Homepage Program Systems: Theory and Applications Русская версия
ISSN 2079-3316 Bilingual online scientific Online scientific journal of the Ailamazyan Program System Institute of the Ailamazyan PSI of PSI of Russian Academy of Science of RAS 12+ 
Volume 16 (2025) . Issue 4 (67) . Paper No. 8 (455)

Artificial intelligence and machine learning

Research Article

Applying the YOLOv11 model and the adapted LaDD dataset to people detection in sparsely populated areas

Alexander Vladimirovich Smirnov1Correspondent author, Igor Petrovich Tishchenko2, Sergey Alexandrovich Lazarev3

1-3Ailamazyan Program Systems Institute of RAS, Ves'kovo, Russia
1 Alexander Vladimirovich Smirnov — Correspondent author asmirnov_1991@mail.ru

Abstract. This study is aimed at developing a neural network method for detecting people in sparsely populated areas using images obtained from an unmanned aerial vehicle (UAV). The YOLOv11m architecture model was used as a neural network detector. As part of the study, an adaptation algorithm for the LaDD training dataset was developed and applied. Experiments were conducted to preliminary train the model on the original and adapted datasets, which demonstrated the advisability of using the adapted dataset. The final accuracy of the model during training reached 98.7% by metric mAP50mAP^{50} . Model inference showed a detection accuracy of 0.895 (89.5%) by metric F1 and 0.901 (90.1%) by metric mAP50mAP^{50} , which confirms the workability of the presented method. (In Russian).

Keywords: Image analysis, people detection, UAV imagery, YOLOv11, neural networks, dataset, adaptation

MSC-20202020 Mathematics Subject Classification 68T10; 68T45MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T10: Pattern recognition, speech recognition
MSC-2020 68T45: Machine vision and scene understanding

For citation: Alexander V. Smirnov, Igor P. Tishchenko, Sergey A. Lazarev. Applying the YOLOv11 model and the adapted LaDD dataset to people detection in sparsely populated areas. Program Systems: Theory and Applications, 2025, 16:4, pp. 217–240. (In Russ.). https://psta.psiras.ru/2025/4_217-240.

Full text of article (PDF): https://psta.psiras.ru/read/psta2025_4_217-240.pdf.

The article was submitted 28.10.2025; approved after reviewing 09.11.2025; accepted for publication 09.11.2025; published online 12.11.2025.

© Smirnov A. V., Tishchenko I. P., Lazarev S. A.
2025
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia;   Website:  http://psta.psiras.ru Phone: +7(4852) 695-228;   E-mail: ;   License: CC-BY-4.0License text on the Creative Commons site
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2025