Homepage Program Systems: Theory and Applications Русская версия
ISSN 2079-3316 Bilingual online scientific Online scientific journal of the Ailamazyan Program System Institute of the Ailamazyan PSI of PSI of Russian Academy of Science of RAS 12+ 
Volume 16 (2025) . Issue 2 (65) . Paper No. 1 (448)

Theoretical computer science

Research Article

Complexity of Computations with Time Travel

Milad Joudakizadeh1, Anatoly Petrovich Beltiukov2Correspondent author

1,2Udmurt State University, Izhevsk, Russia.
2 Anatoly Petrovich Beltiukov — Correspondent author belt.udsu@mail.ru

Abstract. This paper explores a mathematical model of computation that can be interpreted as a computer capable of receiving data from future states of its own computational process. Under certain combinations of input data and programs, such computations may become infeasible due to emerging contradictions or lead to ambiguous outcomes. We investigate programs for which this process is always feasible and yields a unique result.

It is demonstrated that, in the absence of computational complexity constraints, such machines can output the value of any recursively decidable predicate within a fixed time after the computation begins—referred to as the response delay time—while the computation process must continue even after the result is produced. When the total runtime of these machines is bounded by a polynomial function of the input size, they precisely recognize languages belonging to the intersection of the NP and co-NP complexity classes, with the same constant response delay time in the aforementioned sense.

Possible practical implementations of such a computer are examined, including an analysis of operational protocols leveraging quantum annealing to select the appropriate computational process. It is shown that, with parallelization of the computational process, the class of problems solvable by these machines in polynomial time corresponds to the PSPACE complexity class.

Additionally, a mode of operation is studied in which these machines have direct access to input data. In this case, if the runtime is limited to a logarithmic function of the input size, the class of problems solvable by such a parallelized computer encompasses LOGSPACE

The findings of this study can be applied to develop new programming principles for nondeterministic computational machines, where data transmission from the future is employed instead of nondeterministic choices. (Linked article texts in English and in Russian).

Keywords: Turing Machine, Computational Complexity, Recursive Sets, Nondeterministic Computation, Quantum Annealing, Time Machine, Artificial Intelligence

MSC-20202020 Mathematics Subject Classification 68Q09; 68Q10, 68Q15MSC-2020 68-XX: Computer science
MSC-2020 68Qxx: Theory of computing
MSC-2020 68Q09: Other nonclassical models of computation
MSC-2020 68Q10: Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
MSC-2020 68Q15: Complexity classes (hierarchies, relations among complexity classes, etc.)

For citation: Milad Joudakizadeh, Anatoly P. Beltiukov. Complexity of Computations with Time Travel. Program Systems: Theory and Applications, 2025, 16:2, pp. 3–54. (in Engl. In Russ.). https://psta.psiras.ru/2025/2_3-54.

Full text of bilingual article (PDF): https://psta.psiras.ru/read/psta2025_2_3-54.pdf (Clicking on the flag in the header switches the page language).

The article was submitted 15.03.2025; approved after reviewing 02.04.2025; accepted for publication 02.04.2025; published online 21.04.2025.

© Joudakizadeh M., Beltiukov A. P.
2025
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia;   Website:  http://psta.psiras.ru Phone: +7(4852) 695-228;   E-mail: ;   License: CC-BY-4.0License text on the Creative Commons site
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2025