
ENRU ПРОГРАММНЫЕ СИСТЕМЫ: ТЕОРИЯ И ПРИЛОЖЕНИЯ ISSN 2079-3316

© Адамович И.А. 2025 CC-BY-4.0

научная статья прикладные программные системы

УДК 519.681.3
DOI 10.25209/2079-3316-2025-16-4-319-352

Интерактивные средства специализации программ

Игорь Алексеевич Адамович
Институт программных систем им. А.К. Айламазяна РАН, Веськово, Россия

igor@igor-adamovich.ru

Аннотация. Специализация программ— это адаптация программы под
ограниченные условия ее работы. Специализация, среди прочего, может
использоваться для оптимизации и преобразования абстрактных спецификаций
в конкретные программы для различных вычислительных архитектур (CPU,
SIMD, GPU, FPGA). Процесс специализации характеризуется множеством степе-
ней свободы при принятии решений, что затрудняет получение предсказуемых
результатов в полностью автоматическом режиме. Существуют два основных
подхода к специализации: онлайн, где решения принимаются во время генерации
остаточной программы, и оффлайн, обеспечивающая большую предсказуемость
благодаря предварительному принятию многих решений. Однако эффективно
специализировать программу с первой попытки часто бывает затруднительно,
что требует применения метода проб и ошибок и интерактивных средств для
визуализации последствий принимаемых решений.

В настоящей работе рассматривается проблема адаптации существующих
методов специализации для работы в интерактивном режиме, поскольку многие
из них требуют существенной доработки или замены. Предлагаются следующие
методы, направленные на повышение управляемости и предсказуемости процесса
специализации: работа с деревом абстрактного синтеза, визуализация результатов
разметки, построение и фильтрация истории причин BT-разметки. Предлагаемые
методы реализованы в специализаторе JaSpe для программ на языке Java.
В результате установлено, что во многих случаях время на поиск источников
проблем, препятствующих преобразованиям, сократилось на порядок.

Ключевые слова и фразы: интерактивная специализация, интерактивные
средства, частичные вычисления, суперкомпиляция, метавычисления, IDE

Для цитирования: Адамович И.А. Интерактивные средства специализации
программ // Программные системы: теория и приложения. 2025. Т. 16.
№ 4(67). С. 319–352. https://psta.psiras.ru/read/psta2025_4_319-352.pdf

psta.psiras.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2025-16-4-319-352&domain=pdf&date_stamp=2025-12-30
https://udcsummary.info/php/index.php?lang=ru
https://doi.org/10.25209/2079-3316-2025-16-4-319-352
http://www.botik.ru/PSI/
mailto: igor@igor-adamovich.ru
https://psta.psiras.ru/
https://psta.psiras.ru/read/psta2025_4_319-352.pdf

320 И.А. Адамович

Введение

Понятие специализации. Специализация— это оптимизация про-
грамм под определенные условия ее выполнения. Такими условиями
могут быть конкретные значения некоторых из ее входных данных или,
например, целевая архитектура системы, на которой предполагается
выполнять программу.

Более формально, рассмотрим программу f : X,Y → Z, принимающую
на вход два аргумента x и y. Пусть значение одного из ее аргументов x
известно и равно a.

Тогда результатом специализации программы f по известному
аргументу x = a называется новая программа от одного аргумента
g : Y → Z, обладающая следующим свойством: f(a, y) = g(y) для любого
y.

Отметим, что известное значение a, по которому выполняется специа-
лизация, не обязательно должно быть числовой константой. Аргумент a
может быть содержимым файла или даже сущностью высшего порядка,
например, некоторым набором функций. То есть a отражает условия,
к которым адаптируется исходная программа.

Частичные вычисления— это один из методов специализации программ.
Существует два подхода к частичным вычислениям— онлайн и оффлайн.

Онлайн вариант выполняет только один проход по специализируемой
программе. Решения о преобразовании той или иной конструкции прини-
мается на основе неполной (локальной) информации и эти преобразования
сразу же выполняются.

Оффлайн вариант частичных вычислений выполняется в два этапа:
сначала собирается глобальная информация о программе и временах
связывания конструкций, а потом происходят преобразования.

В оффлайн частичных вычислениях первый этап является анализом
времен связывания (binding-time analysis, BTA), и на этом этапе конструк-
ции специализируемой программы разделяются на статические (зависящие
от известных данных, S-конструкции) и динамические (зависящие от
неизвестных данных, D-конструкции).

На втором этапе оффлайн частичных вычислений— генерации оста-
точной программы — операции над S-конструкциями выполняются, а
D-конструкции переходят в результирующую (остаточную) программу.

Для реализации выбран метод оффлайн частичных вычислений. Такое
решения обусловлено тем, что частичные вычисления лучше, чем другие

Интерактивные средства специализации программ 321

методы специализации (например, суперкомпиляция), подходят для
реализации человеко-машинного диалога, организованного таким образом,
чтобы пользователь понимал, что происходит в специализаторе, получал
ценную и интересную информацию о коде, был способен корректировать
исходный код для лучшей специализации и управлял специализатором.

История частичных вычислений. Впервые специализацию начали
исследовать около 40 лет назад. Одним из первых специализаторов
был MIX [1]. MIX является первым инструментом, который доказал на
практике возможность генерации компиляторов с помощью частичных
вычислений. Этот научный результат стимулировал дальнейшее развитие
методов специализации программ.

Следующим значимым специализатором является C-MIX [2,3] Этот
специализатор был разработан в начале 1990-х годов. Существенным
продвижением было добавление анализа указателей и анализа побочных
эффектов. Эти два анализа наряду с BTA позволили применить частичные
вычисления к языку программирования C, интенсивно использующему
указатели. До C-MIX специализацию применяли к функциональным
программам, а широко используемые императивные языки оставались вне
области частичных вычислений.

Другим частичным вычислителем работающим с подмножеством
языка C является Tempo [4,5]. Во многом Tempo похож на C-MIX,
он использует анализ синонимов и определений для решения проблем
указателей в языке C. Существенным достижением Tempo является то,
что его применили к реальным программам. Tempo использовался для
оптимизации функций marshaling (упаковки) данных в библиотеке XDR
в составе Remote Procedure Call (RPC) компании Sun.

В 2001 году У.П. Шульц разработал специализатор JSpec для
объектно-ориентированных программ [6–8]. JSpec основан на трасляции
Java в C и последующем применении частичного вычислителя Tempo
к программам на С. Это был первый подход к специализации программ на
объектно-ориентированных языках.

В 2009 году Ю. А. Климов реализовал частичный вычислитель CILPE.
[12–19]. CILPE применялся к подмножеству объектно-ориентированного
языка CIL [20], байт-коду платформы Microsoft .NET. Важным для нас
продвижением было то, что Ю.А Климов придумал многовариантный
способ разметки классов, в результате которого была продемонстрирована
возможность удаления объектов из программы с разделением их на
поля. Такой подход позволяет содержательно специализировать часть
объектно-ориентированных программ, добиваясь существенного ускорения.

322 И.А. Адамович

В конце 2000-х годов Анд. В. Климов опубликовал работы по специа-
лизатору JScp [9,10] на основе метода суперкомпиляции [11], развив
его от функциональных языков на объектно-ориентированные. Хотя
ставилась цель довести суперкомпиляцию до практики, но это не удалось:
оказалось, что пользоваться им практически невозможно из-за того, что
программисту необходимо понимание логики его работы, а JScp был
«черным ящиком». Полученный опыт показал, специализатор должен
быть погружен в IDE с удобными средствами управления, для чего
потребуется его переработка, и суперкомпиляция слишком сложна для
первых практических специализаторов.

За первые 30 лет развития специализация программ так и не получила
широкого распространения, а практические применения не носили
массовый характер. Однако сам метод развивался и был накоплен большой
научный опыт.

Современное состояние. В последние годы стали появляется
примеры практического использования частичных вычислений. В первую
очередь необходимо упомянуть фреймворк Truffle, входящий в набор
инструментов GraalVM [21,22], который сейчас принадлежит Oracle.
Truffle позиционируется как инструмент для эффективной и простой
реализации предметно-ориентированных языков (DSL). В основе GraalVM
лежит онлайн частичный вычислитель. Простота обеспечивает высокую
скорость работы самого специализатора, которая является критической для
этого инструмента, поскольку преобразования программ осуществляются
на этапе исполнения, во время работы JIT-компилятора. Тем не менее, при
всех усилиях существенная часть (до 73%) времени JIT-компиляции
тратится на специализацию [23]. Требуется отметить, что методология
Oracle не распространилась широко.

Еще одна современная система, основанная на частичных вычисле-
ний,— AnyDSL [24],— представляет собой систему программирования,
основанную на частичных вычислениях. AnyDSL позволяет получать
высокопроизводительные реализации для CPU (с векторизацией и рас-
параллеливанием) и GPU из единой кодовой базы на едином языке.
Производительность сгенерированного кода составляет преимущественно
в пределах 10% (иногда ближе) от производительности многолетних,
вручную оптимизированных экспертных кодов промышленного уров-
ня, которые считаются лучшими в своих областях. При этом усилий,
затрачиваемых на реализацию библиотек на AnyDSL, существенно меньше.

Примерами реализаций высокопроизводительных библиотек на
AnyDSL являются AnySeq [25], Rodent [26] и AnyHLS [27]. В AnySeq

Интерактивные средства специализации программ 323

решается задача выравнивания последовательностей ДНК, Rodent нацелен
на рендеренг сцен в компьютерной анимации, а AnyHLS использует
частичные вычисления для синтеза дизайнов FPGA модульным и
абстрактным способом. Все три библиотеки основываются на идеологии
AnyDSL, в которой алгоритм разделяется на две части: общую часть и
часть, предназначенную для оптимизации под различные архитектуры.
Применение частичных вычислений позволяет эффективно удалить
накладные расходы, возникающие из-за использования высокоуровневых
абстракций.

Существует язык программирования, который основывается на
специализации— язык Julia [28]. Стратегия компиляции Julia построена на
информации о типах, доступной во время выполнения. Каждый раз,
когда метод вызывается с новой комбинацией типов аргументов, он
специализируется под эти типы. Оптимизация методов в момент вызова, а
не заранее, предоставляет JIT-компилятору ключевую информацию:
расположение в памяти всех аргументов известно, что позволяет распако-
вывать объекты и напрямую обращаться к полям. Специализация, в свою
очередь, позволяет девиртуализировать методы. Такой подход позволяет
Julia, как и AnyDSL, генерировать реализации одной и той же программы
под разные архитектуры (x86, GPU или FPGA).

В 2025 году был представлен новый специализатор weval [29]. Специа-
лизатор weval работает только с wasm байткодом, предназначенным для
исполнения в браузере. В wasm нет объектов. Память имеет линейную
структуру в виде массива целых чисел. За линеаризацию объектов
отвечает компилятор из высокоуровневого языка в wasm. Существует
несколько фронтендов, компилирующих C, C++ и даже Java в wasm.

Основным назначением weval является оптимизация и сплющивание
цикла интерпретации. Weval существенно закладывается на определенный
стиль реализации интерпретаторов— switch-case по типам узлов в Control
Flow Graph. Тип узла представляется в виде opcode— целой переменной.
Авторами weval утверждается, что «вылизанные» промышленные интер-
претаторы из-за необходимой эффективности применяют именно такой
способ взаимодействия с узлами графа программы. Weval— это онлайн
специализатор, основанный на относительно простой теории, но удачно
примененный в месте, где эта теория эффективно работает на практике.

Резюме. Мы считаем, что причиной ограниченного практического
применения специализации является то, что авторы ориентировали свои
инструменты на применение в «черно-ящичном» режиме [30]. Задача

324 И.А. Адамович

специализации программ обладают слишком многими степенями свободы,
поэтому она не может быть решена с помощью полностью автоматических
алгоритмов и, следовательно, помощь со стороны человека-пользователя
является необходимой для применения специализаторов на практике.

Все представленные выше современные инструменты не используют
полную силу специализации. В перечисленных практических системах
всегда выбирался онлайн вариант, преобразования в котором основываются
на локальной информации. Причиной такого выбора является нерешенная
задача управления сложным оффлайн подходом к частичным вычислениям.

Сложности при применении частичных вычислений заключается в
том, что зачастую первый подход к программе не дает желаемой степени
оптимизаций. При этом проблема которая ограничивает преобразования
проявляется в одном месте, а возникает в другом. Чтобы соотнести
источник проблемы с местом ее проявления, приходится либо переписы-
вать программу, либо изучать работу специализатора отладчиком. Оба
решения требуют много времени на устранение всего одной проблемы. На
программах реального размера проблем может быть несколько десятков и
на специализацию таких программ уходит неприемлемое количество сил и
времени.

Оффлайн частичные вычисления отличаются тем, что предоставляют
естественный разрез, который является планом преобразований. Этот план
хорошо визуализируется и содержит большой объем ценной информации
о программе и ее специализации, благодаря чему программист лучше
понимает происходящие преобразования.

Предлагаемое решение.

• Для того, чтобы пользователь понимал, почему получен тот или иной
результат, метод специализации должен работать с представлениями
программы близкими к исходному коду. Предыдущие системы
работали с внутренним кодом из элементарных операций для
теоретической простоты.

• В качестве метода специализации выбраны оффлайн частичные
вычисления, поскольку они основаны на естественном разрезе
между анализом времен связывания и последующей генерацией
остаточной программы. Такой подход позволяет дать пользователю
промежуточную информацию о работе алгоритма специализации. В
свою очередь в силу естественности разреза пользователь на основе
промежуточной информации намного лучше понимает, как и почему
применены те или иные преобразования.

Интерактивные средства специализации программ 325

• Результаты первого прохода по программе— BTA— тем не менее,
достаточно сложны для понимания, поэтому нужны дополнительные
средства. В качестве таких средств в настоящей статье описываются
подсветка результатов BTA и история причин BT-разметки. Исто-
рия причин BT-разметки является новой идеей, разработанной и
реализованной впервые.

Ранее автором разработан и реализован специализатор JaSpe [31–36].
Первый опыт его применения показывает, что подход на основе оффлайн
частичных вычислений ускоряет интерпретаторы в 10-30 раз, фактически
компилируя интерпретируемую программу в Java.

Структура статьи. Далее изложение имеет следующую структу-
ру. В разделе 1 частичные вычисления описываются с точки зрения
применяемых преобразований. Раздел 2 иллюстрирует работу анализа
времен связывания на простом примере. В разделе 3 более детально
рассматривается интерактивная специализация с точки зрения проблем
классических частичных вычислений. Раздел 4 посвящен новому решению
проблем частичных вычислений. Технологии, на основе которых разработан
новый специализатор, описаны в разделе 5. В разделе 6 описывается
классический алгоритм BTA. Раздел 7 рассказывает о визуализации
результатов BTA в виде подсветки кода. Затем в разделе 8 приводится
базовый сценарий работы со специализатором на основе подсветки кода.
Раздел 9 посвящен идеям истории причин BT-разметки— дополнительному
интерактивному средству, существенно ускоряющему и упрощающему
процесс достижения успешной специализации. В разделе 10 приводится
пример иллюстрирующий принципы работы истории причин BT-разметки.
В разделе 11— идеи фильтрации причин. В разделе 12 описывается типовой
сценарий взаимодействия со специализатором с использованием истории
причин BT-разметки. И, наконец, раздел «Заключение» подводит итоги.

1. Оптимизирующие преобразования частичных вычислений

Частичные вычисления дают единую схему для применения преобразо-
ваний, которые в других методах выполняются отдельными правилами.
Также частичные вычисления характеризуются агрессивными методами
распространения констант и преобразованиями, связанными с таким
распространением.

Р. Марле в своей работе [5] провел следующие параллели между
частичными вычислениями и аналогичными преобразованиями в других
методах. Кратко опишем суть этих преобразований.

326 И.А. Адамович

Function unfolding подставляет телo функции в местах ее вызова.
Иногда это преобразование называют inlining.

Function folding обнаруживает похожие участки кода в программе и
выносит их в отдельное определение функции. Сами участки при этом
заменяются на вызовы этой функции. Это обратное преобразование
по отношению к function unfolding.

function redefinition означает добавление новых определений функ-
ций на основе уже существующих, например с меньшим числом
аргументов.

Constant-propagation распространяет константы по программе, под-
ставляя значения констант вместо их имен.

Constant expression evaluation вычисляет значения выражений, осно-
ванных только на константах. Например вместо сложения двух
констант подставляет значение их суммы.

Algebraic simplification упрощает арифметические выражения. Это
особенно актуально, когда часть выражения было вычислена другими
преобразованиями.

Conditional expression resolution подставляет что когда известные
значения условий в if, switch и прочих условных конструкциях,
оставляя вместо всей конструкции только одну ветку, выбранную на
основе значения условия.

Loop unrolling разворачивает цикл когда известно число его итераций.
Число итераций может быть вычислено на основе других оптимизаций
частичных вычислений.

Ю. А. Климов добавил [12–19] к ним еще одно преобразование, важное
для объектно-ориентированных программ,— это object elimination. Суть
этого преобразования заключается в том, что при некоторых условиях
возможно удаление объекта и которые представляют часть полей этого
объекта и всех операций с ним из программы. При этом преобразовании
объект заменяется на локальные переменные, операции над которыми
невозможно выполнять на этапе компиляции из-за их зависимости от
неизвестных данных.

Оптимизация object elimination актуальна для объектно-ориентирован-
ных программ. Успешное применение других оптимизаций в рамках
объектно-ориентированной парадигмы во многом зависит от того, удалось
ли преобразовать объекты в привычные для классических частичных
вычислений переменные примитивных типов или массивы.

Интерактивные средства специализации программ 327

2. Пример специализации простой программы методом частичных
вычислений

На рисунке 1 слева изображена размеченная исходная программа, а
справа результат ее преобразования нашим специализатором.
@Specialize
public static int example(int dArgument) {

int a = 5;
int result = 0;
boolean myTrue = true;

if (!myTrue) {
result = sum(dArgument, a);

} else {
result = sum(a, 2);

}
result = result * 2;
return result;

}

public static int sum(int a, int b) {
return a + b;

}
Легенда:

 S D M

public static int
example_Spec(int dArgument) {

int ret_sum;
int result;
ret_sum = sum_5_2();
result = ret_sum;
result = result * 2;
return result;

}

public static int sum_5_2() {
return 7;

}

Рисунок 1. Пример размеченной исходной программы и
результата ее специализации.

Исходная программа— «дурацкая» и не имеет никакого практического
смысла, она составлена только для иллюстрации принципов работы
специализатора.

Разметка программы происходит на первом этапе частичных вычисле-
ний— анализе времен связывания (BTA). Для удобства пользователя
разметка программы визуализируется специализатором— это позволяет
понять, какие конструкции были оптимизированы, а какие нет. Визуализа-
ция разметки— это одно из решений, разработанных в рамках настоящей
работы (раздел 7 ниже).

Зеленым цветом изображены конструкции, которые будут подвергнуты
преобразованиям— S-конструкции (известные), а синим те, что перейдут в
результирующую (остаточную) программу— D-конструкции (неизвестные).
Коричневым цветом подсвечены M-конструкции, которые на одном пути
анализа S, а на другом D.

Рассмотрим то, как BTA планирует преобразования, которые будут
выполнены генератором остаточной программы. Анализ программы
начинается со входной точки – это метод example, поскольку он помечен
аннотацией @Specialize. Аргумент такого метода может принимать

328 И.А. Адамович

произвольные и потому неизвестные специализатору значения. Исходя из
этого факта, аргумент метода example— dArgument— размечается как D.

Далее анализ заходит в тело метода example и видит, что переменным
a, result и myTrue присваиваются заранее известные значения. Значит,
на основе знания об этих значениях можно будет вычислить другие
выражения. Поэтому специализатор размечает переменные a, result и
myTrue S-разметкой.

Алгоритм BTA размечает if и его условие как S, поскольку они
основываются на известном S-значении и к ним можно применить
преобразование conditional expression resolution. Далее анализ заходит в
ветку then, несмотря на то, что эта ветка никогда не будет исполнена.
Такое поведение связано с тем, что BTA оперирует абстрактными
понятиями «известно/неизвестно» (S/D), а не конкретными числовыми
или логическими значениями. Соответственно, анализ не может понять
истинно ли условие или ложно, ему известно только то, что на этапе
генерации программы будет выбрана какая-то конкретная ветвь, но BTA
не может определить какая.

Посещая ветвь then, BTA понимает, что вызов метода sum можно
соптимизировать, так как один из его аргументов известен, а второй
нет. Анализ посещает тело метода sum и размечает все конструкции,
кроме тех, которые полностью определяются аргументом b, D-разметкой.
Именно с этим связан коричневый цвет— это M-конструкции, на первом
посещении return, a и + имеют D-разметку, а на следующем— S. Чтобы
визуализировать тот факт, что при разных посещениях конструкции
имеют различную разметку, был использован коричневый цвет.

После анализа then ветки, BTA переходит к анализу else. В ветке else
также вызывается метод sum. Но у него два известных аргумента. BTA
понимает, что тут можно применить преобразование function redefinition—
будет сгенерирована новая версия метода sum, которая не содержит
аргументов (поскольку они известны).

Перед завершением анализа конструкции if, BTA выполняет слияние
разметок переменных, полученных на обеих ветвях. Слияние необходимо,
так как BTA не знает какую разметку для переменной result использовать
дальше — полученную на ветке then или на ветке else. При слиянии
разметки переменных выбирается всегда худшая разметка из имеющихся.
То есть переменная result получает D-разметку. На этом анализ условной
конструкции if завершается.

После анализа if, BTA переходит к анализу следующих после нее
конструкций: присваивание и return. Как мы только что отметили,
переменная result размечена D, а все операции над D-переменной тоже D.
Поэтому обе конструкции получают D-разметку.

Интерактивные средства специализации программ 329

На этом анализ завершается и выполняется генерация остаточной про-
граммы, которая уже знает конкретные значения и то, какие конструкции
надо вычислить (размеченные как S), а какие перенести в остаточную
программу (размеченные как D).

В результате получится остаточная программа, изображенная справа
на рисунке 1. Обратим внимание, что был сгенерирован метод sum_5_2(),
который соответствует двум константным аргументам 5 и 2. Это результат
применение преобразования function redefinition. Дополнительно могла
быть применено преобразование function unfolding (inlining), в этом случае
вместо вызова sum_5_2() была бы константа 7 и программа получилась
бы еще более эффективной. Требуется отметить, что решение применять
ли то или иное преобразование не всегда так очевидно.

Стоит обратить внимание и на то, что в остаточной программе
присутствуют лишние действия— присваивания, связанные с переменной
ret_sum, которые можно было бы удалить. В этой части мы полагаемся на
JIT-компилятор Java, который, как показывает практика, сделает эту
работу за специализатор.

3. Интерактивные частичные вычисления

С момента публикации первых работ по частичным вычислениям и до
настоящего времени прошло более 40 лет, но специализация программ так
и не получила широкого распространения [30]. Относительно недавно
стали появляться практические успехи простых вариантов частичных
вычислений, тем не менее и они не вошли в широкую практику и, что
самое главное, все самые мощные методы специализации так и остаются
уделом относительно небольшого количества научных групп. В чем же
причина?

Одна из самых критических проблем современных частичных вычис-
лений заключается в том, что самые сильные их преобразования сложно
применить на практике. Сложность применения обусловлена тем, что
специализация программ содержит слишком много степеней свободы и
требует существенного вовлечения человека в процесс специализации.

Действительно сильные преобразования часто не приносят пользы,
если применены автоматически, а иногда даже могут замедлить программу.
Бывает, что необходимо небольшое локальное переписывание кода програм-
мы и тогда сильные преобразования срабатывают. Такие переписывания
получили специальное название— улучшение времен связывания (binding
time improvements). На данном этапе развития частичных вычислений
улучшения времен связывания не могут быть выполнены автоматически,
поскольку специализатор не знает, что конкретно программист хочет от
программы и какова его цель.

330 И.А. Адамович

Однако, если программист получит от специализатора информацию,
в каких местах требуются улучшения времен связывания, то обычно
человек вносит такие изменения быстро.

Тем не менее до сих пор не предпринималось целенаправленных
попыток упростить взаимодействие специализатора и человека. Поэтому
авторы в данной статье хотят показать необходимость интерактивного
взаимодействия программиста с системами частичных вычислений и
предоставить решения основных проблем, возникающих на этом пути.

Отметим, что сложность применения частичных вычислений создает
критические барьеры для масштабирования этого метода на реальные
задачи. Однако, частичные вычисления— это один из самых легких методов
специализации с точки зрения внедрения интерактивных средств. Причи-
ной такой позиции является то, что частичные вычисления естественно
разделены на два этапа— BTA и генерация остаточной программы. Все пре-
образования определяются результатами BTA и, если выбрать правильный
подход к BTA, то его результаты можно понятно визуализировать.

Переход от черно-ящечной специализации к интерактивной сравним
с переходом от пары компилятор и текстовый редактор к полноценным
графическим IDE. В такие IDE встроено множество инструментов для
помощи программисту. Для простого программиста переход к IDE
означает значительное повышение продуктивности и комфорта. В случае
с частичными вычислениями переход к интерактивным средствам, в том
числе к встраиванию в IDE, может дать еще более критичные улучшения
в эффективности.

Одна из проблем, которая решается с помощью интерактивности—
это постановка задачи на специализацию. Ранее для формирования
такого задания требовалось создавать конфигурационные файлы или
запускать специализатор с длинными и сложными аргументами. Поэтому
специализаторами пользовались в основном их создатели.

Другая проблема: как сообщить пользователю, почему получилась
именно такая остаточная программа? Зачастую в процессе специализации
принимается множество решений и применяется достаточно много преоб-
разований. Поэтому без специальных средств может быть затруднительно
понять связь между исходной и остаточной программами.

Существенной трудностью для частичных вычислений является и
то, что проблема, препятствующая преобразованию, часто возникает
в одном месте, а проявляется в другом. До данного момента не было
разработано эффективных приемов решения задачи соотнесения источника,
препятствующего преобразованию, с местом проявления проблемы. Ранее
пользователь должен был изучать поведение специализатора с помощью

Интерактивные средства специализации программ 331

отладчика или переписывать программу чтобы найти источник, который
мешает преобразованиям.

4. Решения для интерактивных частичных вычислений

Далее мы опираемся на метод Ю.А. Климова [12–19], который
является наиболее развитым для объектно-ориентированных программам.
Метод Ю. А. Климова работает с графом потока управления (Control-Flow
Graph, CFG) поскольку CFG наиболее удобен для анализа. Однако
использование CFG создает проблемы для визуализации результатов
анализа на исходном коде программы, который видит пользователь.

Как оказалось, необходима доработка и адаптация основных принципов
и алгоритмов. Поэтому здесь предлагаются решения, затрагивающие как
основные понятия частичных вычислений, так и конкретные моменты их
реализации.

Приведем список изменений в ключевых методах и понятиях частичных
вычислений:
(1) Работа BTA и генератора остаточной программы с деревом

абстрактного синтеза (Abstract Syntax Tree, AST), а не с CFG.
Переход от работы с CFG к работе с AST необходим потому, что
AST один в один представляет то, как пользователь видит текст
программы на экране. Здесь CFG — это удобное представление
для компилятора, поскольку к нему легче применять некоторые
преобразования. Соответственно, при переходе от CFG к AST
все решения анализа и разметка, которую специализатор строит,
становятся намного более понятны пользователю.

Однако перейти от одного представления программы к другому не
так просто, если часть методов разметки и оптимизации опирается
на определенное представление— в нашем случае CFG. Поэтому эти
методы пришлось адаптировать.

(2) Переработка алгоритмов BTA, их ориентация на работу на работу
с конструкциями «сверху вниз», а не в терминах элементарных
операций 1, как в предыдущих работах [12–19].

Переход от алгоритмов работающих на уровне элементарных
операций к алгоритмам типа «сверху вниз» необходим, чтобы
выдаваемые диагностики были понятны пользователю. Такой переход,
помимо прочего, формирует задел на будущее для интерактивных
средств сопоставления остаточного кода с исходным.

(3) Включение в метод анализа истории причин BT-разметки, чтобы
специализатор мог сохранять и визуализировать трассу изменения
BT-значений.

1Переход от small step семантики к big step.

332 И.А. Адамович

История причин BT-разметки позволяет пользователю специа-
лизатора быстро находить источники проблем, препятствующих
преобразованиям. Поиск таких проблем является критическим местом
для масштабирования частичных вычислений на реальные задачи.
Более детально об истории причин рассазанно далее в разделе 9.

В дополнение пришлось перейти к новым определением базовых
понятий:

(4) Доработка формального определения BT-значения и переработка
понятия BT-объекта. Новые определения учитывают идеи истории
причин BT-разметки, а также создают более удобную формальную
теорию.

Обновлённая теория позволила специализатору визуализировать
трассу изменения BT-значений. Подробнее об этом в разделе 9 ниже.

Все эти изменения внесены с целью создания основания для по-
лезных интерактивных средств и их поддержки в IDE, а также для
масштабирования частичных вычислений во всей их силе на реальные
задачи.

5. Реализация методов интерактивных частичных вычислений

Интерактивный специализатор JaSpe [31–36] погружен в привычную
программистам интегрированную среду разработки (IDE) Eclipse.

Была поставлена задача реализовать методы частичных вычислений
так, чтобы они масштабировались на применение к реальным программам.
Объектно-ориентированный язык программирования Java выбран в
качестве языка программы на котором должен специализировать JaSpe,
по следующим причинам:

• Нет явных указателей и их арифметики, что упрощает анализ.
• Автоматизация работы с памятью и сборка мусора.
• Статическая типизация, которую эксплуатирует наш специализатор.
• Java архитектурно независим, используется на большом числе

устройств.
• Высокая эффективность за счет компиляции в байт-код и применения

JIT. На большом числе мобильных платформ возможна непосред-
ственная компиляция в машинный код (для Android используется
компилятор ART).

• Есть IDE с доступом к AST Java-программ и возможностью встраи-
вания специализатора в IDE.

• Java широко распространен, много программистов работающих на
этом языке, а значит больше вероятность найти заинтересованную
аудиторию.

Интерактивные средства специализации программ 333

Специализатор встроен в мощную, признанную программистами
среду графической разработки Eclipse IDE. Иногда Eclipse критикуют за
«монструозность» и «тяжеловесность», но нам ценны эти особенности.
Разобравшись с API этой системы, мы получаем доступ к уже готовым
решениям, а значит снимаем с себя нагрузку по реализации части
необходимой нам функциональности.

Особенно важным для нас компонентом Eclipse IDE является Java
Development Tools (JDT). Это набор инструментов, который включает
в себя лексический и синтаксический анализаторы, проверку и связывание
типов. JDT для каждого выражения вычисляет его статический тип и
предоставляет средства поиска определений типов и навигации по коду
в целом.

Синтаксис в JDT представляется в виде AST, что крайне удобно для
реализации нашего подхода. Чтобы обойти это дерево, JDT предполагает
использование широко известного шаблона «посетитель» (Visitor pattern)
[37].

Отметим, что развиваемые здесь методы интерактивной специализации,
переносимы на любую другую IDE с аналогичным набором инструментов.

6. Обьяснение BTA

Алгоритм BTA основан на абстрактной интерпретации. При старте
BTA начинает исполнять программу во многом аналогично интерпретатору.
Однако вместо оперирования числовыми, логическими, символьными и
прочими конкретными значениями, BTA интерпретирует выражения
в форме «известно» или «неизвестно». Например числовая константа
«5» считается известной, а переменная, которая является аргументом
программы,— неизвестной.

Понятия «известно»/«неизвестно» выражены в BTA в виде BT-значе-
ний S или D соответственно.

Значение undefined означает, что выражение или инструкция еще не
получило разметку. Разметка S означает, что значение выражения известно,
оно будет вычислено и отсутствует в остаточной программе. Разметка D
означает, что выражение зависит от неизвестных на этапе специализации
данных и специализатор не может вычислить это выражение, а значит
оно перейдет в остаточную программу. BT-значение инструкций и
выражений примитивных типов в процессе разметки программы, может
только увеличивается в соответствии с отношением порядка в решетке
{undefined, S,D}, где undefined < S < D. Аналогично с инструкциями.

Переменные и выражения, чей тип описывается классами, получают в
качестве разметки BT-объект. BT-объект— это вариант разметки класса.

334 И.А. Адамович

BT-объект содержит разметку каждого поля класса и разметку верхнего
уровня, которая определяет нужно ли применять оптимизацию object
elemination.

Анализ программы начинается с метода, отмеченного как точка входа
в специализацию (specialization entry point). Для обозначения точки
входа в специализацию мы используем java-аннотацию @Specialize. В
остаточном коде этот метод будет замещен на его специализированную,
функционально эквивалентную версию.

Аргументы точки входа получают D-разметку. BTA последовательно
«абстрактно интерпретирует» программу, начиная с точки входа. BTA
обходит вложенные инструкции и подвыражения, которым также присваю-
ваются значения S или D по определенным правилам. После абстрактной
интерпретации инструкции BTA переходит к следующей почти как и при
обычной интерпретации. Однако во время такой интерпретации возможны
откаты к уже проанализированным конструкциям из-за изменения
глобальной информации (подробнее об этом можно прочитать в [33]).

Несколько путей вычислений, по которым BTA приходит к той или
иной конструкции, и откаты анализа существенно затрудняют понимание
человеком результатов специализации.

7. Визуализация разметки программы

BTA строит разметку программы и размечает переменные и кон-
струкции как S или D. Это информация используется второй фазой
специализатора — генератором остаточной программы как инструкции, что
делать: исполняться S-код или переносить D-код в остаточную программу.
Но она ценна и разработчику программы для понимания происходящего
в специализаторе и ее полезно сообщать пользователю. Визуализация
BT-разметки программы в данном случае является подходящим решением.
Конструкции программы раскрашиваются в Java-редакторе внутри Eclipse
IDE в соответствии с результатами BTA (как на рисункне 1).

BTA в специализаторе JaSpe может при разных проходах абстрактной
интерпретации давать независимые и разные разметки. Такая ситуация
случается в двух случаях:
(1) При анализе тела метода: когда один и тот же метод вызывается из

разных мест в программе, то для каждого вызова метода может
строится отдельная разметка тела этого метода. То есть тело метода
и все конструкции в нем могут иметь несколько разметок.

(2) BT-объект— это вариант разметки класса. Соответственно, если
существует несколько BT-объектов, происходящих из разных вхож-
дений класса в код, то поля этого класса могут иметь несколько
разметок (по числу таких BT-объектов).

Интерактивные средства специализации программ 335

Чтобы показать места, где накладываются несколько вариантов
разметок, они «обобщаются» в одну общую итоговую разметку. Обобщения
выполняются на основе решетки (см. рисунок 2). Кратко это обобщение

M

S D

⊥

Рисунок 2. Решетка для обобщения раскрасок.

можно описать так: если какая-то конструкция размечена как S и D
одновременно, для нее находится верхняя грань— то M-разметка.

По умолчанию JaSpe визуализирует S-разметку зеленым, D—синим, M—
коричневым. Цвета и форма разметки могут быть настроены пользователем
под себя средствами Eclipse IDE.

В заключение отметим, что из практики трех цветов для подсветки
кода достаточно: программисту требуется установить, какое выражение
может препятствовать преобразованиям. Проблемное выражение обычно
либо D (синее), либо M (коричневое). Далее достаточно запросить историю
причин данной разметки и она уже содержит все возможные варианты.

8. Типовой сценарий специализации программы

При использовании описанных средств возникает такой сценарий
применения специализатора JaSpe:
(1) Пользователь применяет специализатор к программе.
(2) Пользователь находит в остаточной программе, места, которые не

оптимизировались.
(3) Пользователь не удовлетворен остаточной программой.
(4) Пользователь изучает BT-разметку исходной программы в тех

местах, где он ожидал преобразования.
(5) Программист ожидал S, а получил D в ключевом на его взгляд месте

и хочет понять, почему.
(6) Пользователь размышляет над причинами, которые препятствуют

ожидаемым преобразованиями и изменяет программу в соответствии
со своими выводами.

(7) Эта процедура выполняется итеративно начиная с шага 1 до тех пор,
пока пользователь не будет удовлетворен результатом.

336 И.А. Адамович

Отметим, что пункт (6) в случае с реальными программами требует
существенных умственных усилий и много времени. Программист видит
код, который размечен как D, там где он ожидал S. Однако найти источник
проблемы часто бывает затруднительно: обычно источник проблемы и ее
проявление существенно разнесены в программе. Ситуацию осложняет и
тот факт, что не всегда понятны пути, по которым BTA пришел к той или
иной точке, а также откаты в процессе абстрактной интерпретации BTA.

Если простого обдумывания не хватает, пользователь может пере-
писать программу с целью обнаружения источника, препятствующего
преобразованиям.

Чтобы упростить и ускорить написание кода, который хорошо
специализируется, разработана и реализована история причин BT-
разметки.

9. Базовые понятия истории причин BT-разметки

Проблема соотнесения места проявления проблемы с ее источником и
устранение сложностей понимания, возникающих из-за откатов анализа,
привела нас к решению в виде истории причин BT-разметки и ее
визуализации.

История причин BT-разметки позволяет понять источник проблемы,
почему тот или иной участок кода не специализируется и благодаря
этому программист может внести улучшения времен связывания в свою
программу.

Идея истории причин BT-разметки появилась при попытках применить
JaSpe к реальным программам, разработанными другими авторами.
Как и ожидалось, в таких программах содержится множество мест,
которые не поддаются преобразованиям, а на поиск источников проблем
уходит большее время, чем на их устранение. После реализации методов
составления истории причин BT-разметки, их фильтрации и визуализации,
время на поиск сократилось на порядок.

Для реализации истории причин потребовалось внести изменения в
базовые понятия BTA, а именно в понятия BT-значение и BT-объект.

В оригинальных методах данные примитивных типов размечаются
BT-значениями S или D, а данные ссылочных типов— BT-объектами.
В классическом варианте [38] формальное определение BT-значения
следующее:
BT -V alue ∈ {S,D}.

Расширим это определение для предоставления удобного спосо-
ба составления истории причин. Вместо классического BT -V alue мы
используем BT -V alueR.

Интерактивные средства специализации программ 337

BT -V alueR = (BT -V alue,Reason), где
Reason = (KindR, BT -V alueR1 , BT -V alueR2 , BT -V alueR3 , ...) Здесь к

классическому определению добавился тег Reason, который выражает
причину, по которой то или иное BT-значение было создано и
сохраняет BT-значения, на основе которых получено данное BT-
значение.

KindR — это целое число, идентификатор разновидности причины.
В реализации на его основе выбирается описание причины, подсказ-
ки и длина списка BT -V alueRi . KindR — элемент фиксированного
множества. В описываемой реализации выделено 18 разновидностей
причин.

История причин BT-разметки— сильный инструмент для поиска
источника проблем, однако его невозможно эффективно применять без
визуализации разметки программы. Проблема заключается в том, что без
визуализации разметки непонятно, для какой конструкции необходимо
рассматривать историю причин BT-разметки. Когда программист видит,
что некое выражение получило D-разметку, он понимает, что это может
быть отправной точкой для дальнейшего поиска источников. Если
визуализации разметки нет, то придется пробовать наугад и такой перебор
может занять продолжительное время.

10. Пример анализа на основе истории причин BT-разметки

Рассмотрим основные идеи истории причин BT-разметки на уже
знакомом примере с рисунка 1. Для этого описания нам понадобится
понятие BT-окружения.

BT-окружение — это структура данных, которая хранит текущую BT-
разметку переменных. По сути это некоторая абстракция состояния
памяти, в которой вместо обычных значений локальных переменных
хранятся BT-значения. Можно считать, что BT-окружение— это
хеш-таблица пар (имя переменной, BT -значение).

Определим множество возможных причин:

Rdef = (1, ∅), — причина, означающая значение по умолчанию. Данная
причина не зависит от других BT-значений.

Rdep = (2, BT -V alueR1 , BT -V alueR2 , . . .) — причина, которая сообщает,
что данное BT-значение основывается на других BT-значениях и
получено их обобщением.

Rdarg = (3, ∅) — причина, говорящая о том, что данное BT-значение
построено для аргумента метода, которое пришло извне.

338 И.А. Адамович

Rret = (4, BT -V alueR1) — данная причина, указывает на то, что вызов
метода получил разметку на основе BT-разметки его конструкции
return.

Rval = (5, BT -V alueR1) — эта причина означает, что данное BT-значение
получено из BT-окружения.

Может показаться, что для данного примера количество разновид-
ностей причин избыточно. Можно было бы ограничится двумя Rdef и
Rdep. Однако, в рассматриваемом подходе есть существенный плюс— для
причин Rdarg, Rret и Rval можно выдать более детальные подсказки, что
упрощает понимание получившейся разметки программы.

На рисунке 3 представлена размеченная программа с рисунка 1,
в правую часть которого добавлены причины для соответствующих
операторов.

1. @Specialize
2. public static int example(int Argument) {
3. int a = 5;
4. int result = 0;
5. boolean myTrue = true;
6.
7. if (!myTrue) {
8. result = sum(dArgument, a);
9. } else {
10. result = sum(a, 2);
11. }
12. result = result * 2;
13. return result;
14. }
15.
16. public static int sum(int a, int b) {
17. return a + b;
28. }

Rdarg

Rdef Rdep

Rdef

Rdef Rdep

Rdep

2xRvar Rret Rdep

Rdef Rvar Rret Rdep

Rdef Rvar 2xRdep

Rvar Rdep

2xRdep

2xRvar 2xRdep

Рисунок 3. Пример соотнесения причин

Мы не будем полностью разбирать программу, остановимся на
ключевым моментах, остальные строятся по аналогии. Также мы не будем
рассматривать базовую разметку, поскольку это сделано ранее в разделе 2.

Анализ начинается со строки 2, в которой аргумент dArgument имеет
D-разметку, так как он является аргументом точки входа. Поэтому для
разметки выражения выбирается причина Rdarg.

Рассмотрим строку 3: в ней определяется переменная a и выполняется
присваивание константы. Константа 5 размечается парой (S,Rdef).
Причина Rdef выбрана потому, что S-разметка всегда выбирается для
констант и является разметкой по умолчанию. Далее анализируется
присваивание. Ему приписывается причина Rdep, так как разметка
присваивания целиком зависит от разметки выражения в правой его части.

Интерактивные средства специализации программ 339

В экземпляр этой причины помещается ссылка (S,Rdef) на разметку
правой части выражения.

Итоговая разметка присваивания целиком выглядит так:
(S, (2, (S, (1, ∅)))).

Это скобочное выражение изображает дерево BT-объектов. В общем
случае оно оказывается ациклическим графом. Далее не будем приводить
разметку целиком, сосредоточимся именно на причинах.

В строке 7 анализируется инструкция if. Так как разметка if зависит
от разметки его условия, то причина— Rdep.

В строке 8 анализируется присваивание и вызов метода. В вызов метода
передаются два параметра— dArgument и a. Оба этих выражения приводят
к обращению к BT-окружению и чтению из него соответствующих именам
параметров BT-значений. Поэтому обоим выражениям-именам— dArgument
и a— приписываются причина Rval (чтение из BT-окружения).

Далее анализ переходит непосредственно к самому вызову метода sum.
Чтобы построить разметку этого выражения, мы должны узнать какова
разметка результата этого метода. Поэтому BTA анализирует аргументы и
тело этого метода.

Разметка аргументов определяется разметкой параметров. Поэтому
оба аргумента получают причину Rdep (строка 16). При этом BT-значения
аргументов помещаются в BT-окружение.

Оператор return размечается как D из-за того, метод sum переходит
return опирается на сумму a и b. в остаточную программу в форме метода
sum_5_2. Помипо этого, Итак, мы имеем два обращения к BT-окружению,
для чтения a и b (причины Rval), сумма a и b определяется значением
подвыражений (причина Rdep) и return оприрается на сумму (тоже
причина Rdep).

Разметка тела метода завершается и анализ наконец может определить
разметку вызова— оно строится на основе разметки return (она D) и
выбирается причина Rret.

Остальные конструкции программы получают причины по аналогии
с уже разобранными случаями.

Покажем на этом примере как программист может использовать
историю причин BT-разметки. Предположим, он хочет узнать, прочему в
строке 12 переменная result (в правой части присваивания) получила
D-разметку. Программист запрашивает историю причин BT-разметки, в
которой сможет обнаружить следующую последовательность причин:

Rvar ← Rdep ← Rret ← Rdep ← Rdep ← Rvar ← Rdep ← Rvar ← Rdarg(1)

340 И.А. Адамович

История причин BT-разметки будет содержать ответвления от этой
последовательности, но все ответвления будут с S-разметкой. Поэтому
они не интересны с точки зрения обнаружения причины, по которой
переменная result получила D-разметку.

Самой правой причиной в последовательности (1) является Rdarg — это
источник проблемы. В итоге программист обнаружит, что result имеет
D-разметку в строке 12, косвенно зависящую от разметки аргумента
dArgument в строке 1.

Обратим внимание на то, что место проявления проблемы (переменная
result с D-разметкой) и источник проблемы (аргумент dArgument)
разнесены на достаточно большое расстояние для такой маленькой
программы. В реальных программах время ручного поиска всего одной
проблемы может занимать час и больше. Используя же историю причин,
программист потратит две-три минуты.

В заключение приведем снимок экрана из JaSpe для выражения из
примера выше (рисунок 4).

Рисунок 4. Снимок окна с историей причин BT-разметки для примера.

История причин BT-разметки построена для выражения из примера
выше (result в левой части присваивания строки 18 их кода). Сами
причины отличаются, в реализации они иные, чем в примере. Каждая
строка в истории причин BT-разметки— это конкретная причина. Первым
в строке идет BT-значение. Далее после вертикальной черты— конструкция
Java, к которой относится причина, а затем— разновидность причины.

Первая строка истори причин BT-разметки соответствует выражению
result. Далее идет дерево причин, где отступ от левого края означает
вложенность.

Интерактивные средства специализации программ 341

На снимнке мы видим, что result «наследует» разметку по цепочки
из D-причин, которая ведет к аргументу метода dArgument— это ситуация
аналогична разобранному примеру.

11. Фильтрация истории причин BT-разметки

В предыдущих двух разделах изложены базовые понятия и идеи
истории причин BT-разметки, а также проиллюстрировали методы работы
с причинами на примере. В этом разделе мы разберем как эффективно
фильтровать причины, существенно сокращая время поиска источника
проблемы.

Обычно при построении истории причин BT-разметки получается
большой ациклический граф. Для того, чтобы не потеряться в массиве
информации нужно фильтровать такой граф для выявления ключевой
информации.

Причины разделяются на две категории: источники и промежуточные
причины. Источники— это такие причины, которые связаны с созданием
новых BT-значений (в противоположность промежуточным причинам).
Обычно источники не основываются ни на каких других причинах, то есть
являются листьями в графе истории причин BT-разметки. Из примера в
предыдущей главе можно выделить две разновидности причин, которые
будут являться источниками— Rdef и Rdarg.

Другая категория причин— промежуточные причины. Промежуточные
причины основаны на наследовании BT-значений от других конструкций.
В примере это Rdep, Rret и Rval, так как маркируемые этими причинами
BT-значения полностью зависят от других (дочерних) BT-значений. Эта
категория причин как бы передает BT-значения из одного места в другое.

Отметим, что важны источники D-значений, поскольку они позволяют
найти начальные точки, которые ограничивают специализацию.

Чтобы решить проблему массивности истории причин BT-разметки,
реализована система фильтрации истории причин. Теперь можно визуали-
зировать только источники, оставляя все остальные причины в стороне.
Для графа из десятков тысяч причин получались только 6-7 единиц
причин-источников.

Нужно заметить, что промежуточные причины не так уж бесполезны.
Во-первых, они могут быть важны начинающим пользователям специали-
затора, чтобы понять, по каким правилам D-значение передалось от
источника до места, в котором пользователь ожидал преобразование.
Во-вторых, трасса от источника до места проявления проблемы может
быть полезна и опытным программистам, чтобы рассеять недопонимание

342 И.А. Адамович

происходящих в BTA процессов. Это особенно актуально для больших и
сложных программ.

12. Типовой сценарий использования истории причин
BT-разметки

Опишем основной сценарий специализации с анализом истории причин
BT-разметки:

(1) Пользователь применяет JaSpe к программе.
(2) В результате пользователь получает неэффективную остаточную

программу.
(3) Пользователь находит в остаточной программе, места, которые не

специализируются вопреки его ожиданиям.
(4) Пользователь изучает BT-разметку исходной программы в тех

местах, где он ожидал преобразования.
(5) Программист ожидал S, а получил D в ключевом на его взгляд месте

и хочет понять почему.
(6) На подсвеченных D результатах BTA пользователь смотрит трассу

причин.
(7) Пользователь запрашивает у системы фильтрацию промежуточных

причин.
(8) Пользователь находит источник(и) проблем— те выражения, которые

послужили источниками D-значений.
(9) Пользователь производит рефакторинг кода, чтобы убрать найденные

D-источники (это называется улучшением времен связывания).
(10) Эта процедура выполняется итеративно начиная с шага 1 до тех пор,

пока пользователь не будет удовлетворен результатом.

Суть этого сценария заключается в том, что пользователь делает
некоторые предположения, как должна быть специализирована его
программа, и применяет специализатор исходя из этих соображений. Затем
пользователь сверяет свои ожидания с реальным результатом и с помощью
интерактивных средств понимает, где ожидания не оправдываются.

Без интерактивных средств понимание причины расхождения ожида-
ний и реальности требует намного более серьезных усилий и квалификации
в области частичных вычислений.

Интерактивные средства специализации программ 343

Заключение
Все известные автору исследования в области частичных вычислений

концентрируются на использовании специализатора в режиме черного
ящика. В итоге они либо не получают широкого практического применения,
либо используют самые простые преобразования.

Для масштабирования по-настоящему сильных методов частичных
вычислений требуется включение человека в процесс специализации.
Переход от режима черного ящика к интерактивной специализации
сравним с переходом от связки компилятор и простой текстовый редактор
к современным IDE, содержащим множество интерактивных средств
помощи программисту.

В настоящей статье рассмотрены понятия и методы интерактивной
специализации на основе частичных вычислений, которые позволяют
существенно снизить нагрузку на программиста-пользователя. После реа-
лизации этих методов на практике обнаружилось, что в некоторых случаях,
время, которое тратит человек на устранение проблем с преобразованиями,
сокращается на порядок.

Для реализации интерактивных средств разработаны следующие
методы и принципы:

• Методы выполнения BTA на основе AST программы.
• Принципы визуализации разметки программы.
• Методы построения и фильтрации истории причин BT-разметки и

понятия с этим связанные.
Методы построения и работы с историей причин BT-разметки изучают-

ся впервые. Эти методы не зависят от специфики BTA и мы рассчитываем,
что история причин BT-разметки может быть применена в других методах
анализа программ, основанных на абстрактной интерпретации, в составе
интерактивных средств.

Также пришлось модифицировать такие базовые понятия частичный
вычислений для программ на объектно-ориентированных языках, как
BT-значение и BT-объект. Причинами изменения базовых понятий
является то, что в них было необходимо включить понятие причин
разметки, а также собрать множество вспомогательных понятий в более
удобную и целостную форму.

Все разработанные понятия и методы опробованы в специализаторе
JaSpe — частичном вычислителе для программ на языке Java. Этот
специализатор погружен в Eclipse IDE.

Планируется применить JaSpe к интерпретатору языка SL, кото-
рый разработан команией Oracle для своего специализатора в составе
GraalVM. Такое применение позволит сравнить описанный метод с ранее
существующими.

344 И.А. Адамович ENRU

Список использованных источников

[1] Jones N. D., Sestoft P., Søndergaard H. Mix: A self-applicable partial evaluator for
experiments in compiler generation // Lisp and Symbolic Computation.– February
1989.– Vol. 2.– No. 9.– Pp. 9–50. https://doi.org/10.1007/BF01806312↑321

[2] Andersen L. O. Program analysis and specialization for the C programming language,
Ph.D. thesis.– Copenhagen: DIKU, University of Copenhagen.– 1994.– 43 pp. https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdfURL

↑321

[3] Andersen L. O. Binding-time analysis and the taming of C pointers // PEPM ’93:
Proceedings of the 1993 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation (Copenhagen, Denmark, June 14–16, 1993),
New York: ACM.– 1993.– ISBN 978-0-89791-594-6.– Pp. 47–58. https://doi.org/10.1145/154630.154636↑321

[4] Hornof L., Noyé J. Accurate binding-time analysis for imperative languages: flow,
context, and return sensitivity // Theoretical Computer Science.– 2000.– Vol. 248.–
No. 1–2.– Pp. 3–27. https://doi.org/10.1016/S0304-3975(00)00048-7↑321

[5] Marlet R. Program Specialization.– Wiley-ISTE.– 2012.– ISBN 978-1848213999.–
544 pp. https://doi.org/10.1002/9781118576984↑321, 325

[6] Schultz U. P., Lawall J. L., Consel C. Automatic program specialization for Java //
ACM Trans. Program. Lang. Syst..– 2003.– Vol. 25.– No. 4.– Pp. 452–499. https://doi.org/10.1145/778559.778561↑321

[7] Schultz U.P. Partial evaluation for class-based object-oriented languages,
PADO 2001: Programs as Data Objects (Aarhus, Denmark, May 21–23, 2001),
Lecture Notes in Computer Science.– vol. 2053, eds. Danvy O., Filinski A.,
Berlin–Heidelberg: Springer.– 2001.– ISBN 978-3-540-42068-2.– Pp. 173–197. https://doi.org/10.1007/3-540-44978-7_11↑321

[8] Schultz U. P. Object-oriented software engineering using partial evaluation, Ph.D.
dissertation.– Rennes: University of Rennes I.– 2000.– 215 pp. ↑321

[9] Klimov And. V. An approach to supercompilation for object-oriented languages: the
Java supercompiler case study // Proceedings of the first International Workshop on
Metacomputation in Russia, First International Workshop on Metacomputation in
Russia µετα 2008 (Pereslavl-Zalessky, Russia, July 2–5, 2008), Pereslavl-Zalessky:
Ailamazyan University of Pereslavl.– 2008.– ISBN 978-5-901795-12-5.– Pp. 43–53. http://meta2008.pereslavl.ru/accepted-papers/meta2008-KlimovA2.pdfURL

↑322

[10] Klimov And.V. A Java supercompiler and its application to verification of
cache-coherence protocols, // Perspectives of Systems Informatics, 7th International
Andrei Ershov Memorial Conference, PSI 2009 (Novosibirsk, Russia, June 15–19,
2009), Lecture Notes in Computer Science.– vol. 5947, Berlin–Heidelberg: Springer.–
2010.– ISBN 978-3-642-11485-4.– Pp. 185–192. https://doi.org/10.1007/978-3-642-11486-1_16↑322

[11] Turchin V.F. The concept of a supercompiler // ACM Transactions on
Programming Languages and Systems.– 1986.– Vol. 8.– No. 3.– Pp. 292–325. https://doi.org/10.1145/5956.5957↑322

[12] Климов Ю.А. Специализация программ на объектно-ориентированных
языках методом частичных вычислений, дис. к.ф.-м.н..– М.: Институт
прикладной математики им. М.В. Келдыша РАН.– 2009.– 183 с. https://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob’ektno-orientirovannyx_yazykah.pdfURL ↑321, 326, 331

https://doi.org/10.1007/BF01806312
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://isbnsearch.org/isbn/978-0-89791-594-6
https://doi.org/10.1145/154630.154636
https://doi.org/10.1016/S0304-3975(00)00048-7
https://isbnsearch.org/isbn/978-1848213999
https://doi.org/10.1002/9781118576984
https://doi.org/10.1145/778559.778561
https://isbnsearch.org/isbn/978-3-540-42068-2
https://doi.org/10.1007/3-540-44978-7_11
https://isbnsearch.org/isbn/978-5-901795-12-5
http://meta2008.pereslavl.ru/accepted-papers/meta2008-KlimovA2.pdf
https://isbnsearch.org/isbn/978-3-642-11485-4
https://doi.org/10.1007/978-3-642-11486-1_16
https://doi.org/10.1145/5956.5957
https://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf

ENRU Интерактивные средства специализации программ 345

[13] Климов Ю.А. Специализатор CILPE: анализ времен связывания //
Препринты ИПМ им. М. В. Келдыша.– 2009.– ид. 007.– 28 с. http://library.keldysh.ru/preprint.asp?id=2009-07URL ↑321, 326, 331

[14] Климов Ю.А. SOOL: объектно-ориентированный стековый язык для
формального описания и реализации методов специализации программ //
Препринты ИПМ им. М. В. Келдыша.– 2008.– ид. 044.– 32 с. http://library.keldysh.ru/preprint.asp?id=2008-44URL ↑321, 326, 331

[15] Климов Ю. А. Особенности применения метода частичных вычислений к
специализации программ на объектно-ориентированных языках // Препринты
ИПМ им. М. В. Келдыша.– 2008.– ид. 012.– 27 с. http://library.keldysh.ru/preprint.asp?id=2008-12URL ↑321, 326, 331

[16] Климов Ю.А. Возможности специализатора CILPE и примеры его
применения к программам на объектно-ориентированных языках // Препринты
ИПМ им. М. В. Келдыша.– 2008.– ид. 030.– 28 с. http://library.keldysh.ru/preprint.asp?id=2008-30URL ↑321, 326, 331

[17] Климов Ю. А. Специализатор CILPE: генерация остаточной программы //
Препринты ИПМ им. М. В. Келдыша.– 2009.– ид. 008.– 26 с. http://library.keldysh.ru/preprint.asp?id=2009-08URL ↑321, 326, 331

[18] Климов Ю.А. Специализатор CILPE: доказательство корректности //
Препринты ИПМ им. М. В. Келдыша.– 2009.– ид. 033.– 32 с. http://library.keldysh.ru/preprint.asp?id=2009-33URL ↑321, 326, 331

[19] Климов Ю.А. Специализатор CILPE: частичные вычисления для
объектно-ориентированных языков // Программные системы: теория и
приложения.– 2010.– Т. 1.– № 3(3).– С. 13-36. http://psta.psiras.ru/read/psta2010_3_13-36.pdfURL ↑321, 326, 331

[20] Макаров А. В., Скоробогатов С. Ю., Чеповский А. М. Common Intermediate
Language и системное программирование в Microsoft.NET.– М.: Интернет-
Университет Информационных Технологий (ИНТУИТ), Бином. Лаборатория
знаний.– 2006.– ISBN 978-5-94774-735-5.– 328 с. ↑321

[21] Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C.,
Richards G., Simon D., Wolczko M. One VM to rule them all // Onward! 2013:
Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA, October 29–31, 2013), New York: ACM.– 2013.– ISBN 978-1-4503-2472-4.–
Pp. 187–204. https://doi.org/10.1145/2509578.2509581↑322

[22] Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C.,
Duboscq G., Simon D., Grimmer M. Practical partial evaluation for high-performance
dynamic language runtimes // SIGPLAN Not..– June 2017.– Vol. 52.– No. 6.–
Pp. 662–676. https://doi.org/10.1145/3140587.3062381↑322

[23] Huemer F., Leopoldseder D., Prokopec A., Mosaner R., Moessenboeck H. Taking
a closer look: an outlier-driven approach to compilation-time optimization, 38th
European Conference on Object-Oriented Programming (ECOOP 2024) (Vienna,
Austria, September 16–20, 2024), Leibniz International Proceedings in Informatics.–
vol. 313.– Schloss Dagstuhl—Leibniz-Zentrum für Informatik.– September 2024.–
ISBN 978-3-95977-341-6.– Pp. 20:1–20:28. https://doi.org/10.4230/LIPIcs.ECOOP.2024.20↑322

[24] Leißa R., Boesche K., Hack S., Pérard-Gayot A., Membarth R., Slusallek P.,
Müller A., Schmidt B. AnyDSL: a partial evaluation framework for programming
high-performance libraries // Proceedings of the ACM on Programming Languages.–
November 2018.– Vol. 2.– No. OOPSLA.– id. 119.– 30 pp. https://doi.org/10.1145/3276489↑322

http://library.keldysh.ru/preprint.asp?id=2009-07
http://library.keldysh.ru/preprint.asp?id=2008-44
http://library.keldysh.ru/preprint.asp?id=2008-12
http://library.keldysh.ru/preprint.asp?id=2008-30
http://library.keldysh.ru/preprint.asp?id=2009-08
http://library.keldysh.ru/preprint.asp?id=2009-33
http://psta.psiras.ru/read/psta2010_3_13-36.pdf
https://isbnsearch.org/isbn/978-5-94774-735-5
https://isbnsearch.org/isbn/978-1-4503-2472-4
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3140587.3062381
https://isbnsearch.org/isbn/978-3-95977-341-6
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://doi.org/10.1145/3276489

346 И.А. Адамович ENRU

[25] Müller A., Schmidt B., Hildebrandt A., Membarth R., Leißa R., Kruse M., Hack S.
AnySeq: A high performance sequence alignment library based on partial evaluation //
IEEE International Parallel and Distributed Processing Symposium (IPDPS) (New
Orleans, LA, USA, May 18–22, 2020).– IEEE.– 2020.– ISBN 978-1-7281-6876-0.–
Pp. 1030–1040. https://doi.org/10.1109/IPDPS47924.2020.00109↑322

[26] Pérard-Gayot A., Membarth R., Leißa R., Hack S., Slusallek P. Rodent: generating
renderers without writing a generator // ACM Transactions on Graphics.– 2019.–
Vol. 38.– No. 4.– id. 40.– 12 pp. https://doi.org/10.1145/3306346.3322955↑322

[27] Özkan A., Pérard-Gayot A., Membarth R., Slusallek P., Leißa R., Hack S.,
Teich J., Hannig F. AnyHLS: high-level synthesis with partial evaluation // IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.–
October 2020.– Vol. 39.– No. 11.– Pp. 3202–3214. https://doi.org/10.1109/TCAD.2020.3012172↑322

[28] Chung B. A Type System for Julia, Ph.D. thesis.– 2023.– 139 pp. https://doi.org/10.48550/arXiv.2310.16866arXivarXiv

2310.16866 ↑323

[29] Fallin C., Bernstein M. Partial evaluation, whole-program compilation //
Proceedings of the ACM on Programming Languages.– June 2025.– Vol. 9.–
No. PLDI.– Pp. 324–347.– id. 160. https://doi.org/10.1145/3729259↑323

[30] Климов Анд.В. Суперкомпиляция и частичные вычисления до сих пор не
вошли в широкую практику программирования. Почему и что делать?Научный
сервис в сети Интернет, Труды XXIV Всероссийской научной конференции
(онлайн, 19–22 сентября 2022 г.), М.: ИПМ им. М.В. Келдыша.– 2022.– ISBN

978-5-98354-065-1.– С. 312–331. https://doi.org/10.20948/abrau-2022-38https://keldysh.ru/abrau/2022/theses/38.pdfURL ↑323, 329

[31] Адамович И. А., Климов Ю. А. Исследование эффективности специализации
интерпретаторов на объектно-ориентированном языке Java методами
частичных вычислений с BT-объектами // Программные системы: теория и
приложения.– 2022.– Т. 13.– № 4(55).– С. 111–137. https://doi.org/10.25209/2079-3316-2022-13-4-111-137URL https://psta.psiras.ru/read/psta2022_4_111-137.pdfURL ↑325, 332

[32] Адамович И.А., Климов Ю.А. Специализация интерпретаторов на
объектно-ориентированных языках может быть эффективной // Научный
сервис в сети Интернет, Труды XXIV Всероссийской научной конференции
(онлайн, 19–22 сентября 2022 г.), М.: ИПМ им. М.В. Келдыша.– 2022.– ISBN

978-5-98354-065-1.– С. 3—24. https://doi.org/10.20948/abrau-2022-18https://keldysh.ru/abrau/2022/theses/18.pdfURL ↑325, 332

[33] Адамович И.А. Специализатор JaSpe: BT-объекты и межпроцедурный
аспект алгоритма анализа времен связывания // Программные системы:
теория и приложения.– 2021.– Т. 12.– № 4(51).– С. 3–32. https://doi.org/10.25209/2079-3316-2021-12-4-3-32https://psta.psiras.ru/read/psta2021_4_3-32.pdfURL ↑325, 332, 334

[34] Адамович И. А., Климов Ю. А. Специализатор JaSpe: алгоритм внутрипро-
цедурного анализа времени связывания программ на подмножестве языка Java
// Программные системы: теория и приложения.– 2020.– Т. 11.– № 1(44).–
С. 3–29. https://doi.org/10.25209/2079-3316-2020-11-1-3-29https://psta.psiras.ru/read/psta2020_1_3-29.pdfURL ↑325, 332

https://isbnsearch.org/isbn/978-1-7281-6876-0
https://doi.org/10.1109/IPDPS47924.2020.00109
https://doi.org/10.1145/3306346.3322955
https://doi.org/10.1109/TCAD.2020.3012172
https://doi.org/10.48550/arXiv.2310.16866
https://arxiv.org/abs/2310.16866
https://arxiv.org/abs/2310.16866
https://doi.org/10.1145/3729259
https://isbnsearch.org/isbn/978-5-98354-065-1
https://isbnsearch.org/isbn/978-5-98354-065-1
https://doi.org/10.20948/abrau-2022-38
https://keldysh.ru/abrau/2022/theses/38.pdf
https://doi.org/10.25209/2079-3316-2022-13-4-111-137
https://psta.psiras.ru/read/psta2022_4_111-137.pdf
https://isbnsearch.org/isbn/978-5-98354-065-1
https://isbnsearch.org/isbn/978-5-98354-065-1
https://doi.org/10.20948/abrau-2022-18
https://keldysh.ru/abrau/2022/theses/18.pdf
https://doi.org/10.25209/2079-3316-2021-12-4-3-32
https://psta.psiras.ru/read/psta2021_4_3-32.pdf
https://doi.org/10.25209/2079-3316-2020-11-1-3-29
https://psta.psiras.ru/read/psta2020_1_3-29.pdf

ENRU Интерактивные средства специализации программ 347

[35] Адамович И.А. Эксперименты с интерактивным специализатором
подмножества языка Java, реализующим метод частичных вычислений
// Научный сервис в сети Интернет, Труды XX Всероссийской научной
конференции (Новороссийск, Россия, 17–22 сентября 2018 г.), М.: ИПМ
им. М.В. Келдыша.– 2018.– ISBN 978-5-98354-046-0.– С. 3–16. https://doi.org/10.20948/abrau-2018-10https://keldysh.ru/abrau/2018/theses/10.pdfURL ↑325, 332

[36] Адамович И. А., Климов Ю. А. Интерактивный специализатор подмноже-
ства языка Java, основанный на методе частичных вычислений // Труды ИСП
РАН.– 2018.– Т. 30.– № 4.– С. 29–44 (in English). http://mi.mathnet.ru/tisp345MN https://doi.org/10.15514/ISPRAS-2018-30(4)-2[РИНЦ] ↑325, 332

[37] Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed..– Addison Wesley.– 1994.– ISBN

978-0201633610.– 416 pp. ↑333

[38] Jones N. D., Gomard C. K., Sestoft P. Partial Evaluation and Automatic Program
Generation, Prentice Hall International Series in Computer Science, 1st ed..–
Prentice Hall.– 1993.– ISBN 978-0130202499.– 415 pp. https://www.itu.dk/people/sestoft/pebook/jonesgomardsestoft-a4.pdfURL ↑337

Поступила в редакцию 01.12.2025;
одобрена после рецензирования 29.12.2025;
принята к публикации 29.12.2025;
опубликована онлайн 30.12.2025.

Рекомендовал к публикации к.ф.-м..н. С.А. Романенко

Информация об авторе:

Игорь Алексеевич Адамович

Научный сотрудник Института программных систем
имени А.К. Айламазяна РАН. Научные интересы: мета-
вычисления, суперкомпиляция, частичные вычисления,
верификация программ, проектирование устройств на
основе FPGA и ASIC. Принимал активное участие в раз-
работке интерконнектов для коммуникационных сетей
«Паутина» и «3D-тор» суперкомпьютера «СКИФ-Аврора»

iD 0000-0001-9728-3024

e-mail: igor@igor-adamovich.ru

Декларация об отсутствии личной заинтересованности: благополучие
автора не зависит от результатов исследования.

https://isbnsearch.org/isbn/978-5-98354-046-0
https://doi.org/10.20948/abrau-2018-10
https://keldysh.ru/abrau/2018/theses/10.pdf
http://mi.mathnet.ru/tisp345
https://doi.org/10.15514/ISPRAS-2018-30(4)-2
https://elibrary.ru/item.asp?id=35544578
https://isbnsearch.org/isbn/978-0201633610
https://isbnsearch.org/isbn/978-0201633610
https://isbnsearch.org/isbn/978-0130202499
https://www.itu.dk/people/sestoft/pebook/jonesgomardsestoft-a4.pdf
https://orcid.org/0000-0001-9728-3024
mailto: igor@igor-adamovich.ru

RUEN PROGRAM SYSTEMS: THEORY AND APPLICATIONS ISSN 2079-3316

© Adamovich I. A. 2025 CC-BY-4.0

Research Article applied software systems

UDC 519.681.3
DOI 10.25209/2079-3316-2025-16-4-319-352

Interactive tools for program specialization

Igor Alekseevich Adamovich
Ailamazyan Program Systems Institute of RAS, Ves’kovo, Russia

igor@igor-adamovich.ru

Abstract. Program specialization is the adaptation of a program to specific
conditions of its execution. Specialization can be used, among other applications,
for optimization and transformation of abstract specifications into concrete
programs for various computational architectures (CPU, SIMD, GPU, FPGA).
The specialization process is characterized by numerous degrees of freedom
in decision-making, which complicates achieving predictable results in fully
automatic mode. There are two main specialization approaches: online, where
decisions are made during residual program generation, and offline, providing
greater predictability through pre-made decisions. However, effectively specializing
a program on the first attempt is often difficult, requiring trial-and-error methods
and interactive tools for visualizing the consequences of design decisions.

This paper addresses the problem of adapting existing specialization methods for
interactive operation, as many require substantial modification or replacement. We
propose methods to improve manageability and predictability of the specialization
process: working with abstract syntax trees, constructing and filtering causality
histories, and visualizing annotation results. Implemented in the JaSpe specializer
for Java, these methods reduce problem-source identification time by an order of
magnitude in many cases. (In Russian).

Key words and phrases: interactive specialization, interactive tools, partial
evaluation, supercompilation, metacomputations, IDE

2020 Mathematics Subject Classification: 68N15; 68N19, 68N30

For citation: Igor A. Adamovich. Interactive tools for program specialization.
Program Systems: Theory and Applications, 2025, 16:4(67), pp. 319–352. (In
Russ.). https://psta.psiras.ru/read/psta2025_4_319-352.pdf

psta.psiras.ru/index_en.htm
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.25209/2079-3316-2025-16-4-319-352&domain=pdf&date_stamp=2025-12-30
https://udcsummary.info/
https://doi.org/10.25209/2079-3316-2025-16-4-319-352
http://www.botik.ru/PSI/
mailto: igor@igor-adamovich.ru
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68N15
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68N19
https://mathscinet.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68N30
https://psta.psiras.ru//index_en.htm
https://psta.psiras.ru/read/psta2025_4_319-352.pdf

RUEN Interactive tools for program specialization 349

References

[1] N.D. Jones, P. Sestoft, H. Søndergaard. “Mix: A self-applicable partial
evaluator for experiments in compiler generation”, Lisp and Symbolic
Computation, 2:9 (February 1989), pp. 9–50. https://doi.org/10.1007/BF01806312

[2] L. O. Andersen. Program analysis and specialization for the C programming
language, Ph.D. thesis, DIKU, University of Copenhagen, Copenhagen, 1994,
43 pp. https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdfURL

[3] L. O. Andersen. “Binding-time analysis and the taming of C pointers”, PEPM
’93: Proceedings of the 1993 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation (Copenhagen, Denmark, June
14–16, 1993), ACM, New York, 1993, ISBN 978-0-89791-594-6, pp. 47–58. https://doi.org/10.1145/154630.154636

[4] L. Hornof, J. Noyé. “Accurate binding-time analysis for imperative languages:
flow, context, and return sensitivity”, Theoretical Computer Science, 248:1–2
(2000), pp. 3–27. https://doi.org/10.1016/S0304-3975(00)00048-7

[5] R. Marlet. Program Specialization, Wiley-ISTE, 2012, ISBN 978-1848213999,
544 pp. https://doi.org/10.1002/9781118576984

[6] U. P. Schultz, J. L. Lawall, C. Consel. “Automatic program specialization for
Java”, ACM Trans. Program. Lang. Syst., 25:4 (2003), pp. 452–499. https://doi.org/10.1145/778559.778561

[7] U. P. Schultz. “Partial evaluation for class-based object-oriented languages”,
PADO 2001: Programs as Data Objects (Aarhus, Denmark, May 21–23, 2001),
Lecture Notes in Computer Science, vol. 2053, eds. Danvy O., Filinski A.,
Springer, Berlin–Heidelberg, 2001, ISBN 978-3-540-42068-2, pp. 173–197. https://doi.org/10.1007/3-540-44978-7_11

[8] U. P. Schultz. Object-oriented software engineering using partial evaluation,
Ph.D. dissertation, University of Rennes I, Rennes, 2000, 215 pp.

[9] And.V. Klimov. “An approach to supercompilation for object-oriented
languages: the Java supercompiler case study”, Proceedings of the first
International Workshop on Metacomputation in Russia, First International
Workshop on Metacomputation in Russia (Pereslavl-Zalessky, Russia, July 2–5,
2008), Ailamazyan University of Pereslavl, Pereslavl-Zalessky, 2008, ISBN

978-5-901795-12-5, pp. 43–53. http://meta2008.pereslavl.ru/accepted-papers/meta2008-KlimovA2.pdfURL

[10] And.V. Klimov. “A Java supercompiler and its application to verification
of cache-coherence protocols,”, Perspectives of Systems Informatics, 7th
International Andrei Ershov Memorial Conference, PSI 2009 (Novosibirsk,
Russia, June 15–19, 2009), Lecture Notes in Computer Science, vol. 5947,
Springer, Berlin–Heidelberg, 2010, ISBN 978-3-642-11485-4, pp. 185–192. https://doi.org/10.1007/978-3-642-11486-1_16

[11] V.F. Turchin. “The concept of a supercompiler”, ACM Transactions on
Programming Languages and Systems, 8:3 (1986), pp. 292–325. https://doi.org/10.1145/5956.5957

[12] Yu. A. Klimov. Program specialization for object-oriented languages by partial
evaluation, dis. k.f.-m.n., Institut prikladnoj matematiki im. M.V. Keldysha
RAN, M., 2009, 183 pp. (in Russian). https://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob’ektno-orientirovannyx_yazykah.pdfURL

https://doi.org/10.1007/BF01806312
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://isbnsearch.org/isbn/978-0-89791-594-6
https://doi.org/10.1145/154630.154636
https://doi.org/10.1016/S0304-3975(00)00048-7
https://isbnsearch.org/isbn/978-1848213999
https://doi.org/10.1002/9781118576984
https://doi.org/10.1145/778559.778561
https://isbnsearch.org/isbn/978-3-540-42068-2
https://doi.org/10.1007/3-540-44978-7_11
https://isbnsearch.org/isbn/978-5-901795-12-5
https://isbnsearch.org/isbn/978-5-901795-12-5
http://meta2008.pereslavl.ru/accepted-papers/meta2008-KlimovA2.pdf
https://isbnsearch.org/isbn/978-3-642-11485-4
https://doi.org/10.1007/978-3-642-11486-1_16
https://doi.org/10.1145/5956.5957
https://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf

350 Igor A. Adamovich RUEN

[13] Yu. A. Klimov. “Specializer CILPE: binding time analysis”, Preprinty IPM
im. M. V. Keldysha, 2009, id. 007, 28 pp. (in Russian). http://library.keldysh.ru/preprint.asp?id=2009-07URL

[14] Yu.A. Klimov. “SOOL: an object-oriented stacked-based language for
specification and implementation of program specialization techniques”,
Preprinty IPM im. M. V. Keldysha, 2008, id. 044, 32 pp. (in Russian). http://library.keldysh.ru/preprint.asp?id=2008-44URL

[15] Yu. A. Klimov. “Program specialization for object-oriented languages by partial
evaluation: approaches and problems”, Preprinty IPM im. M. V. Keldysha,
2008, id. 012, 27 pp. (in Russian). http://library.keldysh.ru/preprint.asp?id=2008-12URL

[16] Yu.A. Klimov. “Specializer CILPE: examples of object-oriented program
specialization”, Preprinty IPM im. M. V. Keldysha, 2008, id. 030, 28 pp. (in
Russian). http://library.keldysh.ru/preprint.asp?id=2008-30URL

[17] Yu. A. Klimov. “Specializer CILPE: residual program generation”, Preprinty
IPM im. M. V. Keldysha, 2009, id. 008, 26 pp. (in Russian). http://library.keldysh.ru/preprint.asp?id=2009-08URL

[18] Yu.A. Klimov. “Specializer CILPE: correctness proof”, Preprinty IPM
im. M. V. Keldysha, 2009, id. 033, 32 pp. (in Russian). http://library.keldysh.ru/preprint.asp?id=2009-33URL

[19] Yu.A. Klimov. “Specializer CILPE: partial evaluator for object-oriented
languages”, Program Systems: Theory and Applications, 1:3(3) (2010),
pp. 13-36 (in Russian). http://psta.psiras.ru/read/psta2010_3_13-36.pdfURL

[20] A. V. Makarov, S. Yu. Skorobogatov, A. M. Chepovskij. Common Intermediate
Language and Systems Programming in Microsoft.NET, Internet-Universitet
Informacionnyx Texnologij (INTUIT), Binom. Laboratoriya znanij, M., 2006,
ISBN 978-5-94774-735-5, 328 pp. (in Russian).

[21] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, M. Wolczko. “One VM to rule them all”, Onward! 2013:
Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA, October 29–31, 2013), ACM, New York, 2013, ISBN 978-1-4503-2472-4,
pp. 187–204. https://doi.org/10.1145/2509578.2509581

[22] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, M. Grimmer. “Practical partial evaluation for
high-performance dynamic language runtimes”, SIGPLAN Not., 52:6 (June
2017), pp. 662–676. https://doi.org/10.1145/3140587.3062381

[23] F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, H. Moessenboeck.
“Taking a closer look: an outlier-driven approach to compilation-time
optimization”, 38th European Conference on Object-Oriented Programming
(ECOOP 2024) (Vienna, Austria, September 16–20, 2024), Leibniz International
Proceedings in Informatics, vol. 313, Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, September 2024, ISBN 978-3-95977-341-6, pp. 20:1–20:28. https://doi.org/10.4230/LIPIcs.ECOOP.2024.20

[24] R. Leißa, K. Boesche, S. Hack, A. Pérard-Gayot, R. Membarth, P. Slusallek,
A. Müller, B. Schmidt. “AnyDSL: a partial evaluation framework for
programming high-performance libraries”, Proceedings of the ACM on
Programming Languages, 2:OOPSLA (November 2018), id. 119, 30 pp. https://doi.org/10.1145/3276489

http://library.keldysh.ru/preprint.asp?id=2009-07
http://library.keldysh.ru/preprint.asp?id=2008-44
http://library.keldysh.ru/preprint.asp?id=2008-12
http://library.keldysh.ru/preprint.asp?id=2008-30
http://library.keldysh.ru/preprint.asp?id=2009-08
http://library.keldysh.ru/preprint.asp?id=2009-33
http://psta.psiras.ru/read/psta2010_3_13-36.pdf
https://isbnsearch.org/isbn/978-5-94774-735-5
https://isbnsearch.org/isbn/978-1-4503-2472-4
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3140587.3062381
https://isbnsearch.org/isbn/978-3-95977-341-6
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://doi.org/10.1145/3276489

RUEN Interactive tools for program specialization 351

[25] A. Müller, B. Schmidt, A. Hildebrandt, R. Membarth, R. Leißa, M. Kruse,
S. Hack. “AnySeq: A high performance sequence alignment library based on
partial evaluation”, IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (New Orleans, LA, USA, May 18–22, 2020), IEEE, 2020,
ISBN 978-1-7281-6876-0, pp. 1030–1040. https://doi.org/10.1109/IPDPS47924.2020.00109

[26] A. Pérard-Gayot, R. Membarth, R. Leißa, S. Hack, P. Slusallek. “Rodent:
generating renderers without writing a generator”, ACM Transactions on
Graphics, 38:4 (2019), id. 40, 12 pp. https://doi.org/10.1145/3306346.3322955

[27] A. Özkan, A. Pérard-Gayot, R. Membarth, P. Slusallek, R. Leißa, S. Hack,
J. Teich, F. Hannig. “AnyHLS: high-level synthesis with partial evaluation”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39:11 (October 2020), pp. 3202–3214. https://doi.org/10.1109/TCAD.2020.3012172

[28] B. Chung. A Type System for Julia, Ph.D. thesis, 2023, 139 pp. https://doi.org/10.48550/arXiv.2310.16866arXivarXiv

2310.16866

[29] C. Fallin, M. Bernstein. “Partial evaluation, whole-program compilation”,
Proceedings of the ACM on Programming Languages, 9:PLDI (June 2025),
pp. 324–347, id. 160. https://doi.org/10.1145/3729259

[30] And. V. Klimov. Supercompilation and partial evaluation are still not widely
used in practice. Why and what to do? Nauchnyj servis v seti Internet, Trudy
XXIV Vserossijskoj nauchnoj konferencii (onlajn, 19–22 sentyabrya 2022 g.),
IPM im. M. V. Keldysha, M., 2022, ISBN 978-5-98354-065-1, pp. 312–331 (In
Russian). https://doi.org/10.20948/abrau-2022-38https://keldysh.ru/abrau/2022/theses/38.pdfURL

[31] I.A. Adamovich, Yu.A. Klimov. “Issledovanie effektivnosti specializacii
interpretatorov na ob”ektno-orientirovannom yazyke Java metodami chastichnyx
vychislenij s BT-ob”ektami”, Program Systems: Theory and Applications,
13:4(55) (2022), pp. 111–137. https://doi.org/10.25209/2079-3316-2022-13-4-111-137URL https://psta.psiras.ru/read/psta2022_4_111-137.pdfURL

[32] I. A. Adamovich, Yu.A. Klimov. “Specialization of interpreters written in
object-oriented languages can be effective”, Nauchnyj servis v seti Internet,
Trudy XXIV Vserossijskoj nauchnoj konferencii (onlajn, 19–22 sentyabrya
2022 g.), IPM im. M. V. Keldysha, M., 2022, ISBN 978-5-98354-065-1, pp. 3—24
(In Russian). https://doi.org/10.20948/abrau-2022-18https://keldysh.ru/abrau/2022/theses/18.pdfURL

[33] I. A. Adamovich. “The JaSpe specializer: BT-objects and the interprocedural
aspect of the binding-time analysis algorithm”, Program Systems: Theory and
Applications, 12:4(51) (2021), pp. 3–32 (In Russian). https://doi.org/10.25209/2079-3316-2021-12-4-3-32https://psta.psiras.ru/read/psta2021_4_3-32.pdfURL

[34] I. A. Adamovich, Yu.A. Klimov. “The JaSpe specializer: an algorithm of
intra-procedural binding time analysis in Java language subset”, Program
Systems: Theory and Applications, 11:1(44) (2020), pp. 3–29 (In Russian). https://doi.org/10.25209/2079-3316-2020-11-1-3-29

https://psta.psiras.ru/read/psta2020_1_3-29.pdfURL

https://isbnsearch.org/isbn/978-1-7281-6876-0
https://doi.org/10.1109/IPDPS47924.2020.00109
https://doi.org/10.1145/3306346.3322955
https://doi.org/10.1109/TCAD.2020.3012172
https://doi.org/10.48550/arXiv.2310.16866
https://arxiv.org/abs/2310.16866
https://arxiv.org/abs/2310.16866
https://doi.org/10.1145/3729259
https://isbnsearch.org/isbn/978-5-98354-065-1
https://doi.org/10.20948/abrau-2022-38
https://keldysh.ru/abrau/2022/theses/38.pdf
https://doi.org/10.25209/2079-3316-2022-13-4-111-137
https://psta.psiras.ru/read/psta2022_4_111-137.pdf
https://isbnsearch.org/isbn/978-5-98354-065-1
https://doi.org/10.20948/abrau-2022-18
https://keldysh.ru/abrau/2022/theses/18.pdf
https://doi.org/10.25209/2079-3316-2021-12-4-3-32
https://psta.psiras.ru/read/psta2021_4_3-32.pdf
https://doi.org/10.25209/2079-3316-2020-11-1-3-29
https://psta.psiras.ru/read/psta2020_1_3-29.pdf

352 Igor A. Adamovich RUEN

[35] I. A. Adamovich. “Experiments with the interactive specializer that implements
the partial evaluation method for a subset of the Java language”, Nauchnyj servis
v seti Internet, Trudy XX Vserossijskoj nauchnoj konferencii (Novorossijsk,
Rossiya, 17–22 sentyabrya 2018 g.), IPM im. M. V. Keldysha, M., 2018, ISBN

978-5-98354-046-0, pp. 3–16 (In Russian). https://doi.org/10.20948/abrau-2018-10https://keldysh.ru/abrau/2018/theses/10.pdfURL

[36] I. A. Adamovich, Yu. A. Klimov. “An interactive specializer based on partial
evaluation for a Java subset”, Trudy ISP RAN, 30:4 (2018), pp. 29–44 (in
English). http://mi.mathnet.ru/tisp345MN https://doi.org/10.15514/ISPRAS-2018-30(4)-2

[37] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed., Addison Wesley, 1994, ISBN

978-0201633610, 416 pp.
[38] N.D. Jones, C.K. Gomard, P. Sestoft. Partial Evaluation and Automatic

Program Generation, Prentice Hall International Series in Computer Science,
1st ed., Prentice Hall, 1993, ISBN 978-0130202499, 415 pp. https://www.itu.dk/people/sestoft/pebook/jonesgomardsestoft-a4.pdfURL

https://isbnsearch.org/isbn/978-5-98354-046-0
https://isbnsearch.org/isbn/978-5-98354-046-0
https://doi.org/10.20948/abrau-2018-10
https://keldysh.ru/abrau/2018/theses/10.pdf
http://mi.mathnet.ru/tisp345
https://doi.org/10.15514/ISPRAS-2018-30(4)-2
https://isbnsearch.org/isbn/978-0201633610
https://isbnsearch.org/isbn/978-0201633610
https://isbnsearch.org/isbn/978-0130202499
https://www.itu.dk/people/sestoft/pebook/jonesgomardsestoft-a4.pdf

	Интерактивные средства специализации программ
	Введение
	1. Оптимизирующие преобразования частичных вычислений
	2. Пример специализации простой программы методом частичных вычислений
	3. Интерактивные частичные вычисления
	4. Решения для интерактивных частичных вычислений
	5. Реализация методов интерактивных частичных вычислений
	6. Обьяснение BTA
	7. Визуализация разметки программы
	8. Типовой сценарий специализации программы
	9. Базовые понятия истории причин BT-разметки
	10. Пример анализа на основе истории причин BT-разметки
	11. Фильтрация истории причин BT-разметки
	12. Типовой сценарий использования истории причин BT-разметки
	Заключение
	Список использованных источников
	Информация об авторе:

	Interactive tools for program specialization
	References

