Homepage Program Systems: Theory and Applications Русская версия
ISSN 2079-3316 Bilingual online scientific Online scientific journal of the Ailamazyan Program System Institute of the Ailamazyan PSI of PSI of Russian Academy of Science of RAS 12+ 
Volume 16 (2025) . Issue 3 (66) . Paper No. 1 (448)

Hardware and software for distributed and supercomputer systems

Research Article

Quantum machine learning methods for intrusion detection in software-defined networks

Il'ya Andreevich Antonov1Correspondent author, Il'ya Il'ich Kurochkin2

1National University of Science and Technology MISIS, Moscow, Russia
2Institute for Information Transmission Problems of RAS, Moscow, Russia
1 Il'ya Andreevich Antonov — Correspondent author m1908142@edu.misis.ru

Abstract. Software-defined network architecture is the preferred way to build large computer networks that require high responsiveness to change and a high degree of automation. The main feature of this architecture is the centralized management of the entire network from a single controller. However, this approach opens new opportunities for attacks on the network, making the controller their main target. This paper explores the possibility of applying quantum machine learning models to detect such attacks. (In Russian).

Keywords: software-defined networks, information security, machine learning, neural networks, quantum computing, intrusion detection systems, SDN, IDS

MSC-20202020 Mathematics Subject Classification 65Y05; 68Q10MSC-2020 65-XX: Numerical analysis
MSC-2020 65Yxx: Computer aspects of numerical algorithms
MSC-2020 65Y05: Parallel numerical computation
MSC-2020 68-XX: Computer science
MSC-2020 68Qxx: Theory of computing
MSC-2020 68Q10: Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)

For citation: Il'ya A. Antonov, Il'ya I. Kurochkin. Quantum machine learning methods for intrusion detection in software-defined networks. Program Systems: Theory and Applications, 2025, 16:3, pp. 3–22. (In Russ.). https://psta.psiras.ru/2025/3_3-22.

Full text of article (PDF): https://psta.psiras.ru/read/psta2025_3_3-22.pdf.

The article was submitted 10.03.2025; approved after reviewing 26.04.2025; accepted for publication 22.05.2025; published online 18.07.2025.

© Antonov I. A., Kurochkin I. I.
2025
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia;   Website:  http://psta.psiras.ru Phone: +7(4852) 695-228;   E-mail: ;   License: CC-BY-4.0License text on the Creative Commons site
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2025