Volume 14 (2023) . Issue 1 (56) . Paper No. 5 (426)

Optimization Methods and Control Theory

Research Article

About One Class of Discrete-Continuous Systems with Parameters

Irina Viktorovna Rasina1Correspondent author, Irina Sergeevna Guseva2

1Ailamazyan Program Systems Institute of RAS, Ves'kovo, Russia
1Federal Research Center "Computer Science and Control" of RAS, Moscow, Russia
2Buryat State University, Ulan-Ude, Russia
1 Irina Viktorovna Rasina — Correspondent author irinarasina@gmail.com

Abstract. The study focuses on a special case of a hybrid system: discrete-continuous systems (DCS) with parameters and intermediate criteria. Such systems are two-level. The parameters are included only in continuous systems operating alternately at the lower level. The upper level is described by a discrete process and plays a connecting role for all the lower-level systems. The upper level also determines the policy of interaction of lower-level systems and provides minimization of functionality. The authors formulate an analogue of sufficient Krotov optimality conditions and construct a method for improving control and parameters. The paper contains an illustrative example. Based on the general conditions obtained, we have researched a special case: quasilinear DNS. (In Russian).

Keywords: discrete-continuous systems with parameters, intermediate criteria, optimal control, quasilinear discrete-continuous systems

MSC-20202020 Mathematics Subject Classification 49M99; 49K99MSC-2020 49-XX: Calculus of variations and optimal control; optimization
MSC-2020 49Mxx: Numerical methods in optimal control
MSC-2020 49M99: None of the above, but in this section
MSC-2020 49Kxx: Optimality conditions

Acknowledgments: This work was supported by the Russian Science Foundation grant No. 21-11-00202

For citation: Irina V. Rasina, Irina S. Guseva. About One Class of Discrete-Continuous Systems with Parameters. Program Systems: Theory and Applications, 2023, 14:1, pp. 125–148. (In Russ.). https://psta.psiras.ru/2023/1_125-148.

Full text of article (PDF): https://psta.psiras.ru/read/psta2023_1_125-148.pdf.

The article was submitted 27.01.2022; approved after reviewing 16.03.2023; accepted for publication 17.03.2023; published online 20.03.2023.

© Rasina I. V., Guseva I. S.
2023
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license