Volume 15 (2024) . Issue 2 (61) . Paper No. 5 (431)

Artificial intelligence and machine learning

Research Article

Application of neural networks of Siamese architecture in problems of classifying products of various categories on supermarket shelves

Alexander Vladimirovich Smirnov1Correspondent author, Igor Petrovich Tishchenko2

1,2Ailamazyan Program Systems Institute of RAS, Ves'kovo, Russia
1 Alexander Vladimirovich Smirnov — Correspondent author asmirnov_1991@mail.ru

Abstract. This paper presents a study on the application of Siamese architecture neural networks in problems of classifying various food products on the shelves of department stores. Siamese networks are a special class of neural network architectures that combine two convolutional subnets. This type of neural networks is often used in object matching problems and has an important advantage over traditional convolutional neural networks, namely the absence of the need for a large amount of training data. During the work, we generated our own data set, including five different product categories. As a result, it was possible to achieve a tonality of 97.5\% during training. (In Russian).

Keywords: Siamese neural networks, dataset, foodstuffs

MSC-20202020 Mathematics Subject Classification 68T10; 68T45MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T10: Pattern recognition, speech recognition

For citation: Alexander V. Smirnov, Igor P. Tishchenko. Application of neural networks of Siamese architecture in problems of classifying products of various categories on supermarket shelves. Program Systems: Theory and Applications, 2024, 15:2, pp. 113–137. (In Russ.). https://psta.psiras.ru/2024/2_113-137.

Full text of article (PDF): https://psta.psiras.ru/read/psta2024_2_113-137.pdf.

The article was submitted 22.03.2024; approved after reviewing 10.06.2024; accepted for publication 10.06.2024; published online 22.06.2024.

© Smirnov A. V., Tishchenko I. P.
2024
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license