Homepage Program Systems: Theory and Applications Русская версия
ISSN 2079-3316 Bilingual online scientific Online scientific journal of the Ailamazyan Program System Institute of the Ailamazyan PSI of PSI of Russian Academy of Science of RAS 12+ 
Volume 16 (2025) . Issue 4 (67) . Paper No. 2 (449)

Artificial intelligence and machine learning

Research Article

Using domain adaptation for the human pose estimation task

Andrei Sergeevich Tokarev1Correspondent author, Ilia Mikhailovich Voronkov2

1,2Moscow Institute of Physics and Technology, Moscow, Russia
1 Andrei Sergeevich Tokarev — Correspondent author tokarev.as@phystech.su

Abstract. The article studies domain adaptation algorithms for the task of recognizing key points on the human body for the purpose of using them in sports, when it is necessary to increase the accuracy of recognition and reduce the labor intensity of manual data labeling. The result of the work is an algorithm for iterative adaptation of the model on its own pseudo-labels. It is experimentally shown that the method allows obtaining a more effective final neural network model in comparison with conventional additional training. (Linked article texts in English and in Russian).

Keywords: Keypoints, human pose estimation, unsupervised domain adaptation

For citation: Andrei S. Tokarev, Ilia M. Voronkov. Using domain adaptation for the human pose estimation task. Program Systems: Theory and Applications, 2025, 16:4, pp. 23–50. (in Engl. In Russ.). https://psta.psiras.ru/2025/4_23-50.

Full text of bilingual article (PDF): https://psta.psiras.ru/read/psta2025_4_23-50.pdf (Clicking on the flag in the header switches the page language).

The article was submitted 20.12.2024; approved after reviewing 16.01.2025; accepted for publication 07.04.2025; published online 30.08.2025.

© Tokarev A. S., Voronkov I. M.
2025
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia;   Website:  http://psta.psiras.ru Phone: +7(4852) 695-228;   E-mail: ;   License: CC-BY-4.0License text on the Creative Commons site
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2025