Volume 14 (2023) . Issue 4 (59) . Paper No. 3 (429)

Optimization Methods and Control Theory

Research Article

Minimax improvement method for inhomogeneous discrete systems

Irina Viktorovna Rasina1Correspondent author, Alexander Olegovich Blinov2

1Ailamazyan Program Systems Institute of RAS, Ves'kovo, Russia
1Federal Research Center "Computer Science and Control" of RAS, Moscow, Russia
2Russian State Social University, Moscow, Russia
1 Irina Viktorovna Rasina — Correspondent author irinarasina@gmail.com

Abstract. A class of two-level discrete inhomogeneous systems (DNS) is considered for the case when all homogeneous subsystems of the lower level are not only connected by a common functionality, but also have their own goals. Similar systems are widely used in practice (economics, ecology), and also arise in the process of numerically solving optimization problems when discretizing continuous control systems.

A second-order control improvement method is proposed, for the derivation of which a generalization of sufficient optimality conditions by V. F. Krotov. Illustrative examples are given. (In Russian).

Keywords: heterogeneous discrete systems, intermediate criteria, sufficient optimality conditions, control improvement method

MSC-20202020 Mathematics Subject Classification 49M99; 49N10MSC-2020 49-XX: Calculus of variations and optimal control; optimization
MSC-2020 49Mxx: Numerical methods in optimal control
MSC-2020 49M99: None of the above, but in this section
MSC-2020 49Mxx: Numerical methods in optimal control
MSC-2020 49M99: None of the above, but in this section

Acknowledgments:

1The work was supported by the Russian Science Foundation (project no. 21-11-00202)

For citation: Irina V. Rasina, Alexander O. Blinov. Minimax improvement method for inhomogeneous discrete systems. Program Systems: Theory and Applications, 2023, 14:4, pp. 47–66. (In Russ.). https://psta.psiras.ru/2023/4_47-66.

Full text of article (PDF): https://psta.psiras.ru/read/psta2023_4_47-66.pdf.

The article was submitted 31.07.2023; approved after reviewing 11.10.2023; accepted for publication 12.10.2023; published online 28.10.2023.

© Rasina I. V., Blinov A. O.
2023
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license