Volume 14 (2023) . Issue 1 (56) . Paper No. 2 (423)

Artificial intelligence and machine learning

Research Article

Decomposition of construction method for a language encoder

Igor Vladimirovich TrofimovCorrespondent author

Ailamazyan Program Systems Institute of RAS, Ves'kovo, Russia
Igor Vladimirovich Trofimov — Correspondent author itrofimov@gmail.com

Abstract. An encoder as part of a language model is a mechanism for converting text information into an effective numerical representation which is suitable for solving a wide range of text processing tasks by means of neural network methods. This paper suggests a way of decomposing of the learning process for a language encoder. The author considers the issues of expediency of such decomposition taking into account reduction of computational costs, quality control at intermediate training stages, provision of the interpretability of the results on each stage. The quality evaluation of the encoder is given. (In Russian).

Keywords: natural language processing, neural networks, language model, encoder, context-sensitive representations, lexical ambiguity resolution

MSC-20202020 Mathematics Subject Classification 68T07; 68T50MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T07: Artificial neural networks and deep learning
MSC-2020 68T50: Natural language processing

For citation: Igor V. Trofimov. Decomposition of construction method for a language encoder. Program Systems: Theory and Applications, 2023, 14:1, pp. 31–54. (In Russ.). https://psta.psiras.ru/2023/1_31-54.

Full text of article (PDF): https://psta.psiras.ru/read/psta2023_1_31-54.pdf.

The article was submitted 13.11.2022; approved after reviewing 17.01.2023; accepted for publication 09.02.2023; published online 19.02.2023.

© Trofimov I. V.
2023
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license