 140–148. https://doi.org/10.1109/AITest.2019.00017↑71

[42] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. J. C. Bose, N. Dubash,
S. Podder. “Identifying implementation bugs in machine learning based image
classifiers using metamorphic testing”, Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (16-21 July 2018,
Amsterdam, Netherlands), ACM, New York, 2018, ISBN 978-1-4503-5699-2,
pp. 118–128. https://doi.org/10.1145/3213846.3213858↑71, 72

[43] H. Zhu, D. Liu, I. Bayley, R. Harrison, F. Cuzzolin. Datamorphic testing: A
methodology for testing ai applications, 2019, 39 pp. arXivarXiv 1912.04900 ↑71

[44] M. Zhang, Y. Zhang, L. Zhang, C. Liu, S. Khurshid. “DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving
systems”, Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (3-7 September 2018, Montpellier, France),
ACM, New York, 2018, ISBN 978-1-4503-5937-5, pp. 132–142. https://doi.org/10.1145/3238147.3238187↑71

[45] M. Raif, E. -M. Ouafiq, Rharras A. El, A. Chehri, R. Saadane. “Metamorphic
testing for edge real-time face recognition and intrusion detection solution”,
2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall) (26-29
September 2022, London, United Kingdom), IEEE, 2022, pp. 1–5. ↑71

[46] Z. Zhang, P. Wang, H. Guo, Z. Wang, Y. Zhou, Z. Huang. “DeepBackground:
Metamorphic testing for Deep-Learning-driven image recognition systems
accompanied by Background-Relevance”, Information and Software Technology,
140 (2021), id. 106701. https://doi.org/10.1016/j.infsof.2021.106701↑71

[47] L. Xu, D. Towey, A. P. French, S. Benford, Z. Q. Zhou, T. Y. Chen. “Enhancing
supervised classifications with metamorphic relations”, Proceedings of the 3rd
International Workshop on Metamorphic Testing (27 May 2018-03 June 2018,
Gothenburg, Sweden), 2018, pp. 46–53. https://ieeexplore.ieee.org/document/8457613URL ↑71

[48] R. Yan, S. Wang, Y. Yan, H. Gao, J. Yan. “Stability evaluation for text
localization systems via metamorphic testing”, Journal of Systems and Software,
181 (2021), id. 111040. https://doi.org/10.1016/j.jss.2021.111040↑72

[49] H. Park, T. Waseem, W.Q. Teo, Y.H. Low, M.K. Lim, C.Y. Chong.
“Robustness evaluation of stacked generative adversarial networks using
metamorphic testing”, 2021 IEEE/ACM 6th International Workshop on
Metamorphic Testing (MET) (02 June 2021, Madrid, Spain), IEEE, 2021,
pp. 1–8. https://doi.org/10.1109/MET52542.2021.00008↑72

[50] P. Ma, S. Wang, J. Liu. “Metamorphic testing and certified mitigation of
fairness violations in NLP models”, IJCAI’20: Twenty-Ninth International
Joint Conference on Artificial Intelligence (7-15 January 2021, Yokohama,
Japan), 2021, pp. 458–465, id. 64. https://doi.org/10.24963/ijcai.2020/64https://www.ijcai.org/proceedings/2020/0064.pdfURL ↑72

https://doi.org/10.1109/AITest.2019.00017
https://isbnsearch.org/isbn/978-1-4503-5699-2
https://doi.org/10.1145/3213846.3213858
https://arxiv.org/abs/1912.04900
https://isbnsearch.org/isbn/978-1-4503-5937-5
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1016/j.infsof.2021.106701
https://ieeexplore.ieee.org/document/8457613
https://doi.org/10.1016/j.jss.2021.111040
https://doi.org/10.1109/MET52542.2021.00008
https://doi.org/10.24963/ijcai.2020/64
https://www.ijcai.org/proceedings/2020/0064.pdf

A systematic review of metamorphic testing 83

[51] S. Chen, S. Jin, X. Xie. “Validation on machine reading comprehension
software without annotated labels: a property-based method”, Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (23-28 August 2021,
Athens, Greece), ACM, New York, 2021, ISBN 978-1-4503-8562-6, pp. 590–602.
https://doi.org/10.1145/3468264.3468569↑72

[52] L. Sun, Z. Q. Zhou. “Metamorphic testing for machine translations: MT4MT”,
2018 25th Australasian Software Engineering Conference (ASWEC) (26-30
November 2018, Adelaide, SA, Australia), IEEE, 2018, pp. 96–100. https://doi.org/10.1109/ASWEC.2018.00021↑72

[53] W. Gao, J. He, V. -T. Pham. “Metamorphic testing of machine translation
models using back translation”, 2023 IEEE/ACM International Workshop on
Deep Learning for Testing and Testing for Deep Learning (DeepTest) (15 May
2023, Melbourne, Australia), IEEE, 2023, pp. 1–8. https://doi.org/10.1109/DeepTest59248.2023.00008↑72

[54] D. Pesu, Z.Q. Zhou, J. Zhen, D. Towey. “A Monte Carlo method for
metamorphic testing of machine translation services”, Proceedings of the 3rd
International Workshop on Metamorphic Testing (27 May 2018, Gothenburg,
Sweden), ACM, New York, 2018, ISBN 978-1-4503-5729-6, pp. 38–45. https://doi.org/10.1145/3193977.3193980↑72, 76

[55] Y. Sun, Z. Ding, H. Huang, S. Zou, M. Jiang. “Metamorphic testing of relation
extraction models”, Algorithms, 16:2 (2023), pp. 102. https://doi.org/10.3390/a16020102↑73

[56] M. S. Raunak, M.M. Olsen. “Metamorphic testing on the continuum of
verification and validation of simulation models”, 2021 IEEE/ACM 6th
International Workshop on Metamorphic Testing (MET) (02 June 2021,
Madrid, Spain), IEEE, 2021, pp. 47–52. https://doi.org/10.1109/MET52542.2021.00015↑73

[57] A. F. Donaldson, A. Lascu. “Metamorphic testing for (graphics) compilers”,
Proceedings of the 1st International Workshop on Metamorphic Testing (14-22
May 2016, Austin, Texas), ACM, New York, 2016, ISBN 978-1-4503-4163-9,
pp. 44–47. https://doi.org/10.1145/2896971.2896978↑74

[58] V. Le, M. Afshari, Z. Su. “Compiler validation via equivalence modulo inputs”,
ACM Sigplan Notices, 49:6 (2014), pp. 216–226. https://doi.org/10.1145/2666356.2594334↑74

[59] Z.Q. Zhou, T. Tse, M. Witheridge. “Metamorphic robustness testing:
Exposing hidden defects in citation statistics and journal impact factors”, IEEE
Transactions on Software Engineering, 47:6 (2019), pp. 1164–1183. https://doi.org/10.1109/TSE.2019.2915065↑76

[60] J. Ahlgren, M. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova, J. George,
N. Gucevska, M. Harman, M. Lomeli, E. Meijer, S. Sapora. “Testing web
enabled simulation at scale using metamorphic testing”, 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP) (25-28 May 2021, Madrid, Spain), IEEE, 2021, ISBN
978-1-6654-3869-8, pp. 140–149. https://doi.org/10.1109/ICSE-SEIP52600.2021.00023↑76

[61] F. u. Rehman, C. Izurieta. “Statistical metamorphic testing of neural network
based intrusion detection systems”, 2021 IEEE International Conference on
Cyber Security and Resilience (CSR) (26-28 July 2021, Rhodes, Greece), IEEE,
2021, pp. 20–26. https://doi.org/10.1109/CSR51186.2021.9527993↑76

[62] F. Tambon, G. Antoniol, F. Khomh. HOMRS: High order metamorphic
relations selector for deep neural networks, 2021, 33 pp. arXivarXiv 2107.04863 ↑77

https://isbnsearch.org/isbn/978-1-4503-8562-6
https://doi.org/10.1145/3468264.3468569
https://doi.org/10.1109/ASWEC.2018.00021
https://doi.org/10.1109/DeepTest59248.2023.00008
https://isbnsearch.org/isbn/978-1-4503-5729-6
https://doi.org/10.1145/3193977.3193980
https://doi.org/10.3390/a16020102
https://doi.org/10.1109/MET52542.2021.00015
https://isbnsearch.org/isbn/978-1-4503-4163-9
https://doi.org/10.1145/2896971.2896978
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1109/TSE.2019.2915065
https://isbnsearch.org/isbn/978-1-6654-3869-8
https://isbnsearch.org/isbn/978-1-6654-3869-8
https://doi.org/10.1109/ICSE-SEIP52600.2021.00023
https://doi.org/10.1109/CSR51186.2021.9527993
https://arxiv.org/abs/2107.04863

84 Sofia F. Iakusheva, Anton S. Khritankov

[63] P. Zhang, X. Zhou, P. Pelliccione, H. Leung. “RBF-MLMR: A multi-label
metamorphic relation prediction approach using RBF neural network”, IEEE
Access, 5 (2017), pp. 21791–21805. https://doi.org/10.1109/ACCESS.2017.2758790↑77

[64] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, H. Mei. “Search-based
inference of polynomial metamorphic relations”, ASE ’14: Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering
(15-19 September 2014, Vasteras, Sweden), ACM, New York, 2014, ISBN

978-1-4503-3013-8, pp. 701–712. https://doi.org/10.1145/2642937.2642994↑77

[65] C. -A. Sun, A. Fu, P. -L. Poon, X. Xie, H. Liu, T.Y. Chen. “Metric
++: A metamorphic relation identification technique based on input plus
output domains”, IEEE Transactions on Software Engineering, 47:9 (2019),
pp. 1764–1785. https://doi.org/10.1109/TSE.2019.2934848↑77

[66] U. Kanewala, J. M. Bieman, A. Ben-Hur. “Predicting metamorphic relations
for testing scientific software: a machine learning approach using graph kernels”,
Software: Testing, Verification and Reliability, 26:3 (2016), pp. 245–269. https://doi.org/10.1002/stvr.1594↑77

[67] A. Blasi, A. Gorla, M. D. Ernst, Pezzè M., A. Carzaniga. “MeMo: Automatically
identifying metamorphic relations in Javadoc comments for test automation”,
Journal of Systems and Software, 181 (2021), id. 111041. https://doi.org/10.1016/j.jss.2021.111041↑77

[68] P. Wu. “Iterative metamorphic testing”, 29th Annual International Computer
Software and Applications Conference (COMPSAC’05). V. 2 (26-28 July 2005,
Edinburgh, UK), IEEE, 2005, ISBN 0-7695-2413-3, pp. 19–24. https://doi.org/10.1109/COMPSAC.2005.166↑77

[69] Y. Yang, Z. Li, H. Wang, C. Xu, X. Ma. “Towards effective metamorphic
testing by algorithm stability for linear classification programs”, Journal of
Systems and Software, 180 (2021), id. 111012. https://doi.org/10.1016/j.jss.2021.111012↑77

[70] X. Xie, W. E. Wong, T. Y. Chen, B. Xu. “Metamorphic slice: An application
in spectrum-based fault localization”, Information and Software Technology,
55:5 (2013), pp. 866–879. https://doi.org/10.1016/j.infsof.2012.08.008↑77

[71] H. Liu, X. Liu, T.Y. Chen. “A new method for constructing metamorphic
relations”, 2012 12th International Conference on Quality Software (27-29
August 2012, Xi’an, China), IEEE, 2012, pp. 59–68. https://doi.org/10.1109/QSIC.2012.10↑77

[72] K. Qiu, Z. Zheng, T. Y. Chen, P. -L. Poon. “Theoretical and empirical analyses
of the effectiveness of metamorphic relation composition”, IEEE Transactions
on software engineering, 48:3 (2020), pp. 1001–1017. https://doi.org/10.1109/TSE.2020.3009698↑77

[73] Z. -W. Hui, S. Huang, C. Chua, T. Y. Chen. “Semiautomated metamorphic
testing approach for geographic information systems: An empirical study”,
IEEE Transactions on Reliability, 69:2 (2019), pp. 657–673. https://doi.org/10.1109/TR.2019.2931561↑77

[74] S. Iakusheva, A. Khritankov. “Metamorphic testing for recommender systems”,
Analysis of Images, Social Networks and Texts, AIST 2023, Lecture Notes in
Computer Science, vol. 14486, eds. Ignatov D.I. et al., Springer, Cham, 2024,
ISBN 978-3-031-54533-7. https://doi.org/10.1007/978-3-031-54534-4_20↑76

[75] Z. -w. Hui, X. Wang, S. Huang, S. Yang. “MT-ART: A test case generation
method based on adaptive random testing and metamorphic relation”, IEEE
Transactions on Reliability, 70:4 (2021), pp. 1397–1421. https://doi.org/10.1109/TR.2021.3106389↑77

https://doi.org/10.1109/ACCESS.2017.2758790
https://isbnsearch.org/isbn/978-1-4503-3013-8
https://isbnsearch.org/isbn/978-1-4503-3013-8
https://doi.org/10.1145/2642937.2642994
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/10.1002/stvr.1594
https://doi.org/10.1016/j.jss.2021.111041
https://isbnsearch.org/isbn/0-7695-2413-3
https://doi.org/10.1109/COMPSAC.2005.166
https://doi.org/10.1016/j.jss.2021.111012
https://doi.org/10.1016/j.infsof.2012.08.008
https://doi.org/10.1109/QSIC.2012.10
https://doi.org/10.1109/TSE.2020.3009698
https://doi.org/10.1109/TR.2019.2931561
https://isbnsearch.org/isbn/978-3-031-54533-7
https://doi.org/10.1007/978-3-031-54534-4_20
https://doi.org/10.1109/TR.2021.3106389

A systematic review of metamorphic testing 85

[76] D. Sobania, M. Briesch, P. Röchner, F. Rothlauf. “MTGP: Combining
metamorphic testing and genetic programming”, Genetic Programming.
EuroGP 2023, Lecture Notes in Computer Science, vol. 13986, eds. Pappa G.,
Giacobini M., Vasicek Z., Springer, Cham, 2023, ISBN 978-3-031-29572-0,
pp. 324–338. https://doi.org/10.1007/978-3-031-29573-7_21↑77

Received 22.11.2023;
approved after reviewing 30.03.2024;
accepted for publication 31.03.2024;
published online 14.05.2024.

Recommended by Andrey V. Klimov

Information about the authors:

Sofia Fedorovna Iakusheva
Research interests: development and verification of pro-
grams, metamorphic testing, machine learning

iD 0009-0000-1423-1123

e-mail: yakusheva.sf@phystech.edu

Anton Sergeevich Khritankov
Research interests: software engineering, machine learning,
trustworthy artificial intelligence

iD 0000-0003-2889-9436

e-mail: akhritankov@hse.ru

Authors contribution: Sofia F. Iakusheva — 70% (software, investiga-
tion, resources, data curation, writing (review & editing), visualization,
supervision); Anton S. Khritankov — 30% (methodology, software, formal
analysis, visualization, project administration, funding acquisition).

The authors declare no conflicts of interests.

https://isbnsearch.org/isbn/978-3-031-29572-0
https://doi.org/10.1007/978-3-031-29573-7_21
https://orcid.org/0009-0000-1423-1123
mailto: yakusheva.sf@phystech.edu
https://orcid.org/0000-0003-2889-9436
mailto: akhritankov@hse.ru

	Introduction
	1. Metamorphic testing
	1.1. Definitions and examples
	1.2. Terminology

	2. Research goals and methods
	3. Classification of metamorphic relations
	4. Patterns for devising metamorphic relations
	4.1. Common techniques
	4.2. Using the properties of the mathematical model and the subject area

	5. Methods for devising metamorphic relations in different areas
	5.1. Search algorithms
	5.2. Machine learning and data analysis
	5.3. Deep learning and neural networks
	5.4. Natural language processing
	5.5. Graph models. Geoinformatics
	5.6. Bioinformatics (texts)
	5.7. Compilers

	6. Analysis of the application of methods for relation construction by areas
	7. Other methods for metamorphic relations
	Conclusion
	References
	Information about the authors:

