Volume 14 (2023) . Issue 3 (58) . Paper No. 4 (430)

Medical Informatics

Research Article

Using of neural networks to search for errors of patient's positioning on chest X-rays

Alexander Aleksandrovich Borisov1Correspondent author, Yuri Aleksandrovich Vasiliev2, Anton Vyacheslavovich Vladzimirsky3, Olga Vasil'evna Omelyanskaya4, Serafim Sergeevich Serafim5, Kirill Mikhailovich Arzamasov6

1Pirogov Russian National Research Medical University, Moscow, Russia
1-6Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health, Moscow, Russia
1 Alexander Aleksandrovich Borisov — Correspondent author aleksandrborisov10650@gmail.com

Abstract. The paper presents the results of the application of transfer learning of deep convolutional neural networks for the task of searching for chest X-rays with errors of patient styling and positioning. Evaluated neural network architectures: InceptionV3, Xception, ResNet152V2, InceptionResnetV2, DenseNet201, VGG16, VGG19, MobileNetV2, NASNetLarge. For training and testing we used chest X-rays from open datasets and the unified radiological information service of the city of Moscow. All the models obtained had diagnostic accuracy metrics above 95%, while models based on the ResNet152V2, DenseNet201, VGG16, MobileNetV2 architectures had statistically significantly better metrics than other models. The best absolute values of metrics were shown by the ResNet152V2 model (AUC=0.999, sensitivity=0.987, specificity=0.988, accuracy=0.988, F1 score=0.988). The MobileNetV2 model showed the best processing speed of one study (67.8±5.067.8 \pm 5.0 ms). The widespread use of the algorithms we have obtained can facilitate the creation of large databases of high-quality medical images, as well as optimize quality control when performing chest X-ray examinations. (In Russian).

Keywords: neural networks, deep learning, quality control, chest X-ray

MSC-20202020 Mathematics Subject Classification 68T07; 68U10, 92C50MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T07: Artificial neural networks and deep learning
MSC-2020 68Uxx: Computing methodologies and applications
MSC-2020 68U10: Computing methodologies for image processing

Acknowledgments: The article was prepared within the framework of R&D "Development of a platform for preparing data sets of radiation diagnostic studies" (EGISU No.: 123031500003-8)

For citation: Alexander A. Borisov, Yuri A. Vasiliev, Anton V. Vladzimirsky, Olga V. Omelyanskaya, Serafim S. Serafim, Kirill M. Arzamasov. Using of neural networks to search for errors of patient's positioning on chest X-rays. Program Systems: Theory and Applications, 2023, 14:3, pp. 95–113. (In Russ.). https://psta.psiras.ru/2023/3_95-113.

Full text of article (PDF): https://psta.psiras.ru/read/psta2023_3_95-113.pdf.

The article was submitted 15.04.2023; approved after reviewing 05.05.2023; accepted for publication 18.06.2023; published online 07.10.2023.

© Borisov A. A., Vasiliev Y. A., Vladzimirsky A. V., Omelyanskaya O. V., Serafim S. S., Arzamasov K. M.
2023
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license