Volume 14 (2023) . Issue 3 (58) . Paper No. 3 (429)

Medical Informatics

Research Article

Computing of umls concepts etiopathogenetic image using graph metrics

Pavel Andreevich AstaninCorrespondent author, Svetlana Evgen'evna Rauzina, Tat'yana Vasil'evna Zarubina

Pirogov Russian National Research Medical University
Pavel Andreevich Astanin — Correspondent author med_cyber@mail.ru

Abstract. At present, the development of clinical decision support (CDS) tools is a crucial task in medical informatics. A lot of different information searching algorithms are used in CDS systems. A fundamental step in the design of these algorithms is the creation of an etiopathogenetic image for the analysis of unstructured medical texts. In this paper, we have conducted the literary review and a comparative evaluation of analytical metrics used to compute the etiopathogenetic image of concepts within the graph model of the Unified Medical Language System (UMLS) metathesaurus. Subsequently, we developed and validated our version of a graph metric suitable for the aforementioned task implementation. (Linked article texts in Russian and in English).

Keywords: hospital information system, information searching algorithms, knowledge base, graph theory, UMLS

MSC-20202020 Mathematics Subject Classification 68T30; 92C50MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T30: Knowledge representation
MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T30: Knowledge representation

Acknowledgments: the current study has been performed within the framework of the Federal program «Priority 2030» based on the Healthcare Digital Transformation Institute (HDTI) in the Pirogov Russian National Research Medical University.

For citation: Pavel A. Astanin, Svetlana E. Rauzina, Tat'yana V. Zarubina. Computing of umls concepts etiopathogenetic image using graph metrics. Program Systems: Theory and Applications, 2023, 14:3, pp. 59–94. (In Russ., in Engl.). https://psta.psiras.ru/2023/3_59-94.

Full text of article (PDF): https://psta.psiras.ru/read/psta2023_3_59-94.pdf.

The article was submitted 30.03.2023; approved after reviewing 05.05.2023; accepted for publication 18.06.2023; published online 07.10.2023.

© Astanin P. A., Rauzina S. E., Zarubina T. V.
2023
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license