Volume 15 (2024) . Issue 1 (60) . Paper No. 3 (424)

Computational science

Research Article

Fractal model of macrosystems

Sergej Anatolyevich AmelkinCorrespondent author

The Presidential Academy of National Economy and Public Administration, Moscow, Russia
Sergej Anatolyevich Amelkin — Correspondent author amelkin@ist.education

Abstract. A mathematical model of a macrosystem of arbitrary nature in the form of a fractal graph is considered. This representation allows one to obtain phenomenological dependencies of macrosystems without being based on the properties of elementary objects that form the macrosystem. It is shown that a metric can be introduced on a set of stationary processes; the entropy production in the macrosystem has metric properties. (In Russian).

Keywords: Macrosystem, entropy production, minimal dissipation processes

MSC-20202020 Mathematics Subject Classification 28A80; 28D20, 82B35MSC-2020 28-XX: Measure and integration
MSC-2020 28Axx: Classical measure theory
MSC-2020 28A80: Fractals
MSC-2020 28Dxx: Measure-theoretic ergodic theory
MSC-2020 28D20: Entropy and other invariants

Acknowledgments: The study was supported by Russian Science Foundation grant No. 23-21-00173

For citation: Sergej A. Amelkin. Fractal model of macrosystems. Program Systems: Theory and Applications, 2024, 15:1, pp. 41–62. (In Russ.). https://psta.psiras.ru/2024/1_41-62.

Full text of article (PDF): https://psta.psiras.ru/read/psta2024_1_41-62.pdf.

The article was submitted 07.12.2023; approved after reviewing 27.12.2023; accepted for publication 28.12.2023; published online 21.03.2024.

© Amelkin S. A.
2024
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia; Phone: +7(4852) 695-228; E-mail: ; Website:  http://psta.psiras.ru
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2024 The text of CC-BY-4.0 license