Homepage Program Systems: Theory and Applications Русская версия
ISSN 2079-3316 Bilingual electronic scientific Electronic scientific journal of the Ailamazyan Program System Institute of the Ailamazyan PSI of PSI of Russian Academy of Science of RAS 12+ 
Volume 16 (2025) . Issue 1 (64) . Paper No. 1 (443)

Applied software systems

Research Article

Using the Mask R-CNN model for segmentation of real estate objects in aerial photographs

Igor Victorovich VinokurovCorrespondent author

Financial University under the Government of the Russian Federation, Moscow, Russia
Igor Victorovich Vinokurov — Correspondent author igvvinokurov@fa.ru

Abstract. The mass appearance of illegal and unregistered in the Unified State Register of Real Estate (USRRE) real estate objects complicates cadastral registration for many entities at the territorial and administrative levels. Traditional methods of identifying objects of this type, based on manual analysis of geospatial data, are labor-intensive and time-consuming.

To improve the efficiency of this process, it is proposed to automate the detection of objects in aerial photographs by solving the instance segmentation problem using the Mask R-CNN deep learning model. The article describes the preparation of a dataset for this model, examines the main quality metrics, and analyzes the results obtained. The efficiency of the Mask R-CNN model in practice is shown for solving the problem of detecting construction projects that are not registered in the USRRE. (Linked article texts in Russian and in English).

Keywords: Cadastral registration, aerial photography analysis, instance segmentation, Mask R-CNN, PyTorch

MSC-20202020 Mathematics Subject Classification 68T20; 68T07, 68T45MSC-2020 68-XX: Computer science
MSC-2020 68Txx: Artificial intelligence
MSC-2020 68T20: Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
MSC-2020 68T07: Artificial neural networks and deep learning

For citation: Igor V. Vinokurov. Using the Mask R-CNN model for segmentation of real estate objects in aerial photographs. Program Systems: Theory and Applications, 2025, 16:1, pp. 3–44. (In Russ., in Engl.). https://psta.psiras.ru/2025/1_3-44.

Full text of bilingual article (PDF): https://psta.psiras.ru/read/psta2025_1_3-44.pdf (Clicking on the flag in the header switches the page language).

The article was submitted 21.10.2024; approved after reviewing 24.12.2024; accepted for publication 11.01.2025; published online 31.01.2025.

© Vinokurov I. V.
2025
Editorial address: Ailamazyan Program Systems Institute of the Russian Academy of Sciences, Peter the First Street 4«a», Veskovo village, Pereslavl area, Yaroslavl region, 152021 Russia;   Website:  http://psta.psiras.ru Phone: +7(4852) 695-228;   E-mail: ;   License: CC-BY-4.0License text on the Creative Commons site
© Ailamazyan Program System Institute of Russian Academy of Science (site design) 2010–2025